🤖 自动格式化代码 [skip ci]

This commit is contained in:
github-actions[bot]
2025-04-12 16:46:11 +00:00
parent e1f272d9c5
commit 46da415d98
43 changed files with 498 additions and 532 deletions

View File

@@ -283,17 +283,13 @@ WILLING_STYLE_CONFIG = {
"file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 意愿 | {message}"),
},
"simple": {
"console_format": (
"<green>{time:MM-DD HH:mm}</green> | <light-blue>意愿</light-blue> | {message}"
), # noqa: E501
"console_format": ("<green>{time:MM-DD HH:mm}</green> | <light-blue>意愿</light-blue> | {message}"), # noqa: E501
"file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 意愿 | {message}"),
},
}
CONFIRM_STYLE_CONFIG = {
"console_format": (
"<RED>{message}</RED>"
), # noqa: E501
"console_format": ("<RED>{message}</RED>"), # noqa: E501
"file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | EULA与PRIVACY确认 | {message}"),
}

View File

@@ -4,17 +4,17 @@ from src.do_tool.tool_can_use.base_tool import (
discover_tools,
get_all_tool_definitions,
get_tool_instance,
TOOL_REGISTRY
TOOL_REGISTRY,
)
__all__ = [
'BaseTool',
'register_tool',
'discover_tools',
'get_all_tool_definitions',
'get_tool_instance',
'TOOL_REGISTRY'
"BaseTool",
"register_tool",
"discover_tools",
"get_all_tool_definitions",
"get_tool_instance",
"TOOL_REGISTRY",
]
# 自动发现并注册工具
discover_tools()
discover_tools()

View File

@@ -10,41 +10,39 @@ logger = get_module_logger("base_tool")
# 工具注册表
TOOL_REGISTRY = {}
class BaseTool:
"""所有工具的基类"""
# 工具名称,子类必须重写
name = None
# 工具描述,子类必须重写
description = None
# 工具参数定义,子类必须重写
parameters = None
@classmethod
def get_tool_definition(cls) -> Dict[str, Any]:
"""获取工具定义用于LLM工具调用
Returns:
Dict: 工具定义字典
"""
if not cls.name or not cls.description or not cls.parameters:
raise NotImplementedError(f"工具类 {cls.__name__} 必须定义 name, description 和 parameters 属性")
return {
"type": "function",
"function": {
"name": cls.name,
"description": cls.description,
"parameters": cls.parameters
}
"function": {"name": cls.name, "description": cls.description, "parameters": cls.parameters},
}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
"""执行工具函数
Args:
function_args: 工具调用参数
message_txt: 原始消息文本
Returns:
Dict: 工具执行结果
"""
@@ -53,17 +51,17 @@ class BaseTool:
def register_tool(tool_class: Type[BaseTool]):
"""注册工具到全局注册表
Args:
tool_class: 工具类
"""
if not issubclass(tool_class, BaseTool):
raise TypeError(f"{tool_class.__name__} 不是 BaseTool 的子类")
tool_name = tool_class.name
if not tool_name:
raise ValueError(f"工具类 {tool_class.__name__} 没有定义 name 属性")
TOOL_REGISTRY[tool_name] = tool_class
logger.info(f"已注册工具: {tool_name}")
@@ -73,27 +71,27 @@ def discover_tools():
# 获取当前目录路径
current_dir = os.path.dirname(os.path.abspath(__file__))
package_name = os.path.basename(current_dir)
# 遍历包中的所有模块
for _, module_name, _ in pkgutil.iter_modules([current_dir]):
# 跳过当前模块和__pycache__
if module_name == "base_tool" or module_name.startswith("__"):
continue
# 导入模块
module = importlib.import_module(f"src.do_tool.{package_name}.{module_name}")
# 查找模块中的工具类
for _, obj in inspect.getmembers(module):
if inspect.isclass(obj) and issubclass(obj, BaseTool) and obj != BaseTool:
register_tool(obj)
logger.info(f"工具发现完成,共注册 {len(TOOL_REGISTRY)} 个工具")
def get_all_tool_definitions() -> List[Dict[str, Any]]:
"""获取所有已注册工具的定义
Returns:
List[Dict]: 工具定义列表
"""
@@ -102,14 +100,14 @@ def get_all_tool_definitions() -> List[Dict[str, Any]]:
def get_tool_instance(tool_name: str) -> Optional[BaseTool]:
"""获取指定名称的工具实例
Args:
tool_name: 工具名称
Returns:
Optional[BaseTool]: 工具实例如果找不到则返回None
"""
tool_class = TOOL_REGISTRY.get(tool_name)
if not tool_class:
return None
return tool_class()
return tool_class()

View File

@@ -4,29 +4,25 @@ from typing import Dict, Any
logger = get_module_logger("fibonacci_sequence_tool")
class FibonacciSequenceTool(BaseTool):
"""生成斐波那契数列的工具"""
name = "fibonacci_sequence"
description = "生成指定长度的斐波那契数列"
parameters = {
"type": "object",
"properties": {
"n": {
"type": "integer",
"description": "斐波那契数列的长度",
"minimum": 1
}
},
"required": ["n"]
"properties": {"n": {"type": "integer", "description": "斐波那契数列的长度", "minimum": 1}},
"required": ["n"],
}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
"""执行工具功能
Args:
function_args: 工具参数
message_txt: 原始消息文本
Returns:
Dict: 工具执行结果
"""
@@ -34,23 +30,18 @@ class FibonacciSequenceTool(BaseTool):
n = function_args.get("n")
if n <= 0:
raise ValueError("参数n必须大于0")
sequence = []
a, b = 0, 1
for _ in range(n):
sequence.append(a)
a, b = b, a + b
return {
"name": self.name,
"content": sequence
}
return {"name": self.name, "content": sequence}
except Exception as e:
logger.error(f"fibonacci_sequence工具执行失败: {str(e)}")
return {
"name": self.name,
"content": f"执行失败: {str(e)}"
}
return {"name": self.name, "content": f"执行失败: {str(e)}"}
# 注册工具
register_tool(FibonacciSequenceTool)
register_tool(FibonacciSequenceTool)

View File

@@ -4,8 +4,10 @@ from typing import Dict, Any
logger = get_module_logger("generate_buddha_emoji_tool")
class GenerateBuddhaEmojiTool(BaseTool):
"""生成佛祖颜文字的工具类"""
name = "generate_buddha_emoji"
description = "生成一个佛祖的颜文字表情"
parameters = {
@@ -13,32 +15,27 @@ class GenerateBuddhaEmojiTool(BaseTool):
"properties": {
# 无参数
},
"required": []
"required": [],
}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
"""执行工具功能,生成佛祖颜文字
Args:
function_args: 工具参数
message_txt: 原始消息文本
Returns:
Dict: 工具执行结果
"""
try:
buddha_emoji = "这是一个佛祖emoji༼ つ ◕_◕ ༽つ"
return {
"name": self.name,
"content": buddha_emoji
}
return {"name": self.name, "content": buddha_emoji}
except Exception as e:
logger.error(f"generate_buddha_emoji工具执行失败: {str(e)}")
return {
"name": self.name,
"content": f"执行失败: {str(e)}"
}
return {"name": self.name, "content": f"执行失败: {str(e)}"}
# 注册工具
register_tool(GenerateBuddhaEmojiTool)
register_tool(GenerateBuddhaEmojiTool)

View File

@@ -4,23 +4,21 @@ from typing import Dict, Any
logger = get_module_logger("generate_cmd_tutorial_tool")
class GenerateCmdTutorialTool(BaseTool):
"""生成Windows CMD基本操作教程的工具"""
name = "generate_cmd_tutorial"
description = "生成关于Windows命令提示符(CMD)的基本操作教程,包括常用命令和使用方法"
parameters = {
"type": "object",
"properties": {},
"required": []
}
parameters = {"type": "object", "properties": {}, "required": []}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
"""执行工具功能
Args:
function_args: 工具参数
message_txt: 原始消息文本
Returns:
Dict: 工具执行结果
"""
@@ -57,17 +55,12 @@ class GenerateCmdTutorialTool(BaseTool):
注意:使用命令时要小心,特别是删除操作。
"""
return {
"name": self.name,
"content": tutorial_content
}
return {"name": self.name, "content": tutorial_content}
except Exception as e:
logger.error(f"generate_cmd_tutorial工具执行失败: {str(e)}")
return {
"name": self.name,
"content": f"执行失败: {str(e)}"
}
return {"name": self.name, "content": f"执行失败: {str(e)}"}
# 注册工具
register_tool(GenerateCmdTutorialTool)
register_tool(GenerateCmdTutorialTool)

View File

@@ -5,32 +5,28 @@ from typing import Dict, Any
logger = get_module_logger("get_current_task_tool")
class GetCurrentTaskTool(BaseTool):
"""获取当前正在做的事情/最近的任务工具"""
name = "get_current_task"
description = "获取当前正在做的事情/最近的任务"
parameters = {
"type": "object",
"properties": {
"num": {
"type": "integer",
"description": "要获取的任务数量"
},
"time_info": {
"type": "boolean",
"description": "是否包含时间信息"
}
"num": {"type": "integer", "description": "要获取的任务数量"},
"time_info": {"type": "boolean", "description": "是否包含时间信息"},
},
"required": []
"required": [],
}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
"""执行获取当前任务
Args:
function_args: 工具参数
message_txt: 原始消息文本,此工具不使用
Returns:
Dict: 工具执行结果
"""
@@ -38,26 +34,21 @@ class GetCurrentTaskTool(BaseTool):
# 获取参数,如果没有提供则使用默认值
num = function_args.get("num", 1)
time_info = function_args.get("time_info", False)
# 调用日程系统获取当前任务
current_task = bot_schedule.get_current_num_task(num=num, time_info=time_info)
# 格式化返回结果
if current_task:
task_info = current_task
else:
task_info = "当前没有正在进行的任务"
return {
"name": "get_current_task",
"content": f"当前任务信息: {task_info}"
}
return {"name": "get_current_task", "content": f"当前任务信息: {task_info}"}
except Exception as e:
logger.error(f"获取当前任务工具执行失败: {str(e)}")
return {
"name": "get_current_task",
"content": f"获取当前任务失败: {str(e)}"
}
return {"name": "get_current_task", "content": f"获取当前任务失败: {str(e)}"}
# 注册工具
register_tool(GetCurrentTaskTool)
register_tool(GetCurrentTaskTool)

