feat:统一normal和focus的动作调整,emoji统一可选随机激活或llm激活
This commit is contained in:
@@ -9,18 +9,17 @@ from src.plugin_system.apis import generator_api
|
||||
from maim_message import UserInfo, Seg
|
||||
from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager
|
||||
from src.chat.utils.timer_calculator import Timer
|
||||
|
||||
from src.common.message_repository import count_messages
|
||||
from src.chat.utils.prompt_builder import global_prompt_manager
|
||||
from ..message_receive.message import MessageSending, MessageRecv, MessageThinking, MessageSet
|
||||
from src.chat.message_receive.message_sender import message_manager
|
||||
from src.chat.normal_chat.willing.willing_manager import get_willing_manager
|
||||
from src.chat.normal_chat.normal_chat_utils import get_recent_message_stats
|
||||
from src.chat.focus_chat.planners.action_manager import ActionManager
|
||||
from src.chat.planner_actions.action_manager import ActionManager
|
||||
from src.person_info.relationship_builder_manager import relationship_builder_manager
|
||||
from .priority_manager import PriorityManager
|
||||
import traceback
|
||||
from src.chat.normal_chat.normal_chat_planner import NormalChatPlanner
|
||||
from src.chat.normal_chat.normal_chat_action_modifier import NormalChatActionModifier
|
||||
from src.chat.planner_actions.planner_normal import NormalChatPlanner
|
||||
from src.chat.planner_actions.action_modifier import ActionModifier
|
||||
|
||||
from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info
|
||||
from src.manager.mood_manager import mood_manager
|
||||
@@ -71,7 +70,7 @@ class NormalChat:
|
||||
# Planner相关初始化
|
||||
self.action_manager = ActionManager()
|
||||
self.planner = NormalChatPlanner(self.stream_name, self.action_manager)
|
||||
self.action_modifier = NormalChatActionModifier(self.action_manager, self.stream_id, self.stream_name)
|
||||
self.action_modifier = ActionModifier(self.action_manager, self.stream_id)
|
||||
self.enable_planner = global_config.normal_chat.enable_planner # 从配置中读取是否启用planner
|
||||
|
||||
# 记录最近的回复内容,每项包含: {time, user_message, response, is_mentioned, is_reference_reply}
|
||||
@@ -569,8 +568,8 @@ class NormalChat:
|
||||
available_actions = None
|
||||
if self.enable_planner:
|
||||
try:
|
||||
await self.action_modifier.modify_actions_for_normal_chat(
|
||||
self.chat_stream, self.recent_replies, message.processed_plain_text
|
||||
await self.action_modifier.modify_actions(
|
||||
mode="normal", message_content=message.processed_plain_text
|
||||
)
|
||||
available_actions = self.action_manager.get_using_actions_for_mode("normal")
|
||||
except Exception as e:
|
||||
@@ -1003,3 +1002,29 @@ class NormalChat:
|
||||
except Exception as e:
|
||||
logger.error(f"[{self.stream_name}] 清理思考消息 {thinking_id} 时出错: {e}")
|
||||
|
||||
|
||||
def get_recent_message_stats(minutes: int = 30, chat_id: str = None) -> dict:
|
||||
"""
|
||||
Args:
|
||||
minutes (int): 检索的分钟数,默认30分钟
|
||||
chat_id (str, optional): 指定的chat_id,仅统计该chat下的消息。为None时统计全部。
|
||||
Returns:
|
||||
dict: {"bot_reply_count": int, "total_message_count": int}
|
||||
"""
|
||||
|
||||
now = time.time()
|
||||
start_time = now - minutes * 60
|
||||
bot_id = global_config.bot.qq_account
|
||||
|
||||
filter_base = {"time": {"$gte": start_time}}
|
||||
if chat_id is not None:
|
||||
filter_base["chat_id"] = chat_id
|
||||
|
||||
# 总消息数
|
||||
total_message_count = count_messages(filter_base)
|
||||
# bot自身回复数
|
||||
bot_filter = filter_base.copy()
