feat:为HFC创建私聊特殊prompt模板

This commit is contained in:
SengokuCola
2025-05-01 21:38:38 +08:00
parent d97aa6b115
commit 462fac2547
9 changed files with 417 additions and 121 deletions

View File

@@ -12,9 +12,31 @@ from src.plugins.utils.chat_message_builder import (
num_new_messages_since,
get_person_id_list,
)
from src.plugins.utils.prompt_builder import Prompt, global_prompt_manager
from src.plugins.chat.chat_stream import chat_manager
from typing import Optional
from src.plugins.person_info.person_info import person_info_manager
# Import the new utility function
from .utils_chat import get_chat_type_and_target_info
logger = get_logger("observation")
# --- Define Prompt Templates for Chat Summary ---
Prompt(
"""这是qq群聊的聊天记录请总结以下聊天记录的主题
{chat_logs}
请用一句话概括,包括人物、事件和主要信息,不要分点。""",
"chat_summary_group_prompt" # Template for group chat
)
Prompt(
"""这是你和{chat_target}的私聊记录,请总结以下聊天记录的主题:
{chat_logs}
请用一句话概括,包括事件,时间,和主要信息,不要分点。""",
"chat_summary_private_prompt" # Template for private chat
)
# --- End Prompt Template Definition ---
# 所有观察的基类
class Observation:
@@ -34,28 +56,37 @@ class ChattingObservation(Observation):
super().__init__("chat", chat_id)
self.chat_id = chat_id
# --- Initialize attributes (defaults) ---
self.is_group_chat: bool = False
self.chat_target_info: Optional[dict] = None
# --- End Initialization ---
# --- Other attributes initialized in __init__ ---
self.talking_message = []
self.talking_message_str = ""
self.talking_message_str_truncate = ""
self.name = global_config.BOT_NICKNAME
self.nick_name = global_config.BOT_ALIAS_NAMES
self.max_now_obs_len = global_config.observation_context_size
self.overlap_len = global_config.compressed_length
self.mid_memorys = []
self.max_mid_memory_len = global_config.compress_length_limit
self.mid_memory_info = ""
self.person_list = []
self.llm_summary = LLMRequest(
model=global_config.llm_observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
)
async def initialize(self):
# --- Use utility function to determine chat type and fetch info ---
self.is_group_chat, self.chat_target_info = await get_chat_type_and_target_info(self.chat_id)
logger.debug(f"ChattingObservation {self.chat_id} initialized: is_group={self.is_group_chat}, target_info={self.chat_target_info}")
# --- End using utility function ---
# Fetch initial messages (existing logic)
initial_messages = get_raw_msg_before_timestamp_with_chat(self.chat_id, self.last_observe_time, 10)
self.talking_message = initial_messages # 将这些消息设为初始上下文
self.talking_message = initial_messages
self.talking_message_str = await build_readable_messages(self.talking_message)
# 进行一次观察 返回观察结果observe_info
@@ -109,18 +140,49 @@ class ChattingObservation(Observation):
messages=oldest_messages, timestamp_mode="normal", read_mark=0
)
# 调用 LLM 总结主题
prompt = (
f"请总结以下聊天记录的主题:\n{oldest_messages_str}\n用一句话概括包括人物事件和主要信息,不要分点:"
)
summary = "没有主题的闲聊" # 默认值
# --- Build prompt using template ---
prompt = None # Initialize prompt as None
try:
summary_result, _ = await self.llm_summary.generate_response_async(prompt)
if summary_result: # 确保结果不为空
summary = summary_result
# 构建 Prompt - 根据 is_group_chat 选择模板
if self.is_group_chat:
prompt_template_name = "chat_summary_group_prompt"
prompt = await global_prompt_manager.format_prompt(
prompt_template_name,
chat_logs=oldest_messages_str
)
else:
# For private chat, add chat_target to the prompt variables
prompt_template_name = "chat_summary_private_prompt"
# Determine the target name for the prompt
chat_target_name = "对方" # Default fallback
if self.chat_target_info:
# Prioritize person_name, then nickname
chat_target_name = self.chat_target_info.get('person_name') or self.chat_target_info.get('user_nickname') or chat_target_name
# Format the private chat prompt
prompt = await global_prompt_manager.format_prompt(
prompt_template_name,
# Assuming the private prompt template uses {chat_target}
chat_target=chat_target_name,
chat_logs=oldest_messages_str
)
except Exception as e:
logger.error(f"总结主题失败 for chat {self.chat_id}: {e}")
# 保留默认总结 "没有主题的闲聊"
logger.error(f"构建总结 Prompt 失败 for chat {self.chat_id}: {e}")
# prompt remains None
summary = "没有主题的闲聊" # 默认值
if prompt: # Check if prompt was built successfully
try:
summary_result, _, _ = await self.llm_summary.generate_response(prompt)
if summary_result: # 确保结果不为空
summary = summary_result
except Exception as e:
logger.error(f"总结主题失败 for chat {self.chat_id}: {e}")
# 保留默认总结 "没有主题的闲聊"
else:
logger.warning(f"因 Prompt 构建失败,跳过 LLM 总结 for chat {self.chat_id}")
mid_memory = {
"id": str(int(datetime.now().timestamp())),