View File

@@ -6,39 +6,35 @@ from typing import Dict, Any, Union
logger = get_module_logger("get_knowledge_tool")
class SearchKnowledgeTool(BaseTool):
"""从知识库中搜索相关信息的工具"""
name = "search_knowledge"
description = "从知识库中搜索相关信息"
parameters = {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "搜索查询关键词"
},
"threshold": {
"type": "number",
"description": "相似度阈值0.0到1.0之间"
}
"query": {"type": "string", "description": "搜索查询关键词"},
"threshold": {"type": "number", "description": "相似度阈值0.0到1.0之间"},
},
"required": ["query"]
"required": ["query"],
}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
"""执行知识库搜索
Args:
function_args: 工具参数
message_txt: 原始消息文本
Returns:
Dict: 工具执行结果
"""
try:
query = function_args.get("query", message_txt)
threshold = function_args.get("threshold", 0.4)
# 调用知识库搜索
embedding = await get_embedding(query, request_type="info_retrieval")
if embedding:
@@ -47,38 +43,29 @@ class SearchKnowledgeTool(BaseTool):
content = f"你知道这些知识: {knowledge_info}"
else:
content = f"你不太了解有关{query}的知识"
return {
"name": "search_knowledge",
"content": content
}
return {
"name": "search_knowledge",
"content": f"无法获取关于'{query}'的嵌入向量"
}
return {"name": "search_knowledge", "content": content}
return {"name": "search_knowledge", "content": f"无法获取关于'{query}'的嵌入向量"}
except Exception as e:
logger.error(f"知识库搜索工具执行失败: {str(e)}")
return {
"name": "search_knowledge",
"content": f"知识库搜索失败: {str(e)}"
}
return {"name": "search_knowledge", "content": f"知识库搜索失败: {str(e)}"}
def get_info_from_db(
self, query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False
) -> Union[str, list]:
"""从数据库中获取相关信息
Args:
query_embedding: 查询的嵌入向量
limit: 最大返回结果数
threshold: 相似度阈值
return_raw: 是否返回原始结果
Returns:
Union[str, list]: 格式化的信息字符串或原始结果列表
"""
if not query_embedding:
return "" if not return_raw else []
# 使用余弦相似度计算
pipeline = [
{
@@ -143,5 +130,6 @@ class SearchKnowledgeTool(BaseTool):
# 返回所有找到的内容,用换行分隔
return "\n".join(str(result["content"]) for result in results)
# 注册工具
register_tool(SearchKnowledgeTool)

View File

@@ -5,68 +5,55 @@ from typing import Dict, Any
logger = get_module_logger("get_memory_tool")
class GetMemoryTool(BaseTool):
"""从记忆系统中获取相关记忆的工具"""
name = "get_memory"
description = "从记忆系统中获取相关记忆"
parameters = {
"type": "object",
"properties": {
"text": {
"type": "string",
"description": "要查询的相关文本"
},
"max_memory_num": {
"type": "integer",
"description": "最大返回记忆数量"
}
"text": {"type": "string", "description": "要查询的相关文本"},
"max_memory_num": {"type": "integer", "description": "最大返回记忆数量"},
},
"required": ["text"]
"required": ["text"],
}
async def execute(self, function_args: Dict[str, Any], message_txt: str = "") -> Dict[str, Any]:
"""执行记忆获取
Args:
function_args: 工具参数
message_txt: 原始消息文本
Returns:
Dict: 工具执行结果
"""
try:
text = function_args.get("text", message_txt)
max_memory_num = function_args.get("max_memory_num", 2)
# 调用记忆系统
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
text=text,
max_memory_num=max_memory_num,
max_memory_length=2,
max_depth=3,
fast_retrieval=False
text=text, max_memory_num=max_memory_num, max_memory_length=2, max_depth=3, fast_retrieval=False
)
memory_info = ""
if related_memory:
for memory in related_memory:
memory_info += memory[1] + "\n"
if memory_info:
content = f"你记得这些事情: {memory_info}"
else:
content = f"你不太记得有关{text}的记忆,你对此不太了解"
return {
"name": "get_memory",
"content": content
}
return {"name": "get_memory", "content": content}
except Exception as e:
logger.error(f"记忆获取工具执行失败: {str(e)}")
return {
"name": "get_memory",
"content": f"记忆获取失败: {str(e)}"
}
return {"name": "get_memory", "content": f"记忆获取失败: {str(e)}"}
# 注册工具
register_tool(GetMemoryTool)
register_tool(GetMemoryTool)

View File

@@ -16,21 +16,19 @@ class ToolUser:
model=global_config.llm_heartflow, temperature=0.2, max_tokens=1000, request_type="tool_use"
)
async def _build_tool_prompt(self, message_txt:str, sender_name:str, chat_stream:ChatStream):
async def _build_tool_prompt(self, message_txt: str, sender_name: str, chat_stream: ChatStream):
"""构建工具使用的提示词
Args:
message_txt: 用户消息文本
sender_name: 发送者名称
chat_stream: 聊天流对象
Returns:
str: 构建好的提示词
"""
new_messages = list(
db.messages.find({"chat_id": chat_stream.stream_id, "time": {"$gt": time.time()}})
.sort("time", 1)
.limit(15)
db.messages.find({"chat_id": chat_stream.stream_id, "time": {"$gt": time.time()}}).sort("time", 1).limit(15)
)
new_messages_str = ""
for msg in new_messages:
@@ -44,37 +42,37 @@ class ToolUser:
prompt += f"你注意到{sender_name}刚刚说:{message_txt}\n"
prompt += f"注意你就是{bot_name}{bot_name}指的就是你。"
prompt += "你现在需要对群里的聊天内容进行回复,现在请你思考,你是否需要额外的信息,或者一些工具来帮你回复,比如回忆或者搜寻已有的知识,或者了解你现在正在做什么,请输出你需要的工具,或者你需要的额外信息。"
return prompt
def _define_tools(self):
"""获取所有已注册工具的定义
Returns:
list: 工具定义列表
"""
return get_all_tool_definitions()
async def _execute_tool_call(self, tool_call, message_txt:str):
async def _execute_tool_call(self, tool_call, message_txt: str):
"""执行特定的工具调用
Args:
tool_call: 工具调用对象
message_txt: 原始消息文本
Returns:
dict: 工具调用结果
"""
try:
function_name = tool_call["function"]["name"]
function_args = json.loads(tool_call["function"]["arguments"])
# 获取对应工具实例
tool_instance = get_tool_instance(function_name)
if not tool_instance:
logger.warning(f"未知工具名称: {function_name}")
return None
# 执行工具
result = await tool_instance.execute(function_args, message_txt)
if result:
@@ -82,62 +80,60 @@ class ToolUser:
"tool_call_id": tool_call["id"],
"role": "tool",
"name": function_name,
"content": result["content"]
"content": result["content"],
}
return None
except Exception as e:
logger.error(f"执行工具调用时发生错误: {str(e)}")
return None
async def use_tool(self, message_txt:str, sender_name:str, chat_stream:ChatStream):
async def use_tool(self, message_txt: str, sender_name: str, chat_stream: ChatStream):
"""使用工具辅助思考,判断是否需要额外信息
Args:
message_txt: 用户消息文本
sender_name: 发送者名称
chat_stream: 聊天流对象
Returns:
dict: 工具使用结果
"""
try:
# 构建提示词
prompt = await self._build_tool_prompt(message_txt, sender_name, chat_stream)
# 定义可用工具
tools = self._define_tools()
# 使用llm_model_tool发送带工具定义的请求
payload = {
"model": self.llm_model_tool.model_name,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": global_config.max_response_length,
"tools": tools,
"temperature": 0.2
"temperature": 0.2,
}
logger.debug(f"发送工具调用请求,模型: {self.llm_model_tool.model_name}")
# 发送请求获取模型是否需要调用工具
response = await self.llm_model_tool._execute_request(
endpoint="/chat/completions",
payload=payload,
prompt=prompt
endpoint="/chat/completions", payload=payload, prompt=prompt
)
# 根据返回值数量判断是否有工具调用
if len(response) == 3:
content, reasoning_content, tool_calls = response
logger.info(f"工具思考: {tool_calls}")
# 检查响应中工具调用是否有效
if not tool_calls:
logger.info("模型返回了空的tool_calls列表")
return {"used_tools": False}
logger.info(f"模型请求调用{len(tool_calls)}个工具")
tool_results = []
collected_info = ""
# 执行所有工具调用
for tool_call in tool_calls:
result = await self._execute_tool_call(tool_call, message_txt)
@@ -145,7 +141,7 @@ class ToolUser:
tool_results.append(result)
# 将工具结果添加到收集的信息中
collected_info += f"\n{result['name']}返回结果: {result['content']}\n"
# 如果有工具结果,直接返回收集的信息
if collected_info:
logger.info(f"工具调用收集到信息: {collected_info}")
@@ -157,15 +153,15 @@ class ToolUser:
# 没有工具调用
content, reasoning_content = response
logger.info("模型没有请求调用任何工具")
# 如果没有工具调用或处理失败,直接返回原始思考
return {
"used_tools": False,
}
except Exception as e:
logger.error(f"工具调用过程中出错: {str(e)}")
return {
"used_tools": False,
"error": str(e),
}
}

View File

@@ -43,12 +43,11 @@ def init_prompt():
class CurrentState:
def __init__(self):
self.current_state_info = ""
self.mood_manager = MoodManager()
self.mood = self.mood_manager.get_prompt()
self.attendance_factor = 0
self.engagement_factor = 0
@@ -66,9 +65,6 @@ class Heartflow:
)
self._subheartflows: Dict[Any, SubHeartflow] = {}
async def _cleanup_inactive_subheartflows(self):
"""定期清理不活跃的子心流"""
@@ -90,7 +86,7 @@ class Heartflow:
logger.info(f"已清理不活跃的子心流: {subheartflow_id}")
await asyncio.sleep(30) # 每分钟检查一次
async def _sub_heartflow_update(self):
while True:
# 检查是否存在子心流
@@ -103,13 +99,12 @@ class Heartflow:
await asyncio.sleep(global_config.heart_flow_update_interval) # 5分钟思考一次
async def heartflow_start_working(self):
# 启动清理任务
asyncio.create_task(self._cleanup_inactive_subheartflows())
# 启动子心流更新任务
asyncio.create_task(self._sub_heartflow_update())
async def _update_current_state(self):
print("TODO")

View File

@@ -150,7 +150,7 @@ class ChattingObservation(Observation):
except Exception as e:
print(f"获取总结失败: {e}")
updated_observe_info = ""
return updated_observe_info
# print(f"prompt{prompt}")
# print(f"self.observe_info{self.observe_info}")