|
||||
bot_filter["user_id"] = bot_id
|
||||
bot_reply_count = count_messages(bot_filter)
|
||||
|
||||
return {"bot_reply_count": bot_reply_count, "total_message_count": total_message_count}
|
||||
@@ -1,403 +0,0 @@
|
||||
from typing import List, Any, Dict
|
||||
from src.common.logger import get_logger
|
||||
from src.chat.focus_chat.planners.action_manager import ActionManager
|
||||
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
|
||||
from src.config.config import global_config
|
||||
import random
|
||||
import time
|
||||
import asyncio
|
||||
|
||||
logger = get_logger("normal_chat_action_modifier")
|
||||
|
||||
|
||||
class NormalChatActionModifier:
|
||||
"""Normal Chat动作修改器
|
||||
|
||||
负责根据Normal Chat的上下文和状态动态调整可用的动作集合
|
||||
实现与Focus Chat类似的动作激活策略,但将LLM_JUDGE转换为概率激活以提升性能
|
||||
"""
|
||||
|
||||
def __init__(self, action_manager: ActionManager, stream_id: str, stream_name: str):
|
||||
"""初始化动作修改器"""
|
||||
self.action_manager = action_manager
|
||||
self.stream_id = stream_id
|
||||
self.stream_name = stream_name
|
||||
self.log_prefix = f"[{stream_name}]动作修改器"
|
||||
|
||||
# 缓存所有注册的动作
|
||||
self.all_actions = self.action_manager.get_registered_actions()
|
||||
|
||||
async def modify_actions_for_normal_chat(
|
||||
self,
|
||||
chat_stream,
|
||||
recent_replies: List[dict],
|
||||
message_content: str,
|
||||
**kwargs: Any,
|
||||
):
|
||||
"""为Normal Chat修改可用动作集合
|
||||
|
||||
实现动作激活策略:
|
||||
1. 基于关联类型的动态过滤
|
||||
2. 基于激活类型的智能判定(LLM_JUDGE转为概率激活)
|
||||
|
||||
Args:
|
||||
chat_stream: 聊天流对象
|
||||
recent_replies: 最近的回复记录
|
||||
message_content: 当前消息内容
|
||||
**kwargs: 其他参数
|
||||
"""
|
||||
|
||||
reasons = []
|
||||
merged_action_changes = {"add": [], "remove": []}
|
||||
type_mismatched_actions = [] # 在外层定义避免作用域问题
|
||||
|
||||
self.action_manager.restore_default_actions()
|
||||
|
||||
# 第一阶段:基于关联类型的动态过滤
|
||||
if chat_stream:
|
||||
chat_context = chat_stream.context if hasattr(chat_stream, "context") else None
|
||||
if chat_context:
|
||||
# 获取Normal模式下的可用动作(已经过滤了mode_enable)
|
||||
current_using_actions = self.action_manager.get_using_actions_for_mode("normal")
|
||||
# print(f"current_using_actions: {current_using_actions}")
|
||||
for action_name in current_using_actions.keys():
|
||||
if action_name in self.all_actions:
|
||||
data = self.all_actions[action_name]
|
||||
if data.get("associated_types"):
|
||||
if not chat_context.check_types(data["associated_types"]):
|
||||
type_mismatched_actions.append(action_name)
|
||||
logger.debug(f"{self.log_prefix} 动作 {action_name} 关联类型不匹配,移除该动作")
|
||||
|
||||
if type_mismatched_actions:
|
||||
merged_action_changes["remove"].extend(type_mismatched_actions)
|
||||
reasons.append(f"移除{type_mismatched_actions}(关联类型不匹配)")
|
||||
|
||||
# 第二阶段:应用激活类型判定
|
||||
# 构建聊天内容 - 使用与planner一致的方式
|
||||
chat_content = ""
|
||||
if chat_stream and hasattr(chat_stream, "stream_id"):
|
||||
try:
|
||||
# 获取消息历史,使用与normal_chat_planner相同的方法
|
||||
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=chat_stream.stream_id,
|
||||
timestamp=time.time(),
|
||||
limit=global_config.chat.max_context_size, # 使用相同的配置
|
||||
)
|
||||
|
||||
# 构建可读的聊天上下文
|
||||
chat_content = build_readable_messages(
|
||||
message_list_before_now,
|
||||
replace_bot_name=True,
|
||||
merge_messages=False,
|
||||
timestamp_mode="relative",
|
||||
read_mark=0.0,
|
||||
show_actions=True,
|
||||
)
|
||||
|
||||
logger.debug(f"{self.log_prefix} 成功构建聊天内容,长度: {len(chat_content)}")
