feat:增加了工作记忆

This commit is contained in:
SengokuCola
2025-05-16 16:13:12 +08:00
parent 7f3178c96c
commit 456def4f9c
24 changed files with 2650 additions and 102 deletions

View File

@@ -127,7 +127,7 @@ class DefaultExpressor:
reply=anchor_message, # 回复的是锚点消息
thinking_start_time=thinking_time_point,
)
logger.debug(f"创建思考消息thinking_message{thinking_message}")
# logger.debug(f"创建思考消息thinking_message{thinking_message}")
await self.heart_fc_sender.register_thinking(thinking_message)
@@ -244,7 +244,7 @@ class DefaultExpressor:
# logger.info(f"{self.log_prefix}[Replier-{thinking_id}]\nPrompt:\n{prompt}\n")
content, reasoning_content, model_name = await self.express_model.generate_response(prompt)
logger.info(f"{self.log_prefix}\nPrompt:\n{prompt}\n---------------------------\n")
# logger.info(f"{self.log_prefix}\nPrompt:\n{prompt}\n---------------------------\n")
logger.info(f"想要表达:{in_mind_reply}")
logger.info(f"理由:{reason}")

View File

@@ -22,6 +22,7 @@ from src.chat.focus_chat.info_processors.tool_processor import ToolProcessor
from src.chat.focus_chat.expressors.default_expressor import DefaultExpressor
from src.chat.focus_chat.memory_activator import MemoryActivator
from src.chat.focus_chat.info_processors.base_processor import BaseProcessor
from src.chat.focus_chat.info_processors.self_processor import SelfProcessor
from src.chat.focus_chat.planners.planner import ActionPlanner
from src.chat.focus_chat.planners.action_manager import ActionManager
from src.chat.focus_chat.working_memory.working_memory import WorkingMemory
@@ -154,6 +155,7 @@ class HeartFChatting:
self.processors.append(MindProcessor(subheartflow_id=self.stream_id))
self.processors.append(ToolProcessor(subheartflow_id=self.stream_id))
self.processors.append(WorkingMemoryProcessor(subheartflow_id=self.stream_id))
self.processors.append(SelfProcessor(subheartflow_id=self.stream_id))
logger.info(f"{self.log_prefix} 已注册默认处理器: {[p.__class__.__name__ for p in self.processors]}")
async def start(self):
@@ -331,6 +333,7 @@ class HeartFChatting:
f"{self.log_prefix} 处理器 {processor_name} 执行失败,耗时 (自并行开始): {duration_since_parallel_start:.2f}秒. 错误: {e}",
exc_info=True,
)
traceback.print_exc()
# 即使出错,也认为该任务结束了,已从 pending_tasks 中移除
if pending_tasks:

View File

@@ -0,0 +1,41 @@
from typing import Dict, Any
from dataclasses import dataclass, field
from .info_base import InfoBase
@dataclass
class SelfInfo(InfoBase):
"""思维信息类
用于存储和管理当前思维状态的信息。
Attributes:
type (str): 信息类型标识符,默认为 "mind"
data (Dict[str, Any]): 包含 current_mind 的数据字典
"""
type: str = "self"
def get_self_info(self) -> str:
"""获取当前思维状态
Returns:
str: 当前思维状态
"""
return self.get_info("self_info") or ""
def set_self_info(self, self_info: str) -> None:
"""设置当前思维状态
Args:
self_info: 要设置的思维状态
"""
self.data["self_info"] = self_info
def get_processed_info(self) -> str:
"""获取处理后的信息
Returns:
str: 处理后的信息
"""
return self.get_self_info()