View File

@@ -5,9 +5,11 @@ from src.plugins.models.utils_model import LLM_request
from src.plugins.config.config import global_config
import re
import time
# from src.plugins.schedule.schedule_generator import bot_schedule
# from src.plugins.memory_system.Hippocampus import HippocampusManager
from src.common.logger import get_module_logger, LogConfig, SUB_HEARTFLOW_STYLE_CONFIG # noqa: E402
# from src.plugins.chat.utils import get_embedding
# from src.common.database import db
# from typing import Union
@@ -17,7 +19,7 @@ from src.plugins.chat.chat_stream import ChatStream
from src.plugins.person_info.relationship_manager import relationship_manager
from src.plugins.chat.utils import get_recent_group_speaker
from src.do_tool.tool_use import ToolUser
from ..plugins.utils.prompt_builder import Prompt,global_prompt_manager
from ..plugins.utils.prompt_builder import Prompt, global_prompt_manager
subheartflow_config = LogConfig(
# 使用海马体专用样式
@@ -26,6 +28,7 @@ subheartflow_config = LogConfig(
)
logger = get_module_logger("subheartflow", config=subheartflow_config)
def init_prompt():
prompt = ""
# prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
@@ -41,7 +44,7 @@ def init_prompt():
prompt += "思考时可以想想如何对群聊内容进行回复。回复的要求是:平淡一些,简短一些,说中文,尽量不要说你说过的话\n"
prompt += "请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写"
prompt += "记得结合上述的消息,生成内心想法,文字不要浮夸,注意你就是{bot_name}{bot_name}指的就是你。"
Prompt(prompt,"sub_heartflow_prompt_before")
Prompt(prompt, "sub_heartflow_prompt_before")
prompt = ""
# prompt += f"你现在正在做的事情是:{schedule_info}\n"
prompt += "{prompt_personality}\n"
@@ -52,8 +55,7 @@ def init_prompt():
prompt += "你现在{mood_info}"
prompt += "现在你接下去继续思考,产生新的想法,记得保留你刚刚的想法,不要分点输出,输出连贯的内心独白"
prompt += "不要太长,但是记得结合上述的消息,要记得你的人设,关注聊天和新内容,关注你回复的内容,不要思考太多:"
Prompt(prompt,'sub_heartflow_prompt_after')
Prompt(prompt, "sub_heartflow_prompt_after")
class CurrentState:
@@ -78,7 +80,6 @@ class SubHeartflow:
self.llm_model = LLM_request(
model=global_config.llm_sub_heartflow, temperature=0.2, max_tokens=600, request_type="sub_heart_flow"
)
self.main_heartflow_info = ""
@@ -93,9 +94,9 @@ class SubHeartflow:
self.observations: list[Observation] = []
self.running_knowledges = []
self.bot_name = global_config.BOT_NICKNAME
self.tool_user = ToolUser()
def add_observation(self, observation: Observation):
@@ -145,12 +146,12 @@ class SubHeartflow:
): # 5分钟无回复/不在场,销毁
logger.info(f"子心流 {self.subheartflow_id} 已经5分钟没有激活正在销毁...")
break # 退出循环,销毁自己
async def do_observe(self):
observation = self.observations[0]
await observation.observe()
async def do_thinking_before_reply(self, message_txt:str, sender_name:str, chat_stream:ChatStream):
async def do_thinking_before_reply(self, message_txt: str, sender_name: str, chat_stream: ChatStream):
current_thinking_info = self.current_mind
mood_info = self.current_state.mood
# mood_info = "你很生气,很愤怒"
@@ -160,12 +161,12 @@ class SubHeartflow:
# 首先尝试使用工具获取更多信息
tool_result = await self.tool_user.use_tool(message_txt, sender_name, chat_stream)
# 如果工具被使用且获得了结果,将收集到的信息合并到思考中
collected_info = ""
if tool_result.get("used_tools", False):
logger.info("使用工具收集了信息")
# 如果有收集到的信息,将其添加到当前思考中
if "collected_info" in tool_result:
collected_info = tool_result["collected_info"]
@@ -185,7 +186,7 @@ class SubHeartflow:
identity_detail = individuality.identity.identity_detail
random.shuffle(identity_detail)
prompt_personality += f",{identity_detail[0]}"
# 关系
who_chat_in_group = [
(chat_stream.user_info.platform, chat_stream.user_info.user_id, chat_stream.user_info.user_nickname)
@@ -204,9 +205,9 @@ class SubHeartflow:
# f"{relation_prompt}关系等级越大,关系越好,请分析聊天记录,"
# f"根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。"
# )
relation_prompt_all = (await global_prompt_manager.get_prompt_async('relationship_prompt')).format(
relation_prompt,sender_name
)
relation_prompt_all = (await global_prompt_manager.get_prompt_async("relationship_prompt")).format(
relation_prompt, sender_name
)
# prompt = ""
# # prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
@@ -224,9 +225,16 @@ class SubHeartflow:
# prompt += "请注意不要输出多余内容(包括前后缀,冒号和引号,括号, 表情,等),不要带有括号和动作描写"
# prompt += f"记得结合上述的消息,生成内心想法,文字不要浮夸,注意你就是{self.bot_name}{self.bot_name}指的就是你。"
prompt= (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_before")).format(
collected_info,relation_prompt_all,prompt_personality,current_thinking_info,chat_observe_info,mood_info,sender_name,
message_txt,self.bot_name
prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_before")).format(
collected_info,
relation_prompt_all,
prompt_personality,
current_thinking_info,
chat_observe_info,
mood_info,
sender_name,
message_txt,
self.bot_name,
)
try:
@@ -281,10 +289,10 @@ class SubHeartflow:
# prompt += f"你现在{mood_info}"
# prompt += "现在你接下去继续思考,产生新的想法,记得保留你刚刚的想法,不要分点输出,输出连贯的内心独白"
# prompt += "不要太长,但是记得结合上述的消息,要记得你的人设,关注聊天和新内容,关注你回复的内容,不要思考太多:"
prompt=(await global_prompt_manager.get_prompt_async('sub_heartflow_prompt_after')).format(
prompt_personality,chat_observe_info,current_thinking_info,message_new_info,reply_info,mood_info
prompt = (await global_prompt_manager.get_prompt_async("sub_heartflow_prompt_after")).format(
prompt_personality, chat_observe_info, current_thinking_info, message_new_info, reply_info, mood_info
)
try:
response, reasoning_content = await self.llm_model.generate_response_async(prompt)
except Exception as e:
@@ -343,5 +351,6 @@ class SubHeartflow:
self.past_mind.append(self.current_mind)
self.current_mind = response
init_prompt()
# subheartflow = SubHeartflow()

View File

@@ -53,13 +53,13 @@ class ActionPlanner:
goal = goal_reason[0]
reasoning = goal_reason[1] if len(goal_reason) > 1 else "没有明确原因"
elif isinstance(goal_reason, dict):
goal = goal_reason.get('goal')
reasoning = goal_reason.get('reasoning', "没有明确原因")
goal = goal_reason.get("goal")
reasoning = goal_reason.get("reasoning", "没有明确原因")
else:
# 如果是其他类型,尝试转为字符串
goal = str(goal_reason)
reasoning = "没有明确原因"
goal_str = f"目标:{goal},产生该对话目标的原因:{reasoning}\n"
goals_str += goal_str
else:
@@ -68,7 +68,11 @@ class ActionPlanner:
goals_str = f"目标:{goal},产生该对话目标的原因:{reasoning}\n"
# 获取聊天历史记录
chat_history_list = observation_info.chat_history[-20:] if len(observation_info.chat_history) >= 20 else observation_info.chat_history
chat_history_list = (
observation_info.chat_history[-20:]
if len(observation_info.chat_history) >= 20
else observation_info.chat_history
)
chat_history_text = ""
for msg in chat_history_list:
chat_history_text += f"{msg.get('detailed_plain_text', '')}\n"
@@ -85,15 +89,21 @@ class ActionPlanner:
personality_text = f"你的名字是{self.name}{self.personality_info}"
# 构建action历史文本
action_history_list = conversation_info.done_action[-10:] if len(conversation_info.done_action) >= 10 else conversation_info.done_action
action_history_list = (
conversation_info.done_action[-10:]
if len(conversation_info.done_action) >= 10
else conversation_info.done_action
)
action_history_text = "你之前做的事情是:"
for action in action_history_list:
if isinstance(action, dict):
action_type = action.get('action')
action_reason = action.get('reason')
action_status = action.get('status')
action_type = action.get("action")
action_reason = action.get("reason")
action_status = action.get("status")
if action_status == "recall":
action_history_text += f"原本打算:{action_type},但是因为有新消息,你发现这个行动不合适,所以你没做\n"
action_history_text += (
f"原本打算:{action_type},但是因为有新消息,你发现这个行动不合适,所以你没做\n"
)
elif action_status == "done":
action_history_text += f"你之前做了:{action_type},原因:{action_reason}\n"
elif isinstance(action, tuple):
@@ -102,7 +112,9 @@ class ActionPlanner:
action_reason = action[1] if len(action) > 1 else "未知原因"
action_status = action[2] if len(action) > 2 else "done"
if action_status == "recall":
action_history_text += f"原本打算:{action_type},但是因为有新消息,你发现这个行动不合适,所以你没做\n"
action_history_text += (
f"原本打算:{action_type},但是因为有新消息,你发现这个行动不合适,所以你没做\n"
)
elif action_status == "done":
action_history_text += f"你之前做了:{action_type},原因:{action_reason}\n"
@@ -147,7 +159,14 @@ end_conversation: 结束对话,长时间没回复或者当你觉得谈话暂
reason = result["reason"]
# 验证action类型
if action not in ["direct_reply", "fetch_knowledge", "wait", "listening", "rethink_goal", "end_conversation"]:
if action not in [
"direct_reply",
"fetch_knowledge",
"wait",
"listening",
"rethink_goal",
"end_conversation",
]:
logger.warning(f"未知的行动类型: {action}默认使用listening")
action = "listening"