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"{self.log_prefix} 构建聊天内容失败: {e}")
|
||||
chat_content = ""
|
||||
|
||||
# 获取当前Normal模式下的动作集进行激活判定
|
||||
current_actions = self.action_manager.get_using_actions_for_mode("normal")
|
||||
|
||||
# print(f"current_actions: {current_actions}")
|
||||
# print(f"chat_content: {chat_content}")
|
||||
final_activated_actions = await self._apply_normal_activation_filtering(
|
||||
current_actions, chat_content, message_content, recent_replies
|
||||
)
|
||||
# print(f"final_activated_actions: {final_activated_actions}")
|
||||
|
||||
# 统一处理所有需要移除的动作,避免重复移除
|
||||
all_actions_to_remove = set() # 使用set避免重复
|
||||
|
||||
# 添加关联类型不匹配的动作
|
||||
if type_mismatched_actions:
|
||||
all_actions_to_remove.update(type_mismatched_actions)
|
||||
|
||||
# 添加激活类型判定未通过的动作
|
||||
for action_name in current_actions.keys():
|
||||
if action_name not in final_activated_actions:
|
||||
all_actions_to_remove.add(action_name)
|
||||
|
||||
# 统计移除原因(避免重复)
|
||||
activation_failed_actions = [
|
||||
name
|
||||
for name in current_actions.keys()
|
||||
if name not in final_activated_actions and name not in type_mismatched_actions
|
||||
]
|
||||
if activation_failed_actions:
|
||||
reasons.append(f"移除{activation_failed_actions}(激活类型判定未通过)")
|
||||
|
||||
# 统一执行移除操作
|
||||
for action_name in all_actions_to_remove:
|
||||
success = self.action_manager.remove_action_from_using(action_name)
|
||||
if success:
|
||||
logger.debug(f"{self.log_prefix} 移除动作: {action_name}")
|
||||
else:
|
||||
logger.debug(f"{self.log_prefix} 动作 {action_name} 已经不在使用集中,跳过移除")
|
||||
|
||||
# 应用动作添加(如果有的话)
|
||||
for action_name in merged_action_changes["add"]:
|
||||
if action_name in self.all_actions:
|
||||
success = self.action_manager.add_action_to_using(action_name)
|
||||
if success:
|
||||
logger.debug(f"{self.log_prefix} 添加动作: {action_name}")
|
||||
|
||||
# 记录变更原因
|
||||
if reasons:
|
||||
logger.info(f"{self.log_prefix} 动作调整完成: {' | '.join(reasons)}")
|
||||
|
||||
# 获取最终的Normal模式可用动作并记录
|
||||
final_actions = self.action_manager.get_using_actions_for_mode("normal")
|
||||
logger.debug(f"{self.log_prefix} 当前Normal模式可用动作: {list(final_actions.keys())}")
|
||||
|
||||
async def _apply_normal_activation_filtering(
|
||||
self,
|
||||
actions_with_info: Dict[str, Any],
|
||||
chat_content: str = "",
|
||||
message_content: str = "",
|
||||
recent_replies: List[dict] = None,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
应用Normal模式的激活类型过滤逻辑
|
||||
|
||||
与Focus模式的区别:
|
||||
1. LLM_JUDGE类型转换为概率激活(避免LLM调用)
|
||||
2. RANDOM类型保持概率激活
|
||||
3. KEYWORD类型保持关键词匹配
|
||||
4. ALWAYS类型直接激活
|
||||
|
||||
Args:
|
||||
actions_with_info: 带完整信息的动作字典
|
||||
chat_content: 聊天内容
|
||||
message_content: 当前消息内容
|
||||
recent_replies: 最近的回复记录列表
|
||||
|
||||
Returns:
|
||||
Dict[str, Any]: 过滤后激活的actions字典
|
||||
"""
|
||||
activated_actions = {}
|
||||
|
||||
# 分类处理不同激活类型的actions
|
||||
always_actions = {}
|
||||
random_actions = {}
|
||||
keyword_actions = {}
|
||||
llm_judge_actions = {}
|
||||
|
||||
for action_name, action_info in actions_with_info.items():
|
||||
# 使用normal_activation_type
|
||||
activation_type = action_info.get("normal_activation_type", "always")
|
||||
|
||||
# 现在统一是字符串格式的激活类型值
|
||||
if activation_type == "always":
|
||||
always_actions[action_name] = action_info
|
||||
elif activation_type == "random":
|
||||
random_actions[action_name] = action_info
|
||||
elif activation_type == "llm_judge":
|
||||
llm_judge_actions[action_name] = action_info
