diff --git a/src/llm_models/utils_model.py b/src/llm_models/utils_model.py index d4ed32fb8..cb7dfa590 100644 --- a/src/llm_models/utils_model.py +++ b/src/llm_models/utils_model.py @@ -287,6 +287,7 @@ class LLMRequest: # 模型选择和请求准备 start_time = time.time() model_info, api_provider, client = self._select_model() + model_name = model_info.name # 检查是否启用反截断 use_anti_truncation = getattr(self.model_for_task, "anti_truncation", False) @@ -403,7 +404,7 @@ class LLMRequest: # 重试失败 if raise_when_empty: raise RuntimeError(f"经过 {max_empty_retry} 次重试后仍然无法生成有效回复") - return "生成的响应为空,请检查模型配置或输入内容是否正确", ("", model_info.name, None) + return "生成的响应为空,请检查模型配置或输入内容是否正确", ("", model_name, None) async def get_embedding(self, embedding_input: str) -> Tuple[List[float], str]: """获取嵌入向量 @@ -565,7 +566,7 @@ class LLMRequest: Returns: (等待间隔(如果为0则不等待,为-1则不再请求该模型), 新的消息列表(适用于压缩消息)) """ - model_name = model_info.name + model_name = model_info.name if model_info else "unknown" if isinstance(e, NetworkConnectionError): # 网络连接错误 return self._check_retry(