View File

@@ -1,12 +1,12 @@
import time
import asyncio
import traceback
from typing import Optional, Dict, Any, List
from typing import Optional, Dict, Any, List
from src.common.logger import get_module_logger
from ..message.message_base import UserInfo
from ..config.config import global_config
from .chat_states import NotificationManager, create_new_message_notification, create_cold_chat_notification
from .message_storage import MongoDBMessageStorage
from .message_storage import MongoDBMessageStorage
logger = get_module_logger("chat_observer")
@@ -51,7 +51,6 @@ class ChatObserver:
self.waiting_start_time: float = time.time() # 等待开始时间,初始化为当前时间
# 运行状态
self._running: bool = False
self._task: Optional[asyncio.Task] = None
@@ -94,10 +93,11 @@ class ChatObserver:
message: 消息数据
"""
try:
# 发送新消息通知
# logger.info(f"发送新ccchandleer消息通知: {message}")
notification = create_new_message_notification(sender="chat_observer", target="observation_info", message=message)
notification = create_new_message_notification(
sender="chat_observer", target="observation_info", message=message
)
# logger.info(f"发送新消ddddd息通知: {notification}")
# print(self.notification_manager)
await self.notification_manager.send_notification(notification)
@@ -131,7 +131,6 @@ class ChatObserver:
notification = create_cold_chat_notification(sender="chat_observer", target="pfc", is_cold=is_cold)
await self.notification_manager.send_notification(notification)
def new_message_after(self, time_point: float) -> bool:
"""判断是否在指定时间点后有新消息
@@ -197,7 +196,7 @@ class ChatObserver:
if new_messages:
self.last_message_read = new_messages[-1]
self.last_message_time = new_messages[-1]["time"]
# print(f"获取数据库中找到的新消息: {new_messages}")
return new_messages
@@ -215,7 +214,7 @@ class ChatObserver:
if new_messages:
self.last_message_read = new_messages[-1]["message_id"]
logger.debug(f"获取指定时间点111之前的消息: {new_messages}")
return new_messages
@@ -239,7 +238,7 @@ class ChatObserver:
try:
# print("等待事件")
await asyncio.wait_for(self._update_event.wait(), timeout=1)
except asyncio.TimeoutError:
# print("超时")
pass # 超时后也执行一次检查
@@ -347,7 +346,6 @@ class ChatObserver:
return time_info
def get_cached_messages(self, limit: int = 50) -> List[Dict[str, Any]]:
"""获取缓存的消息历史
@@ -368,6 +366,6 @@ class ChatObserver:
if not self.message_cache:
return None
return self.message_cache[0]
def __str__(self):
return f"ChatObserver for {self.stream_id}"

View File

@@ -140,7 +140,6 @@ class NotificationManager:
self._active_states.add(notification.type)
else:
self._active_states.discard(notification.type)
# 调用目标接收者的处理器
target = notification.target
@@ -181,7 +180,7 @@ class NotificationManager:
history = history[-limit:]
return history
def __str__(self):
str = ""
for target, handlers in self._handlers.items():
@@ -295,5 +294,3 @@ class ChatStateManager:
current_time = datetime.now().timestamp()
return (current_time - self.state_info.last_message_time) <= threshold

View File

@@ -65,7 +65,6 @@ class Conversation:
self.observation_info.bind_to_chat_observer(self.chat_observer)
# print(self.chat_observer.get_cached_messages(limit=)
self.conversation_info = ConversationInfo()
except Exception as e:
logger.error(f"初始化对话实例:注册信息组件失败: {e}")
@@ -96,7 +95,7 @@ class Conversation:
# 执行行动
await self._handle_action(action, reason, self.observation_info, self.conversation_info)
for goal in self.conversation_info.goal_list:
# 检查goal是否为元组类型如果是元组则使用索引访问如果是字典则使用get方法
if isinstance(goal, tuple):
@@ -151,7 +150,7 @@ class Conversation:
if action == "direct_reply":
self.waiter.wait_accumulated_time = 0
self.state = ConversationState.GENERATING
self.generated_reply = await self.reply_generator.generate(observation_info, conversation_info)
print(f"生成回复: {self.generated_reply}")
@@ -174,7 +173,6 @@ class Conversation:
await self._send_reply()
conversation_info.done_action[-1].update(
{
"status": "done",
@@ -184,7 +182,7 @@ class Conversation:
elif action == "fetch_knowledge":
self.waiter.wait_accumulated_time = 0
self.state = ConversationState.FETCHING
knowledge = "TODO:知识"
topic = "TODO:关键词"
@@ -199,7 +197,7 @@ class Conversation:
elif action == "rethink_goal":
self.waiter.wait_accumulated_time = 0
self.state = ConversationState.RETHINKING
await self.goal_analyzer.analyze_goal(conversation_info, observation_info)
@@ -208,7 +206,6 @@ class Conversation:
logger.info("倾听对方发言...")
await self.waiter.wait_listening(conversation_info)
elif action == "end_conversation":
self.should_continue = False
logger.info("决定结束对话...")
@@ -239,9 +236,7 @@ class Conversation:
return
try:
await self.direct_sender.send_message(
chat_stream=self.chat_stream, content=self.generated_reply
)
await self.direct_sender.send_message(chat_stream=self.chat_stream, content=self.generated_reply)
self.chat_observer.trigger_update() # 触发立即更新
if not await self.chat_observer.wait_for_update():
logger.warning("等待消息更新超时")

View File

@@ -2,6 +2,7 @@ from abc import ABC, abstractmethod
from typing import List, Dict, Any
from src.common.database import db
class MessageStorage(ABC):
"""消息存储接口"""

View File

@@ -26,24 +26,24 @@ class ObservationInfoHandler(NotificationHandler):
# 获取通知类型和数据
notification_type = notification.type
data = notification.data
if notification_type == NotificationType.NEW_MESSAGE:
# 处理新消息通知
logger.debug(f"收到新消息通知data: {data}")
message_id = data.get("message_id")
processed_plain_text = data.get("processed_plain_text")
detailed_plain_text = data.get("detailed_plain_text")
detailed_plain_text = data.get("detailed_plain_text")
user_info = data.get("user_info")
time_value = data.get("time")
message = {
"message_id": message_id,
"processed_plain_text": processed_plain_text,
"detailed_plain_text": detailed_plain_text,
"user_info": user_info,
"time": time_value
"time": time_value,
}
self.observation_info.update_from_message(message)
elif notification_type == NotificationType.COLD_CHAT:
@@ -161,7 +161,7 @@ class ObservationInfo:
# logger.debug(f"更新信息from_message: {message}")
self.last_message_time = message["time"]
self.last_message_id = message["message_id"]
self.last_message_content = message.get("processed_plain_text", "")
user_info = UserInfo.from_dict(message.get("user_info", {}))
@@ -233,4 +233,3 @@ class ObservationInfo:
self.unprocessed_messages.clear()
self.chat_history_count = len(self.chat_history)
self.new_messages_count = 0

View File

@@ -1,6 +1,7 @@
# Programmable Friendly Conversationalist
# Prefrontal cortex
import datetime
# import asyncio
from typing import List, Optional, Tuple, TYPE_CHECKING
from src.common.logger import get_module_logger
@@ -63,13 +64,13 @@ class GoalAnalyzer:
goal = goal_reason[0]
reasoning = goal_reason[1] if len(goal_reason) > 1 else "没有明确原因"
elif isinstance(goal_reason, dict):
goal = goal_reason.get('goal')
reasoning = goal_reason.get('reasoning', "没有明确原因")
goal = goal_reason.get("goal")
reasoning = goal_reason.get("reasoning", "没有明确原因")
else:
# 如果是其他类型,尝试转为字符串
goal = str(goal_reason)
reasoning = "没有明确原因"
goal_str = f"目标:{goal},产生该对话目标的原因:{reasoning}\n"
goals_str += goal_str
else:
@@ -140,14 +141,12 @@ class GoalAnalyzer:
except Exception as e:
logger.error(f"分析对话目标时出错: {str(e)}")
content = ""
# 使用改进后的get_items_from_json函数处理JSON数组
success, result = get_items_from_json(
content, "goal", "reasoning",
required_types={"goal": str, "reasoning": str},
allow_array=True
content, "goal", "reasoning", required_types={"goal": str, "reasoning": str}, allow_array=True
)
if success:
# 判断结果是单个字典还是字典列表
if isinstance(result, list):
@@ -157,7 +156,7 @@ class GoalAnalyzer:
goal = item.get("goal", "")
reasoning = item.get("reasoning", "")
conversation_info.goal_list.append((goal, reasoning))
# 返回第一个目标作为当前主要目标(如果有)
if result:
first_goal = result[0]
@@ -168,7 +167,7 @@ class GoalAnalyzer:
reasoning = result.get("reasoning", "")
conversation_info.goal_list.append((goal, reasoning))
return (goal, "", reasoning)
# 如果解析失败,返回默认值
return ("", "", "")
@@ -293,7 +292,6 @@ class GoalAnalyzer:
return False, False, f"分析出错: {str(e)}"
class DirectMessageSender:
"""直接发送消息到平台的发送器"""

View File

@@ -27,7 +27,7 @@ def get_items_from_json(
"""
content = content.strip()
result = {}
# 设置默认值
if default_values:
result.update(default_values)
@@ -41,7 +41,7 @@ def get_items_from_json(
if array_match:
array_content = array_match.group()
json_array = json.loads(array_content)
# 确认是数组类型
if isinstance(json_array, list):
# 验证数组中的每个项目是否包含所有必需字段
@@ -49,7 +49,7 @@ def get_items_from_json(
for item in json_array:
if not isinstance(item, dict):
continue
# 检查是否有所有必需字段
if all(field in item for field in items):
# 验证字段类型
@@ -59,22 +59,22 @@ def get_items_from_json(
if field in item and not isinstance(item[field], expected_type):
type_valid = False
break
if not type_valid:
continue
# 验证字符串字段不为空
string_valid = True
for field in items:
if isinstance(item[field], str) and not item[field].strip():
string_valid = False
break
if not string_valid:
continue
valid_items.append(item)
if valid_items:
return True, valid_items
except json.JSONDecodeError:

View File

@@ -49,22 +49,26 @@ class ReplyGenerator:
goal = goal_reason[0]
reasoning = goal_reason[1] if len(goal_reason) > 1 else "没有明确原因"
elif isinstance(goal_reason, dict):
goal = goal_reason.get('goal')
reasoning = goal_reason.get('reasoning', "没有明确原因")
goal = goal_reason.get("goal")
reasoning = goal_reason.get("reasoning", "没有明确原因")
else:
# 如果是其他类型,尝试转为字符串
goal = str(goal_reason)
reasoning = "没有明确原因"
goal_str = f"目标:{goal},产生该对话目标的原因:{reasoning}\n"
goals_str += goal_str
else:
goal = "目前没有明确对话目标"
reasoning = "目前没有明确对话目标,最好思考一个对话目标"
goals_str = f"目标:{goal},产生该对话目标的原因:{reasoning}\n"
# 获取聊天历史记录
chat_history_list = observation_info.chat_history[-20:] if len(observation_info.chat_history) >= 20 else observation_info.chat_history
chat_history_list = (
observation_info.chat_history[-20:]
if len(observation_info.chat_history) >= 20
else observation_info.chat_history
)
chat_history_text = ""
for msg in chat_history_list:
chat_history_text += f"{msg.get('detailed_plain_text', '')}\n"
@@ -81,15 +85,21 @@ class ReplyGenerator:
personality_text = f"你的名字是{self.name}{self.personality_info}"
# 构建action历史文本
action_history_list = conversation_info.done_action[-10:] if len(conversation_info.done_action) >= 10 else conversation_info.done_action
action_history_list = (
conversation_info.done_action[-10:]
if len(conversation_info.done_action) >= 10
else conversation_info.done_action
)
action_history_text = "你之前做的事情是:"
for action in action_history_list:
if isinstance(action, dict):
action_type = action.get('action')
action_reason = action.get('reason')
action_status = action.get('status')
action_type = action.get("action")
action_reason = action.get("reason")
action_status = action.get("status")
if action_status == "recall":
action_history_text += f"原本打算:{action_type},但是因为有新消息,你发现这个行动不合适,所以你没做\n"
action_history_text += (
f"原本打算:{action_type},但是因为有新消息,你发现这个行动不合适,所以你没做\n"
)
elif action_status == "done":
action_history_text += f"你之前做了:{action_type},原因:{action_reason}\n"
elif isinstance(action, tuple):
@@ -98,7 +108,9 @@ class ReplyGenerator:
action_reason = action[1] if len(action) > 1 else "未知原因"
action_status = action[2] if len(action) > 2 else "done"
if action_status == "recall":
action_history_text += f"原本打算:{action_type},但是因为有新消息,你发现这个行动不合适,所以你没做\n"
action_history_text += (
f"原本打算:{action_type},但是因为有新消息,你发现这个行动不合适,所以你没做\n"
)
elif action_status == "done":
action_history_text += f"你之前做了:{action_type},原因:{action_reason}\n"

View File

@@ -16,7 +16,7 @@ class Waiter:
self.chat_observer = ChatObserver.get_instance(stream_id)
self.personality_info = Individuality.get_instance().get_prompt(type="personality", x_person=2, level=2)
self.name = global_config.BOT_NICKNAME
self.wait_accumulated_time = 0
async def wait(self, conversation_info: ConversationInfo) -> bool:
@@ -38,20 +38,20 @@ class Waiter:
# 检查是否超时
if time.time() - wait_start_time > 300:
self.wait_accumulated_time += 300
logger.info("等待超过300秒结束对话")
wait_goal = {
"goal": f"你等待了{self.wait_accumulated_time/60}分钟,思考接下来要做什么",
"reason": "对方很久没有回复你的消息了"
"goal": f"你等待了{self.wait_accumulated_time / 60}分钟,思考接下来要做什么",
"reason": "对方很久没有回复你的消息了",
}
conversation_info.goal_list.append(wait_goal)
print(f"添加目标: {wait_goal}")
return True
await asyncio.sleep(1)
logger.info("等待中...")
async def wait_listening(self, conversation_info: ConversationInfo) -> bool:
"""等待倾听
@@ -73,14 +73,13 @@ class Waiter:
self.wait_accumulated_time += 300
logger.info("等待超过300秒结束对话")
wait_goal = {
"goal": f"你等待了{self.wait_accumulated_time/60}分钟,思考接下来要做什么",
"reason": "对方话说一半消失了,很久没有回复"
"goal": f"你等待了{self.wait_accumulated_time / 60}分钟,思考接下来要做什么",
"reason": "对方话说一半消失了,很久没有回复",
}
conversation_info.goal_list.append(wait_goal)
print(f"添加目标: {wait_goal}")
return True
await asyncio.sleep(1)
logger.info("等待中...")

View File

@@ -8,7 +8,7 @@ from ..chat_module.only_process.only_message_process import MessageProcessor
from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig
from ..chat_module.think_flow_chat.think_flow_chat import ThinkFlowChat
from ..chat_module.reasoning_chat.reasoning_chat import ReasoningChat
from ..utils.prompt_builder import Prompt,global_prompt_manager
from ..utils.prompt_builder import Prompt, global_prompt_manager
import traceback
# 定义日志配置
@@ -89,17 +89,17 @@ class ChatBot:
if userinfo.user_id in global_config.ban_user_id:
logger.debug(f"用户{userinfo.user_id}被禁止回复")
return
if message.message_info.template_info and not message.message_info.template_info.template_default:
template_group_name=message.message_info.template_info.template_name
template_items=message.message_info.template_info.template_items
template_group_name = message.message_info.template_info.template_name
template_items = message.message_info.template_info.template_items
async with global_prompt_manager.async_message_scope(template_group_name):
if isinstance(template_items,dict):
if isinstance(template_items, dict):
for k in template_items.keys():
await Prompt.create_async(template_items[k],k)
await Prompt.create_async(template_items[k], k)
print(f"注册{template_items[k]},{k}")
else:
template_group_name=None
template_group_name = None
async def preprocess():
if global_config.enable_pfc_chatting:

View File

@@ -87,7 +87,6 @@ async def get_embedding(text, request_type="embedding"):
return embedding
async def get_recent_group_messages(chat_id: str, limit: int = 12) -> list:
"""从数据库获取群组最近的消息记录

View File

@@ -38,7 +38,7 @@ class ResponseGenerator:
self.current_model_type = "r1" # 默认使用 R1
self.current_model_name = "unknown model"
async def generate_response(self, message: MessageThinking,thinking_id:str) -> Optional[Union[str, List[str]]]:
async def generate_response(self, message: MessageThinking, thinking_id: str) -> Optional[Union[str, List[str]]]:
"""根据当前模型类型选择对应的生成函数"""
# 从global_config中获取模型概率值并选择模型
if random.random() < global_config.MODEL_R1_PROBABILITY:
@@ -52,7 +52,7 @@ class ResponseGenerator:
f"{self.current_model_type}思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}"
) # noqa: E501
model_response = await self._generate_response_with_model(message, current_model,thinking_id)
model_response = await self._generate_response_with_model(message, current_model, thinking_id)
# print(f"raw_content: {model_response}")
@@ -65,11 +65,11 @@ class ResponseGenerator:
logger.info(f"{self.current_model_type}思考,失败")
return None
async def _generate_response_with_model(self, message: MessageThinking, model: LLM_request,thinking_id:str):
async def _generate_response_with_model(self, message: MessageThinking, model: LLM_request, thinking_id: str):
sender_name = ""
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
if message.chat_stream.user_info.user_cardname and message.chat_stream.user_info.user_nickname:
sender_name = (
f"[({message.chat_stream.user_info.user_id}){message.chat_stream.user_info.user_nickname}]"
@@ -94,14 +94,11 @@ class ResponseGenerator:
try:
content, reasoning_content, self.current_model_name = await model.generate_response(prompt)
info_catcher.catch_after_llm_generated(
prompt=prompt,
response=content,
reasoning_content=reasoning_content,
model_name=self.current_model_name)
prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=self.current_model_name
)
except Exception:
logger.exception("生成回复时出错")
return None
@@ -118,7 +115,6 @@ class ResponseGenerator:
return content
# def _save_to_db(
# self,
# message: MessageRecv,

View File

@@ -144,12 +144,10 @@ class PromptBuilder:
for pattern in rule.get("regex", []):
result = pattern.search(message_txt)
if result:
reaction = rule.get('reaction', '')
reaction = rule.get("reaction", "")
for name, content in result.groupdict().items():
reaction = reaction.replace(f'[{name}]', content)
logger.info(
f"匹配到以下正则表达式:{pattern},触发反应:{reaction}"
)
reaction = reaction.replace(f"[{name}]", content)
logger.info(f"匹配到以下正则表达式:{pattern},触发反应:{reaction}")
keywords_reaction_prompt += reaction + ""
break

View File

@@ -59,11 +59,7 @@ class ThinkFlowChat:
return thinking_id
async def _send_response_messages(self,
message,
chat,
response_set:List[str],
thinking_id) -> MessageSending:
async def _send_response_messages(self, message, chat, response_set: List[str], thinking_id) -> MessageSending:
"""发送回复消息"""
container = message_manager.get_container(chat.stream_id)
thinking_message = None
@@ -260,8 +256,6 @@ class ThinkFlowChat:
if random() < reply_probability:
try:
do_reply = True
# 回复前处理
await willing_manager.before_generate_reply_handle(message.message_info.message_id)
@@ -274,9 +268,9 @@ class ThinkFlowChat:
timing_results["创建思考消息"] = timer2 - timer1
except Exception as e:
logger.error(f"心流创建思考消息失败: {e}")
logger.debug(f"创建捕捉器thinking_id:{thinking_id}")
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
info_catcher.catch_decide_to_response(message)
@@ -288,32 +282,32 @@ class ThinkFlowChat:
timing_results["观察"] = timer2 - timer1
except Exception as e:
logger.error(f"心流观察失败: {e}")
info_catcher.catch_after_observe(timing_results["观察"])
# 思考前脑内状态
try:
timer1 = time.time()
current_mind,past_mind = await heartflow.get_subheartflow(chat.stream_id).do_thinking_before_reply(
message_txt = message.processed_plain_text,
sender_name = message.message_info.user_info.user_nickname,
chat_stream = chat
current_mind, past_mind = await heartflow.get_subheartflow(chat.stream_id).do_thinking_before_reply(
message_txt=message.processed_plain_text,
sender_name=message.message_info.user_info.user_nickname,
chat_stream=chat,
)
timer2 = time.time()
timing_results["思考前脑内状态"] = timer2 - timer1
except Exception as e:
logger.error(f"心流思考前脑内状态失败: {e}")
info_catcher.catch_afer_shf_step(timing_results["思考前脑内状态"],past_mind,current_mind)
info_catcher.catch_afer_shf_step(timing_results["思考前脑内状态"], past_mind, current_mind)
# 生成回复
timer1 = time.time()
response_set = await self.gpt.generate_response(message,thinking_id)
response_set = await self.gpt.generate_response(message, thinking_id)
timer2 = time.time()
timing_results["生成回复"] = timer2 - timer1
info_catcher.catch_after_generate_response(timing_results["生成回复"])
if not response_set:
logger.info("回复生成失败,返回为空")
return
@@ -326,11 +320,9 @@ class ThinkFlowChat:
timing_results["发送消息"] = timer2 - timer1
except Exception as e:
logger.error(f"心流发送消息失败: {e}")
info_catcher.catch_after_response(timing_results["发送消息"],response_set,first_bot_msg)
info_catcher.catch_after_response(timing_results["发送消息"], response_set, first_bot_msg)
info_catcher.done_catch()
# 处理表情包