|
||||
elif activation_type == "keyword":
|
||||
keyword_actions[action_name] = action_info
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix}未知的激活类型: {activation_type},跳过处理")
|
||||
|
||||
# 1. 处理ALWAYS类型(直接激活)
|
||||
for action_name, action_info in always_actions.items():
|
||||
activated_actions[action_name] = action_info
|
||||
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: ALWAYS类型直接激活")
|
||||
|
||||
# 2. 处理RANDOM类型(概率激活)
|
||||
for action_name, action_info in random_actions.items():
|
||||
probability = action_info.get("random_activation_probability", ActionManager.DEFAULT_RANDOM_PROBABILITY)
|
||||
should_activate = random.random() < probability
|
||||
if should_activate:
|
||||
activated_actions[action_name] = action_info
|
||||
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: RANDOM类型触发(概率{probability})")
|
||||
else:
|
||||
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: RANDOM类型未触发(概率{probability})")
|
||||
|
||||
# 3. 处理KEYWORD类型(关键词匹配)
|
||||
for action_name, action_info in keyword_actions.items():
|
||||
should_activate = self._check_keyword_activation(action_name, action_info, chat_content, message_content)
|
||||
if should_activate:
|
||||
activated_actions[action_name] = action_info
|
||||
keywords = action_info.get("activation_keywords", [])
|
||||
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: KEYWORD类型匹配关键词({keywords})")
|
||||
else:
|
||||
keywords = action_info.get("activation_keywords", [])
|
||||
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: KEYWORD类型未匹配关键词({keywords})")
|
||||
|
||||
# 4. 处理LLM_JUDGE类型(并行判定)
|
||||
if llm_judge_actions:
|
||||
# 直接并行处理所有LLM判定actions
|
||||
llm_results = await self._process_llm_judge_actions_parallel(
|
||||
llm_judge_actions,
|
||||
chat_content,
|
||||
)
|
||||
|
||||
# 添加激活的LLM判定actions
|
||||
for action_name, should_activate in llm_results.items():
|
||||
if should_activate:
|
||||
activated_actions[action_name] = llm_judge_actions[action_name]
|
||||
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: LLM_JUDGE类型判定通过")
|
||||
else:
|
||||
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: LLM_JUDGE类型判定未通过")
|
||||
|
||||
|
||||
|
||||
logger.debug(f"{self.log_prefix}Normal模式激活类型过滤完成: {list(activated_actions.keys())}")
|
||||
return activated_actions
|
||||
|
||||
def _check_keyword_activation(
|
||||
self,
|
||||
action_name: str,
|
||||
action_info: Dict[str, Any],
|
||||
chat_content: str = "",
|
||||
message_content: str = "",
|
||||
) -> bool:
|
||||
"""
|
||||
检查是否匹配关键词触发条件
|
||||
|
||||
Args:
|
||||
action_name: 动作名称
|
||||
action_info: 动作信息
|
||||
chat_content: 聊天内容(已经是格式化后的可读消息)
|
||||
|
||||
Returns:
|
||||
bool: 是否应该激活此action
|
||||
"""
|
||||
|
||||
activation_keywords = action_info.get("activation_keywords", [])
|
||||
case_sensitive = action_info.get("keyword_case_sensitive", False)
|
||||
|
||||
if not activation_keywords:
|
||||
logger.warning(f"{self.log_prefix}动作 {action_name} 设置为关键词触发但未配置关键词")
|
||||
return False
|
||||
|
||||
# 使用构建好的聊天内容作为检索文本
|
||||
search_text = chat_content + message_content
|
||||
|
||||
# 如果不区分大小写,转换为小写
|
||||
if not case_sensitive:
|
||||
search_text = search_text.lower()
|
||||
|
||||
# 检查每个关键词
|
||||
matched_keywords = []
|
||||
for keyword in activation_keywords:
|
||||
check_keyword = keyword if case_sensitive else keyword.lower()
|
||||
if check_keyword in search_text:
|
||||
matched_keywords.append(keyword)
|
||||
|
||||
# print(f"search_text: {search_text}")
|
||||
# print(f"activation_keywords: {activation_keywords}")
|
||||
|
||||
if matched_keywords:
|
||||
logger.debug(f"{self.log_prefix}动作 {action_name} 匹配到关键词: {matched_keywords}")
|
||||
return True
|
||||
else:
|
||||
logger.debug(f"{self.log_prefix}动作 {action_name} 未匹配到任何关键词: {activation_keywords}")
|
||||
return False
|
||||
|
||||
|
||||
async def _process_llm_judge_actions_parallel(
|
||||
self,
|
||||
llm_judge_actions: Dict[str, Any],
|
||||
chat_content: str = "",
|
||||
) -> Dict[str, bool]:
|
||||
"""
|
||||
并行处理LLM判定actions,支持智能缓存
|
||||
|
||||
Args:
|
||||
llm_judge_actions: 需要LLM判定的actions
|
||||
chat_content: 聊天内容
|
||||
|
||||
Returns:
|
||||
Dict[str, bool]: action名称到激活结果的映射
|
||||
"""
|
||||
|
||||
# 生成当前上下文的哈希值
|
||||
current_context_hash = self._generate_context_hash(chat_content)
|
||||
current_time = time.time()
|
||||
|
||||
results = {}
|
||||
tasks_to_run = {}
|
||||
|
||||
# 检查缓存
|
||||
for action_name, action_info in llm_judge_actions.items():
|
||||
cache_key = f"{action_name}_{current_context_hash}"
|
||||
|
||||
# 检查是否有有效的缓存
|
||||
if (
|
||||
cache_key in self._llm_judge_cache
|
||||
and current_time - self._llm_judge_cache[cache_key]["timestamp"] < self._cache_expiry_time
|
||||
):
|
||||
results[action_name] = self._llm_judge_cache[cache_key]["result"]
|
||||
logger.debug(
|
||||
f"{self.log_prefix}使用缓存结果 {action_name}: {'激活' if results[action_name] else '未激活'}"
|
||||
)
|
||||
else:
|
||||
# 需要进行LLM判定
|
||||
tasks_to_run[action_name] = action_info
|
||||
|
||||
# 如果有需要运行的任务,并行执行
|
||||
if tasks_to_run:
|
||||
logger.debug(f"{self.log_prefix}并行执行LLM判定,任务数: {len(tasks_to_run)}")
|
||||
|
||||
# 创建并行任务
|
||||
tasks = []
|
||||
task_names = []
|
||||
|
||||
for action_name, action_info in tasks_to_run.items():
|
||||
task = self._llm_judge_action(
|
||||
action_name,
|
||||
action_info,
|
||||
chat_content,
|
||||
)
|
||||
tasks.append(task)
|
||||
task_names.append(action_name)
|
||||
|
||||
# 并行执行所有任务
|
||||
try:
|
||||
task_results = await asyncio.gather(*tasks, return_exceptions=True)
|
||||
|
||||
# 处理结果并更新缓存
|
||||
for _, (action_name, result) in enumerate(zip(task_names, task_results)):
|
||||
if isinstance(result, Exception):
|
||||
logger.error(f"{self.log_prefix}LLM判定action {action_name} 时出错: {result}")
|
||||
results[action_name] = False
|
||||
else:
|
||||
results[action_name] = result
|
||||
|
||||
# 更新缓存
|
||||
cache_key = f"{action_name}_{current_context_hash}"
|
||||
self._llm_judge_cache[cache_key] = {"result": result, "timestamp": current_time}
|
||||
|
||||
logger.debug(f"{self.log_prefix}并行LLM判定完成,耗时: {time.time() - current_time:.2f}s")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}并行LLM判定失败: {e}")
|
||||
# 如果并行执行失败,为所有任务返回False
|
||||
for action_name in tasks_to_run.keys():
|
||||
results[action_name] = False
|
||||
|
||||
# 清理过期缓存
|
||||
self._cleanup_expired_cache(current_time)
|
||||
|
||||
return results
|
||||
|
||||
def get_available_actions_count(self) -> int:
|
||||
"""获取当前可用动作数量(排除默认的no_action)"""
|
||||
current_actions = self.action_manager.get_using_actions_for_mode("normal")
|
||||
# 排除no_action(如果存在)
|
||||
filtered_actions = {k: v for k, v in current_actions.items() if k != "no_action"}
|
||||
return len(filtered_actions)
|
||||
|
||||
def should_skip_planning(self) -> bool:
|
||||
"""判断是否应该跳过规划过程"""
|
||||
available_count = self.get_available_actions_count()
|
||||
if available_count == 0:
|
||||
logger.debug(f"{self.log_prefix} 没有可用动作,跳过规划")
|
||||
return True
|
||||