View File

@@ -35,44 +35,51 @@ class ResponseGenerator:
self.current_model_type = "r1" # 默认使用 R1
self.current_model_name = "unknown model"
async def generate_response(self, message: MessageRecv,thinking_id:str) -> Optional[List[str]]:
async def generate_response(self, message: MessageRecv, thinking_id: str) -> Optional[List[str]]:
"""根据当前模型类型选择对应的生成函数"""
logger.info(
f"思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}"
)
arousal_multiplier = MoodManager.get_instance().get_arousal_multiplier()
time1 = time.time()
checked = False
if random.random() > 0:
checked = False
current_model = self.model_normal
current_model.temperature = 0.3 * arousal_multiplier #激活度越高,温度越高
model_response = await self._generate_response_with_model(message, current_model,thinking_id,mode="normal")
current_model.temperature = 0.3 * arousal_multiplier # 激活度越高,温度越高
model_response = await self._generate_response_with_model(
message, current_model, thinking_id, mode="normal"
)
model_checked_response = model_response
else:
checked = True
current_model = self.model_normal
current_model.temperature = 0.3 * arousal_multiplier #激活度越高,温度越高
current_model.temperature = 0.3 * arousal_multiplier # 激活度越高,温度越高
print(f"生成{message.processed_plain_text}回复温度是:{current_model.temperature}")
model_response = await self._generate_response_with_model(message, current_model,thinking_id,mode="simple")
model_response = await self._generate_response_with_model(
message, current_model, thinking_id, mode="simple"
)
current_model.temperature = 0.3
model_checked_response = await self._check_response_with_model(message, model_response, current_model,thinking_id)
model_checked_response = await self._check_response_with_model(
message, model_response, current_model, thinking_id
)
time2 = time.time()
if model_response:
if checked:
logger.info(f"{global_config.BOT_NICKNAME}的回复是:{model_response},思忖后,回复是:{model_checked_response},生成回复时间: {time2 - time1}")
logger.info(
f"{global_config.BOT_NICKNAME}的回复是:{model_response},思忖后,回复是:{model_checked_response},生成回复时间: {time2 - time1}"
)
else:
logger.info(f"{global_config.BOT_NICKNAME}的回复是:{model_response},生成回复时间: {time2 - time1}")
model_processed_response = await self._process_response(model_checked_response)
return model_processed_response
@@ -80,11 +87,13 @@ class ResponseGenerator:
logger.info(f"{self.current_model_type}思考,失败")
return None
async def _generate_response_with_model(self, message: MessageRecv, model: LLM_request,thinking_id:str,mode:str = "normal") -> str:
async def _generate_response_with_model(
self, message: MessageRecv, model: LLM_request, thinking_id: str, mode: str = "normal"
) -> str:
sender_name = ""
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
if message.chat_stream.user_info.user_cardname and message.chat_stream.user_info.user_nickname:
sender_name = (
f"[({message.chat_stream.user_info.user_id}){message.chat_stream.user_info.user_nickname}]"
@@ -116,25 +125,22 @@ class ResponseGenerator:
try:
content, reasoning_content, self.current_model_name = await model.generate_response(prompt)
info_catcher.catch_after_llm_generated(
prompt=prompt,
response=content,
reasoning_content=reasoning_content,
model_name=self.current_model_name)
prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=self.current_model_name
)
except Exception:
logger.exception("生成回复时出错")
return None
return content
async def _check_response_with_model(self, message: MessageRecv, content:str, model: LLM_request,thinking_id:str) -> str:
async def _check_response_with_model(
self, message: MessageRecv, content: str, model: LLM_request, thinking_id: str
) -> str:
_info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
sender_name = ""
if message.chat_stream.user_info.user_cardname and message.chat_stream.user_info.user_nickname:
sender_name = (
@@ -145,8 +151,7 @@ class ResponseGenerator:
sender_name = f"({message.chat_stream.user_info.user_id}){message.chat_stream.user_info.user_nickname}"
else:
sender_name = f"用户({message.chat_stream.user_info.user_id})"
# 构建prompt
timer1 = time.time()
prompt = await prompt_builder._build_prompt_check_response(
@@ -154,7 +159,7 @@ class ResponseGenerator:
message_txt=message.processed_plain_text,
sender_name=sender_name,
stream_id=message.chat_stream.stream_id,
content=content
content=content,
)
timer2 = time.time()
logger.info(f"构建check_prompt: {prompt}")
@@ -162,19 +167,17 @@ class ResponseGenerator:
try:
checked_content, reasoning_content, self.current_model_name = await model.generate_response(prompt)
# info_catcher.catch_after_llm_generated(
# prompt=prompt,
# response=content,
# reasoning_content=reasoning_content,
# model_name=self.current_model_name)
except Exception:
logger.exception("检查回复时出错")
return None
return checked_content
async def _get_emotion_tags(self, content: str, processed_plain_text: str):

View File

@@ -110,12 +110,10 @@ class PromptBuilder:
for pattern in rule.get("regex", []):
result = pattern.search(message_txt)
if result:
reaction = rule.get('reaction', '')
reaction = rule.get("reaction", "")
for name, content in result.groupdict().items():
reaction = reaction.replace(f'[{name}]', content)
logger.info(
f"匹配到以下正则表达式:{pattern},触发反应:{reaction}"
)
reaction = reaction.replace(f"[{name}]", content)
logger.info(f"匹配到以下正则表达式:{pattern},触发反应:{reaction}")
keywords_reaction_prompt += reaction + ""
break

View File

@@ -225,6 +225,7 @@ class Memory_graph:
return None
# 海马体
class Hippocampus:
def __init__(self):
@@ -653,7 +654,6 @@ class Hippocampus:
return activation_ratio
# 负责海马体与其他部分的交互
class EntorhinalCortex:
def __init__(self, hippocampus: Hippocampus):

View File

@@ -27,7 +27,6 @@ async def test_memory_system():
# 测试记忆检索
test_text = "千石可乐在群里聊天"
# test_text = '''千石可乐分不清AI的陪伴和人类的陪伴,是这样吗?'''
print(f"开始测试记忆检索,测试文本: {test_text}\n")
memories = await hippocampus_manager.get_memory_from_text(

View File

@@ -574,7 +574,7 @@ class LLM_request:
reasoning_content = message.get("reasoning_content", "")
if not reasoning_content:
reasoning_content = reasoning
# 提取工具调用信息
tool_calls = message.get("tool_calls", None)
@@ -592,7 +592,7 @@ class LLM_request:
request_type=request_type if request_type is not None else self.request_type,
endpoint=endpoint,
)
# 只有当tool_calls存在且不为空时才返回
if tool_calls:
return content, reasoning_content, tool_calls
@@ -657,9 +657,7 @@ class LLM_request:
**kwargs,
}
response = await self._execute_request(
endpoint="/chat/completions", payload=data, prompt=prompt
)
response = await self._execute_request(endpoint="/chat/completions", payload=data, prompt=prompt)
# 原样返回响应,不做处理
return response

View File

@@ -238,14 +238,14 @@ class MoodManager:
base_prompt += "情绪比较平静。"
return base_prompt
def get_arousal_multiplier(self) -> float:
"""根据当前情绪状态返回唤醒度乘数"""
if self.current_mood.arousal > 0.4:
multiplier = 1 + min(0.15,(self.current_mood.arousal - 0.4)/3)
multiplier = 1 + min(0.15, (self.current_mood.arousal - 0.4) / 3)
return multiplier
elif self.current_mood.arousal < -0.4:
multiplier = 1 - min(0.15,((0 - self.current_mood.arousal) - 0.4)/3)
multiplier = 1 - min(0.15, ((0 - self.current_mood.arousal) - 0.4) / 3)
return multiplier
return 1.0