return False
|
||||
@@ -1,306 +0,0 @@
|
||||
import json
|
||||
from typing import Dict, Any
|
||||
from rich.traceback import install
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.config.config import global_config
|
||||
from src.common.logger import get_logger
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.individuality.individuality import get_individuality
|
||||
from src.chat.focus_chat.planners.action_manager import ActionManager
|
||||
from src.chat.message_receive.message import MessageThinking
|
||||
from json_repair import repair_json
|
||||
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
|
||||
import time
|
||||
import traceback
|
||||
|
||||
logger = get_logger("normal_chat_planner")
|
||||
|
||||
install(extra_lines=3)
|
||||
|
||||
|
||||
def init_prompt():
|
||||
Prompt(
|
||||
"""
|
||||
你的自我认知是:
|
||||
{self_info_block}
|
||||
请记住你的性格,身份和特点。
|
||||
|
||||
你是群内的一员,你现在正在参与群内的闲聊,以下是群内的聊天内容:
|
||||
{chat_context}
|
||||
|
||||
基于以上聊天上下文和用户的最新消息,选择最合适的action。
|
||||
|
||||
注意,除了下面动作选项之外,你在聊天中不能做其他任何事情,这是你能力的边界,现在请你选择合适的action:
|
||||
|
||||
{action_options_text}
|
||||
|
||||
重要说明:
|
||||
- "no_action" 表示只进行普通聊天回复,不执行任何额外动作
|
||||
- 其他action表示在普通回复的基础上,执行相应的额外动作
|
||||
|
||||
你必须从上面列出的可用action中选择一个,并说明原因。
|
||||
{moderation_prompt}
|
||||
|
||||
请以动作的输出要求,以严格的 JSON 格式输出,且仅包含 JSON 内容。不要有任何其他文字或解释:
|
||||
""",
|
||||
"normal_chat_planner_prompt",
|
||||
)
|
||||
|
||||
Prompt(
|
||||
"""
|
||||
动作:{action_name}
|
||||
动作描述:{action_description}
|
||||
{action_require}
|
||||
{{
|
||||
"action": "{action_name}",{action_parameters}
|
||||
}}
|
||||
""",
|
||||
"normal_chat_action_prompt",
|
||||
)
|
||||
|
||||
|
||||
class NormalChatPlanner:
|
||||
def __init__(self, log_prefix: str, action_manager: ActionManager):
|
||||
self.log_prefix = log_prefix
|
||||
# LLM规划器配置
|
||||
self.planner_llm = LLMRequest(
|
||||
model=global_config.model.planner,
|
||||
request_type="normal.planner", # 用于normal_chat动作规划
|
||||
)
|
||||
|
||||
self.action_manager = action_manager
|
||||
|
||||
async def plan(self, message: MessageThinking) -> Dict[str, Any]:
|
||||
"""
|
||||
Normal Chat 规划器: 使用LLM根据上下文决定做出什么动作。
|
||||
|
||||
参数:
|
||||
message: 思考消息对象
|
||||
sender_name: 发送者名称
|
||||
"""
|
||||
|
||||
action = "no_action" # 默认动作改为no_action
|
||||
reasoning = "规划器初始化默认"
|
||||
action_data = {}
|
||||
|
||||
try:
|
||||
# 设置默认值
|
||||
nickname_str = ""
|
||||
for nicknames in global_config.bot.alias_names:
|
||||
nickname_str += f"{nicknames},"
|
||||
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
|
||||
|
||||
personality_block = get_individuality().get_personality_prompt(x_person=2, level=2)
|
||||
identity_block = get_individuality().get_identity_prompt(x_person=2, level=2)
|
||||
|
||||
self_info = name_block + personality_block + identity_block
|
||||
|
||||
# 获取当前可用的动作,使用Normal模式过滤
|
||||
current_available_actions = self.action_manager.get_using_actions_for_mode("normal")
|
||||
|
||||
# 注意:动作的激活判定现在在 normal_chat_action_modifier 中完成
|
||||
# 这里直接使用经过 action_modifier 处理后的最终动作集
|
||||
# 符合职责分离原则:ActionModifier负责动作管理,Planner专注于决策
|
||||
|
||||
# 如果没有可用动作,直接返回no_action
|
||||
if not current_available_actions:
|
||||
logger.debug(f"{self.log_prefix}规划器: 没有可用动作,返回no_action")
|
||||
return {
|
||||
"action_result": {
|
||||
"action_type": action,
|
||||
"action_data": action_data,
|
||||
"reasoning": reasoning,
|
||||
"is_parallel": True,
|
||||
},
|
||||
"chat_context": "",
|
||||
"action_prompt": "",
|
||||
}
|
||||
|