View File

@@ -1,28 +1,29 @@
from src.plugins.config.config import global_config
from src.plugins.chat.message import MessageRecv,MessageSending,Message
from src.plugins.chat.message import MessageRecv, MessageSending, Message
from src.common.database import db
import time
import traceback
from typing import List
class InfoCatcher:
def __init__(self):
self.chat_history = [] # 聊天历史,长度为三倍使用的上下文
self.chat_history = [] # 聊天历史,长度为三倍使用的上下文
self.context_length = global_config.MAX_CONTEXT_SIZE
self.chat_history_in_thinking = [] # 思考期间的聊天内容
self.chat_history_after_response = [] # 回复后的聊天内容,长度为一倍上下文
self.chat_history_in_thinking = [] # 思考期间的聊天内容
self.chat_history_after_response = [] # 回复后的聊天内容,长度为一倍上下文
self.chat_id = ""
self.response_mode = global_config.response_mode
self.trigger_response_text = ""
self.response_text = ""
self.trigger_response_time = 0
self.trigger_response_message = None
self.response_time = 0
self.response_messages = []
# 使用字典来存储 heartflow 模式的数据
self.heartflow_data = {
"heart_flow_prompt": "",
@@ -32,17 +33,12 @@ class InfoCatcher:
"sub_heartflow_model": "",
"prompt": "",
"response": "",
"model": ""
"model": "",
}
# 使用字典来存储 reasoning 模式的数据
self.reasoning_data = {
"thinking_log": "",
"prompt": "",
"response": "",
"model": ""
}
self.reasoning_data = {"thinking_log": "", "prompt": "", "response": "", "model": ""}
# 耗时
self.timing_results = {
"interested_rate_time": 0,
@@ -50,24 +46,24 @@ class InfoCatcher:
"sub_heartflow_step_time": 0,
"make_response_time": 0,
}
def catch_decide_to_response(self,message:MessageRecv):
def catch_decide_to_response(self, message: MessageRecv):
# 搜集决定回复时的信息
self.trigger_response_message = message
self.trigger_response_text = message.detailed_plain_text
self.trigger_response_time = time.time()
self.chat_id = message.chat_stream.stream_id
self.chat_history = self.get_message_from_db_before_msg(message)
def catch_after_observe(self,obs_duration:float):#这里可以有更多信息
def catch_after_observe(self, obs_duration: float): # 这里可以有更多信息
self.timing_results["sub_heartflow_observe_time"] = obs_duration
# def catch_shf
def catch_afer_shf_step(self,step_duration:float,past_mind:str,current_mind:str):
def catch_afer_shf_step(self, step_duration: float, past_mind: str, current_mind: str):
self.timing_results["sub_heartflow_step_time"] = step_duration
if len(past_mind) > 1:
self.heartflow_data["sub_heartflow_before"] = past_mind[-1]
@@ -75,11 +71,8 @@ class InfoCatcher:
else:
self.heartflow_data["sub_heartflow_before"] = past_mind[-1]
self.heartflow_data["sub_heartflow_now"] = current_mind
def catch_after_llm_generated(self,prompt:str,
response:str,
reasoning_content:str = "",
model_name:str = ""):
def catch_after_llm_generated(self, prompt: str, response: str, reasoning_content: str = "", model_name: str = ""):
if self.response_mode == "heart_flow":
self.heartflow_data["prompt"] = prompt
self.heartflow_data["response"] = response
@@ -89,41 +82,38 @@ class InfoCatcher:
self.reasoning_data["prompt"] = prompt
self.reasoning_data["response"] = response
self.reasoning_data["model"] = model_name
self.response_text = response
def catch_after_generate_response(self,response_duration:float):
def catch_after_generate_response(self, response_duration: float):
self.timing_results["make_response_time"] = response_duration
def catch_after_response(self,response_duration:float,
response_message:List[str],
first_bot_msg:MessageSending):
def catch_after_response(
self, response_duration: float, response_message: List[str], first_bot_msg: MessageSending
):
self.timing_results["make_response_time"] = response_duration
self.response_time = time.time()
for msg in response_message:
self.response_messages.append(msg)
self.chat_history_in_thinking = self.get_message_from_db_between_msgs(self.trigger_response_message,first_bot_msg)
self.chat_history_in_thinking = self.get_message_from_db_between_msgs(
self.trigger_response_message, first_bot_msg
)
def get_message_from_db_between_msgs(self, message_start: Message, message_end: Message):
try:
# 从数据库中获取消息的时间戳
time_start = message_start.message_info.time
time_end = message_end.message_info.time
chat_id = message_start.chat_stream.stream_id
print(f"查询参数: time_start={time_start}, time_end={time_end}, chat_id={chat_id}")
# 查询数据库,获取 chat_id 相同且时间在 start 和 end 之间的数据
messages_between = db.messages.find(
{
"chat_id": chat_id,
"time": {"$gt": time_start, "$lt": time_end}
}
{"chat_id": chat_id, "time": {"$gt": time_start, "$lt": time_end}}
).sort("time", -1)
result = list(messages_between)
print(f"查询结果数量: {len(result)}")
if result:
@@ -133,21 +123,23 @@ class InfoCatcher:
except Exception as e:
print(f"获取消息时出错: {str(e)}")
return []
def get_message_from_db_before_msg(self, message: MessageRecv):
# 从数据库中获取消息
message_id = message.message_info.message_id
chat_id = message.chat_stream.stream_id
# 查询数据库,获取 chat_id 相同且 message_id 小于当前消息的 30 条数据
messages_before = db.messages.find(
{"chat_id": chat_id, "message_id": {"$lt": message_id}}
).sort("time", -1).limit(self.context_length*3) #获取更多历史信息
messages_before = (
db.messages.find({"chat_id": chat_id, "message_id": {"$lt": message_id}})
.sort("time", -1)
.limit(self.context_length * 3)
) # 获取更多历史信息
return list(messages_before)
def message_list_to_dict(self, message_list):
#存储简化的聊天记录
# 存储简化的聊天记录
result = []
for message in message_list:
if not isinstance(message, dict):
@@ -160,7 +152,7 @@ class InfoCatcher:
"processed_plain_text": message["processed_plain_text"],
}
result.append(lite_message)
return result
def message_to_dict(self, message):
@@ -176,12 +168,12 @@ class InfoCatcher:
"processed_plain_text": message.processed_plain_text,
# "detailed_plain_text": message.detailed_plain_text
}
def done_catch(self):
"""将收集到的信息存储到数据库的 thinking_log 集合中"""
try:
# 将消息对象转换为可序列化的字典
thinking_log_data = {
"chat_id": self.chat_id,
"response_mode": self.response_mode,
@@ -198,7 +190,7 @@ class InfoCatcher:
"timing_results": self.timing_results,
"chat_history": self.message_list_to_dict(self.chat_history),
"chat_history_in_thinking": self.message_list_to_dict(self.chat_history_in_thinking),
"chat_history_after_response": self.message_list_to_dict(self.chat_history_after_response)
"chat_history_after_response": self.message_list_to_dict(self.chat_history_after_response),
}
# 根据不同的响应模式添加相应的数据
@@ -209,20 +201,22 @@ class InfoCatcher:
# 将数据插入到 thinking_log 集合中
db.thinking_log.insert_one(thinking_log_data)
return True
except Exception as e:
print(f"存储思考日志时出错: {str(e)}")
print(traceback.format_exc())
return False
class InfoCatcherManager:
def __init__(self):
self.info_catchers = {}
def get_info_catcher(self,thinking_id:str) -> InfoCatcher:
def get_info_catcher(self, thinking_id: str) -> InfoCatcher:
if thinking_id not in self.info_catchers:
self.info_catchers[thinking_id] = InfoCatcher()
return self.info_catchers[thinking_id]
info_catcher_manager = InfoCatcherManager()
info_catcher_manager = InfoCatcherManager()

View File

@@ -32,7 +32,7 @@ class ScheduleGenerator:
# 使用离线LLM模型
self.llm_scheduler_all = LLM_request(
model=global_config.llm_reasoning,
temperature=global_config.SCHEDULE_TEMPERATURE+0.3,
temperature=global_config.SCHEDULE_TEMPERATURE + 0.3,
max_tokens=7000,
request_type="schedule",
)

View File

@@ -8,6 +8,7 @@ from src.common.logger import get_module_logger
logger = get_module_logger("message_storage")
class MessageStorage:
async def store_message(self, message: Union[MessageSending, MessageRecv], chat_stream: ChatStream) -> None:
"""存储消息到数据库"""

View File

@@ -5,6 +5,7 @@ from typing import Dict, Any, Optional, List, Union
from contextlib import asynccontextmanager
import asyncio
class PromptContext:
def __init__(self):
self._context_prompts: Dict[str, Dict[str, "Prompt"]] = {}
@@ -129,7 +130,9 @@ class Prompt(str):
return obj
@classmethod
async def create_async(cls, fstr: str, name: Optional[str] = None, args: Union[List[Any], tuple[Any, ...]] = None, **kwargs):
async def create_async(
cls, fstr: str, name: Optional[str] = None, args: Union[List[Any], tuple[Any, ...]] = None, **kwargs
):
"""异步创建Prompt实例"""
prompt = cls(fstr, name, args, **kwargs)
if global_prompt_manager._context._current_context:

View File

@@ -1,6 +1,7 @@
import asyncio
from .willing_manager import BaseWillingManager
class ClassicalWillingManager(BaseWillingManager):
def __init__(self):
super().__init__()
@@ -41,17 +42,22 @@ class ClassicalWillingManager(BaseWillingManager):
self.chat_reply_willing[chat_id] = min(current_willing, 3.0)
reply_probability = min(max((current_willing - 0.5), 0.01) * self.global_config.response_willing_amplifier * 2, 1)
reply_probability = min(
max((current_willing - 0.5), 0.01) * self.global_config.response_willing_amplifier * 2, 1
)
# 检查群组权限(如果是群聊)
if willing_info.group_info and willing_info.group_info.group_id in self.global_config.talk_frequency_down_groups:
if (
willing_info.group_info
and willing_info.group_info.group_id in self.global_config.talk_frequency_down_groups
):
reply_probability = reply_probability / self.global_config.down_frequency_rate
if is_emoji_not_reply:
reply_probability = 0
return reply_probability
async def before_generate_reply_handle(self, message_id):
chat_id = self.ongoing_messages[message_id].chat_id
current_willing = self.chat_reply_willing.get(chat_id, 0)
@@ -71,8 +77,6 @@ class ClassicalWillingManager(BaseWillingManager):
async def get_variable_parameters(self):
return await super().get_variable_parameters()
async def set_variable_parameters(self, parameters):
return await super().set_variable_parameters(parameters)

View File

@@ -4,4 +4,3 @@ from .willing_manager import BaseWillingManager
class CustomWillingManager(BaseWillingManager):
def __init__(self):
super().__init__()

View File

@@ -20,7 +20,6 @@ class DynamicWillingManager(BaseWillingManager):
self._decay_task = None
self._mode_switch_task = None
async def async_task_starter(self):
if self._decay_task is None:
self._decay_task = asyncio.create_task(self._decay_reply_willing())
@@ -84,7 +83,9 @@ class DynamicWillingManager(BaseWillingManager):
self.chat_high_willing_mode[chat_id] = True
self.chat_reply_willing[chat_id] = 1.0 # 设置为较高回复意愿
self.chat_high_willing_duration[chat_id] = random.randint(180, 240) # 3-4分钟
self.logger.debug(f"聊天流 {chat_id} 切换到高回复意愿期,持续 {self.chat_high_willing_duration[chat_id]}")
self.logger.debug(
f"聊天流 {chat_id} 切换到高回复意愿期,持续 {self.chat_high_willing_duration[chat_id]}"
)
self.chat_last_mode_change[chat_id] = time.time()
self.chat_msg_count[chat_id] = 0 # 重置消息计数
@@ -148,7 +149,9 @@ class DynamicWillingManager(BaseWillingManager):
# 根据话题兴趣度适当调整
if willing_info.interested_rate > 0.5:
current_willing += (willing_info.interested_rate - 0.5) * 0.5 * self.global_config.response_interested_rate_amplifier
current_willing += (
(willing_info.interested_rate - 0.5) * 0.5 * self.global_config.response_interested_rate_amplifier
)
# 根据当前模式计算回复概率
base_probability = 0.0
@@ -228,12 +231,12 @@ class DynamicWillingManager(BaseWillingManager):
async def bombing_buffer_message_handle(self, message_id):
return await super().bombing_buffer_message_handle(message_id)
async def after_generate_reply_handle(self, message_id):
return await super().after_generate_reply_handle(message_id)
async def get_variable_parameters(self):
return await super().get_variable_parameters()
async def set_variable_parameters(self, parameters):
return await super().set_variable_parameters(parameters)
return await super().set_variable_parameters(parameters)