||||
# 构建normal_chat的上下文 (使用与normal_chat相同的prompt构建方法)
|
||||
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=message.chat_stream.stream_id,
|
||||
timestamp=time.time(),
|
||||
limit=global_config.chat.max_context_size,
|
||||
)
|
||||
|
||||
chat_context = build_readable_messages(
|
||||
message_list_before_now,
|
||||
replace_bot_name=True,
|
||||
merge_messages=False,
|
||||
timestamp_mode="relative",
|
||||
read_mark=0.0,
|
||||
show_actions=True,
|
||||
)
|
||||
|
||||
# 构建planner的prompt
|
||||
prompt = await self.build_planner_prompt(
|
||||
self_info_block=self_info,
|
||||
chat_context=chat_context,
|
||||
current_available_actions=current_available_actions,
|
||||
)
|
||||
|
||||
if not prompt:
|
||||
logger.warning(f"{self.log_prefix}规划器: 构建提示词失败")
|
||||
return {
|
||||
"action_result": {
|
||||
"action_type": action,
|
||||
"action_data": action_data,
|
||||
"reasoning": reasoning,
|
||||
"is_parallel": False,
|
||||
},
|
||||
"chat_context": chat_context,
|
||||
"action_prompt": "",
|
||||
}
|
||||
|
||||
# 使用LLM生成动作决策
|
||||
try:
|
||||
content, (reasoning_content, model_name) = await self.planner_llm.generate_response_async(prompt)
|
||||
|
||||
logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
|
||||
logger.info(f"{self.log_prefix}规划器原始响应: {content}")
|
||||
if reasoning_content:
|
||||
logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}")
|
||||
|
||||
# 解析JSON响应
|
||||
try:
|
||||
# 尝试修复JSON
|
||||
fixed_json = repair_json(content)
|
||||
action_result = json.loads(fixed_json)
|
||||
|
||||
action = action_result.get("action", "no_action")
|
||||
reasoning = action_result.get("reasoning", "未提供原因")
|
||||
|
||||
# 提取其他参数作为action_data
|
||||
action_data = {k: v for k, v in action_result.items() if k not in ["action", "reasoning"]}
|
||||
|
||||
# 验证动作是否在可用动作列表中,或者是特殊动作
|
||||
if action not in current_available_actions:
|
||||
logger.warning(f"{self.log_prefix}规划器选择了不可用的动作: {action}, 回退到no_action")
|
||||
action = "no_action"
|
||||
reasoning = f"选择的动作{action}不在可用列表中,回退到no_action"
|
||||
action_data = {}
|
||||
|
||||
except json.JSONDecodeError as e:
|
||||
logger.warning(f"{self.log_prefix}规划器JSON解析失败: {e}, 内容: {content}")
|
||||
action = "no_action"
|
||||
reasoning = "JSON解析失败,使用默认动作"
|
||||
action_data = {}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}规划器LLM调用失败: {e}")
|
||||
action = "no_action"
|
||||
reasoning = "LLM调用失败,使用默认动作"
|
||||
action_data = {}
|
||||
|
||||
except Exception as outer_e:
|
||||
logger.error(f"{self.log_prefix}规划器异常: {outer_e}")
|
||||
# 设置异常时的默认值
|
||||
current_available_actions = {}
|
||||
chat_context = "无法获取聊天上下文"
|
||||
prompt = ""
|
||||
action = "no_action"
|
||||
reasoning = "规划器出现异常,使用默认动作"
|
||||
action_data = {}
|
||||
|
||||
# 检查动作是否支持并行执行
|
||||
is_parallel = False
|
||||
if action in current_available_actions:
|
||||
action_info = current_available_actions[action]
|
||||
is_parallel = action_info.get("parallel_action", False)
|
||||
|
||||
logger.debug(
|
||||
f"{self.log_prefix}规划器决策动作:{action}, 动作信息: '{action_data}', 理由: {reasoning}, 并行执行: {is_parallel}"
|
||||
)
|
||||
|
||||
# 恢复到默认动作集
|
||||
self.action_manager.restore_actions()
|
||||
logger.debug(
|
||||
f"{self.log_prefix}规划后恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}"
|
||||
)
|
||||
|
||||
# 构建 action 记录
|
||||
action_record = {
|
||||
"action_type": action,
|
||||
"action_data": action_data,
|
||||
"reasoning": reasoning,
|
||||
"timestamp": time.time(),
|
||||