View File

@@ -17,19 +17,22 @@ Mxp 模式:梦溪畔独家赞助
中策是发issue
下下策是询问一个菜鸟(@梦溪畔)
"""
from .willing_manager import BaseWillingManager
from typing import Dict
import asyncio
import time
import math
class MxpWillingManager(BaseWillingManager):
"""Mxp意愿管理器"""
def __init__(self):
super().__init__()
self.chat_person_reply_willing: Dict[str, Dict[str, float]] = {} # chat_id: {person_id: 意愿值}
self.chat_new_message_time: Dict[str, list[float]] = {} # 聊天流ID: 消息时间
self.last_response_person: Dict[str, tuple[str, int]] = {} # 上次回复的用户信息
self.last_response_person: Dict[str, tuple[str, int]] = {} # 上次回复的用户信息
self.temporary_willing: float = 0 # 临时意愿值
# 可变参数
@@ -39,8 +42,8 @@ class MxpWillingManager(BaseWillingManager):
self.basic_maximum_willing = 0.5 # 基础最大意愿值
self.mention_willing_gain = 0.6 # 提及意愿增益
self.interest_willing_gain = 0.3 # 兴趣意愿增益
self.emoji_response_penalty = self.global_config.emoji_response_penalty # 表情包回复惩罚
self.down_frequency_rate = self.global_config.down_frequency_rate # 降低回复频率的群组惩罚系数
self.emoji_response_penalty = self.global_config.emoji_response_penalty # 表情包回复惩罚
self.down_frequency_rate = self.global_config.down_frequency_rate # 降低回复频率的群组惩罚系数
self.single_chat_gain = 0.12 # 单聊增益
async def async_task_starter(self) -> None:
@@ -73,9 +76,13 @@ class MxpWillingManager(BaseWillingManager):
w_info = self.ongoing_messages[message_id]
if w_info.is_mentioned_bot:
self.chat_person_reply_willing[w_info.chat_id][w_info.person_id] += 0.2
if w_info.chat_id in self.last_response_person and self.last_response_person[w_info.chat_id][0] == w_info.person_id:
self.chat_person_reply_willing[w_info.chat_id][w_info.person_id] +=\
self.single_chat_gain * (2 * self.last_response_person[w_info.chat_id][1] + 1)
if (
w_info.chat_id in self.last_response_person
and self.last_response_person[w_info.chat_id][0] == w_info.person_id
):
self.chat_person_reply_willing[w_info.chat_id][w_info.person_id] += self.single_chat_gain * (
2 * self.last_response_person[w_info.chat_id][1] + 1
)
now_chat_new_person = self.last_response_person.get(w_info.chat_id, ["", 0])
if now_chat_new_person[0] != w_info.person_id:
self.last_response_person[w_info.chat_id] = [w_info.person_id, 0]
@@ -98,7 +105,10 @@ class MxpWillingManager(BaseWillingManager):
rel_level = self._get_relationship_level_num(rel_value)
current_willing += rel_level * 0.1
if w_info.chat_id in self.last_response_person and self.last_response_person[w_info.chat_id][0] == w_info.person_id:
if (
w_info.chat_id in self.last_response_person
and self.last_response_person[w_info.chat_id][0] == w_info.person_id
):
current_willing += self.single_chat_gain * (2 * self.last_response_person[w_info.chat_id][1] + 1)
chat_ongoing_messages = [msg for msg in self.ongoing_messages.values() if msg.chat_id == w_info.chat_id]
@@ -141,16 +151,22 @@ class MxpWillingManager(BaseWillingManager):
self.logger.debug(f"聊天流{chat_id}不存在,错误")
continue
basic_willing = self.chat_reply_willing[chat_id]
person_willing[person_id] = basic_willing + (willing - basic_willing) * self.intention_decay_rate
person_willing[person_id] = (
basic_willing + (willing - basic_willing) * self.intention_decay_rate
)
def setup(self, message, chat, is_mentioned_bot, interested_rate):
super().setup(message, chat, is_mentioned_bot, interested_rate)
self.chat_reply_willing[chat.stream_id] = self.chat_reply_willing.get(chat.stream_id, self.basic_maximum_willing)
self.chat_reply_willing[chat.stream_id] = self.chat_reply_willing.get(
chat.stream_id, self.basic_maximum_willing
)
self.chat_person_reply_willing[chat.stream_id] = self.chat_person_reply_willing.get(chat.stream_id, {})
self.chat_person_reply_willing[chat.stream_id][self.ongoing_messages[message.message_info.message_id].person_id] = \
self.chat_person_reply_willing[chat.stream_id].get(self.ongoing_messages[message.message_info.message_id].person_id,
self.chat_reply_willing[chat.stream_id])
self.chat_person_reply_willing[chat.stream_id][
self.ongoing_messages[message.message_info.message_id].person_id
] = self.chat_person_reply_willing[chat.stream_id].get(
self.ongoing_messages[message.message_info.message_id].person_id, self.chat_reply_willing[chat.stream_id]
)
if chat.stream_id not in self.chat_new_message_time:
self.chat_new_message_time[chat.stream_id] = []
@@ -166,7 +182,7 @@ class MxpWillingManager(BaseWillingManager):
else:
probability = math.atan(willing * 4) / math.pi * 2
return probability
async def _chat_new_message_to_change_basic_willing(self):
"""聊天流新消息改变基础意愿"""
while True:
@@ -174,10 +190,11 @@ class MxpWillingManager(BaseWillingManager):
await asyncio.sleep(update_time)
async with self.lock:
for chat_id, message_times in self.chat_new_message_time.items():
# 清理过期消息
current_time = time.time()
message_times = [msg_time for msg_time in message_times if current_time - msg_time < self.message_expiration_time]
message_times = [
msg_time for msg_time in message_times if current_time - msg_time < self.message_expiration_time
]
self.chat_new_message_time[chat_id] = message_times
if len(message_times) < self.number_of_message_storage:
@@ -185,7 +202,9 @@ class MxpWillingManager(BaseWillingManager):
update_time = 20
elif len(message_times) == self.number_of_message_storage:
time_interval = current_time - message_times[0]
basic_willing = self.basic_maximum_willing * math.sqrt(time_interval / self.message_expiration_time)
basic_willing = self.basic_maximum_willing * math.sqrt(
time_interval / self.message_expiration_time
)
self.chat_reply_willing[chat_id] = basic_willing
update_time = 17 * math.sqrt(time_interval / self.message_expiration_time) + 3
else:
@@ -203,7 +222,7 @@ class MxpWillingManager(BaseWillingManager):
"interest_willing_gain": "兴趣意愿增益",
"emoji_response_penalty": "表情包回复惩罚",
"down_frequency_rate": "降低回复频率的群组惩罚系数",
"single_chat_gain": "单聊增益(不仅是私聊)"
"single_chat_gain": "单聊增益(不仅是私聊)",
}
async def set_variable_parameters(self, parameters: Dict[str, any]):
@@ -215,7 +234,7 @@ class MxpWillingManager(BaseWillingManager):
self.logger.debug(f"参数 {key} 已更新为 {value}")
else:
self.logger.debug(f"尝试设置未知参数 {key}")
def _get_relationship_level_num(self, relationship_value) -> int:
"""关系等级计算"""
if -1000 <= relationship_value < -227:
@@ -235,4 +254,4 @@ class MxpWillingManager(BaseWillingManager):
return level_num - 2
async def get_willing(self, chat_id):
return self.temporary_willing
return self.temporary_willing

View File

@@ -1,4 +1,3 @@
from src.common.logger import LogConfig, WILLING_STYLE_CONFIG, LoguruLogger, get_module_logger
from dataclasses import dataclass
from ..config.config import global_config, BotConfig
@@ -38,10 +37,11 @@ willing_config = LogConfig(
)
logger = get_module_logger("willing", config=willing_config)
@dataclass
class WillingInfo:
"""此类保存意愿模块常用的参数
Attributes:
message (MessageRecv): 原始消息对象
chat (ChatStream): 聊天流对象
@@ -53,6 +53,7 @@ class WillingInfo:
is_emoji (bool): 是否为表情包
interested_rate (float): 兴趣度
"""
message: MessageRecv
chat: ChatStream
person_info_manager: PersonInfoManager
@@ -60,22 +61,21 @@ class WillingInfo:
person_id: str
group_info: Optional[GroupInfo]
is_mentioned_bot: bool
is_emoji: bool
is_emoji: bool
interested_rate: float
# current_mood: float 当前心情?
class BaseWillingManager(ABC):
"""回复意愿管理基类"""
@classmethod
def create(cls, manager_type: str) -> 'BaseWillingManager':
def create(cls, manager_type: str) -> "BaseWillingManager":
try:
module = importlib.import_module(f".mode_{manager_type}", __package__)
manager_class = getattr(module, f"{manager_type.capitalize()}WillingManager")
if not issubclass(manager_class, cls):
raise TypeError(
f"Manager class {manager_class.__name__} is not a subclass of {cls.__name__}"
)
raise TypeError(f"Manager class {manager_class.__name__} is not a subclass of {cls.__name__}")
else:
logger.info(f"成功载入willing模式{manager_type}")
return manager_class()
@@ -85,7 +85,7 @@ class BaseWillingManager(ABC):
logger.info(f"载入当前意愿模式{manager_type}失败,使用经典配方~~~~")
logger.debug(f"加载willing模式{manager_type}失败,原因: {str(e)}")
return manager_class()
def __init__(self):
self.chat_reply_willing: Dict[str, float] = {} # 存储每个聊天流的回复意愿(chat_id)
self.ongoing_messages: Dict[str, WillingInfo] = {} # 当前正在进行的消息(message_id)
@@ -136,17 +136,17 @@ class BaseWillingManager(ABC):
async def get_reply_probability(self, message_id: str):
"""抽象方法:获取回复概率"""
raise NotImplementedError
@abstractmethod
async def bombing_buffer_message_handle(self, message_id: str):
"""抽象方法:炸飞消息处理"""
pass
async def get_willing(self, chat_id: str):
"""获取指定聊天流的回复意愿"""
async with self.lock:
return self.chat_reply_willing.get(chat_id, 0)
async def set_willing(self, chat_id: str, willing: float):
"""设置指定聊天流的回复意愿"""
async with self.lock:
@@ -173,5 +173,6 @@ def init_willing_manager() -> BaseWillingManager:
mode = global_config.willing_mode.lower()
return BaseWillingManager.create(mode)
# 全局willing_manager对象
willing_manager = init_willing_manager()