"model_name": model_name if "model_name" in locals() else None,
|
||||
}
|
||||
|
||||
action_result = {
|
||||
"action_type": action,
|
||||
"action_data": action_data,
|
||||
"reasoning": reasoning,
|
||||
"is_parallel": is_parallel,
|
||||
"action_record": json.dumps(action_record, ensure_ascii=False),
|
||||
}
|
||||
|
||||
plan_result = {
|
||||
"action_result": action_result,
|
||||
"chat_context": chat_context,
|
||||
"action_prompt": prompt,
|
||||
}
|
||||
|
||||
return plan_result
|
||||
|
||||
async def build_planner_prompt(
|
||||
self,
|
||||
self_info_block: str,
|
||||
chat_context: str,
|
||||
current_available_actions: Dict[str, Any],
|
||||
) -> str:
|
||||
"""构建 Normal Chat Planner LLM 的提示词"""
|
||||
try:
|
||||
# 构建动作选项文本
|
||||
action_options_text = ""
|
||||
|
||||
for action_name, action_info in current_available_actions.items():
|
||||
action_description = action_info.get("description", "")
|
||||
action_parameters = action_info.get("parameters", {})
|
||||
action_require = action_info.get("require", [])
|
||||
|
||||
if action_parameters:
|
||||
param_text = "\n"
|
||||
# print(action_parameters)
|
||||
for param_name, param_description in action_parameters.items():
|
||||
param_text += f' "{param_name}":"{param_description}"\n'
|
||||
param_text = param_text.rstrip("\n")
|
||||
else:
|
||||
param_text = ""
|
||||
|
||||
require_text = ""
|
||||
for require_item in action_require:
|
||||
require_text += f"- {require_item}\n"
|
||||
require_text = require_text.rstrip("\n")
|
||||
|
||||
# 构建单个动作的提示
|
||||
action_prompt = await global_prompt_manager.format_prompt(
|
||||
"normal_chat_action_prompt",
|
||||
action_name=action_name,
|
||||
action_description=action_description,
|
||||
action_parameters=param_text,
|
||||
action_require=require_text,
|
||||
)
|
||||
action_options_text += action_prompt + "\n\n"
|
||||
|
||||
# 审核提示
|
||||
moderation_prompt = "请确保你的回复符合平台规则,避免不当内容。"
|
||||
|
||||
# 使用模板构建最终提示词
|
||||
prompt = await global_prompt_manager.format_prompt(
|
||||
"normal_chat_planner_prompt",
|
||||
self_info_block=self_info_block,
|
||||
action_options_text=action_options_text,
|
||||
moderation_prompt=moderation_prompt,
|
||||
chat_context=chat_context,
|
||||
)
|
||||
|
||||
return prompt
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}构建Planner提示词失败: {e}")
|
||||
traceback.print_exc()
|
||||
return ""
|
||||
|
||||
|
||||
init_prompt()
|
||||
@@ -1,30 +0,0 @@
|
||||
import time
|
||||
from src.config.config import global_config
|
||||
from src.common.message_repository import count_messages
|
||||
|
||||
|
||||
def get_recent_message_stats(minutes: int = 30, chat_id: str = None) -> dict:
|
||||
"""
|
||||
Args:
|
||||
minutes (int): 检索的分钟数,默认30分钟
|
||||
chat_id (str, optional): 指定的chat_id,仅统计该chat下的消息。为None时统计全部。
|
||||
Returns:
|
||||
dict: {"bot_reply_count": int, "total_message_count": int}
|
||||
"""
|
||||
|
||||
now = time.time()
|
||||
start_time = now - minutes * 60
|
||||
bot_id = global_config.bot.qq_account
|
||||
|
||||
filter_base = {"time": {"$gte": start_time}}
|
||||
if chat_id is not None:
|
||||
filter_base["chat_id"] = chat_id
|
||||
|
||||
# 总消息数
|
||||
total_message_count = count_messages(filter_base)
|
||||
# bot自身回复数
|
||||
bot_filter = filter_base.copy()
|
||||
bot_filter["user_id"] = bot_id
|
||||
bot_reply_count = count_messages(bot_filter)
|
||||
|
||||
return {"bot_reply_count": bot_reply_count, "total_message_count": total_message_count}
|
||||
Reference in New Issue
Block a user