View File

@@ -0,0 +1,90 @@
from typing import Dict, Optional, List
from dataclasses import dataclass
from .info_base import InfoBase
@dataclass
class WorkingMemoryInfo(InfoBase):
type: str = "workingmemory"
processed_info:str = ""
def set_talking_message(self, message: str) -> None:
"""设置说话消息
Args:
message (str): 说话消息内容
"""
self.data["talking_message"] = message
def set_working_memory(self, working_memory: List[str]) -> None:
"""设置工作记忆
Args:
working_memory (str): 工作记忆内容
"""
self.data["working_memory"] = working_memory
def add_working_memory(self, working_memory: str) -> None:
"""添加工作记忆
Args:
working_memory (str): 工作记忆内容
"""
working_memory_list = self.data.get("working_memory", [])
# print(f"working_memory_list: {working_memory_list}")
working_memory_list.append(working_memory)
# print(f"working_memory_list: {working_memory_list}")
self.data["working_memory"] = working_memory_list
def get_working_memory(self) -> List[str]:
"""获取工作记忆
Returns:
List[str]: 工作记忆内容
"""
return self.data.get("working_memory", [])
def get_type(self) -> str:
"""获取信息类型
Returns:
str: 当前信息对象的类型标识符
"""
return self.type
def get_data(self) -> Dict[str, str]:
"""获取所有信息数据
Returns:
Dict[str, str]: 包含所有信息数据的字典
"""
return self.data
def get_info(self, key: str) -> Optional[str]:
"""获取特定属性的信息
Args:
key: 要获取的属性键名
Returns:
Optional[str]: 属性值,如果键不存在则返回 None
"""
return self.data.get(key)
def get_processed_info(self) -> Dict[str, str]:
"""获取处理后的信息
Returns:
Dict[str, str]: 处理后的信息数据
"""
all_memory = self.get_working_memory()
# print(f"all_memory: {all_memory}")
memory_str = ""
for memory in all_memory:
memory_str += f"{memory}\n"
self.processed_info = memory_str
return self.processed_info

View File

@@ -0,0 +1,172 @@
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.heart_flow.observation.observation import Observation
from src.chat.models.utils_model import LLMRequest
from src.config.config import global_config
import time
import traceback
from src.common.logger_manager import get_logger
from src.individuality.individuality import Individuality
import random
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.utils.json_utils import safe_json_dumps
from src.chat.message_receive.chat_stream import chat_manager
import difflib
from src.chat.person_info.relationship_manager import relationship_manager
from .base_processor import BaseProcessor
from src.chat.focus_chat.info.mind_info import MindInfo
from typing import List, Optional
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
from typing import Dict
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.self_info import SelfInfo
logger = get_logger("processor")
def init_prompt():
indentify_prompt = """
你的名字是{bot_name},你是一个AI但是你伪装成了一个人类你的人格是{prompt_personality}
你对外的形象是一只橙色的鱼,头上有绿色的树叶,你用的头像也是这个。
{relation_prompt}
{memory_str}
现在是{time_now}你正在上网和qq群里的网友们聊天以下是正在进行的聊天内容
{chat_observe_info}
现在请你根据现有的信息,思考自我认同
1. 你是一个什么样的人,你和群里的人关系如何
2. 思考有没有人提到你,或者图片与你有关
3. 你的自我认同是否有助于你的回答,如果你需要自我相关的信息来帮你参与聊天,请输出,否则请输出十个字以内的简短自我认同
4. 一般情况下不用输出自我认同,只需要输出十几个字的简短自我认同就好,除非有明显需要自我认同的场景
"""
Prompt(indentify_prompt, "indentify_prompt")
class SelfProcessor(BaseProcessor):
log_prefix = "自我认同"
def __init__(self, subheartflow_id: str):
super().__init__()
self.subheartflow_id = subheartflow_id
self.llm_model = LLMRequest(
model=global_config.llm_sub_heartflow,
temperature=global_config.llm_sub_heartflow["temp"],
max_tokens=800,
request_type="self_identify",
)
name = chat_manager.get_stream_name(self.subheartflow_id)
self.log_prefix = f"[{name}] "
async def process_info(
self, observations: Optional[List[Observation]] = None, running_memorys: Optional[List[Dict]] = None, *infos
) -> List[InfoBase]:
"""处理信息对象
Args:
*infos: 可变数量的InfoBase类型的信息对象
Returns:
List[InfoBase]: 处理后的结构化信息列表
"""
self_info_str = await self.self_indentify(observations, running_memorys)
if self_info_str:
self_info = SelfInfo()
self_info.set_self_info(self_info_str)
else:
self_info = None
return None
return [self_info]
async def self_indentify(
self, observations: Optional[List[Observation]] = None, running_memorys: Optional[List[Dict]] = None
):
"""
在回复前进行思考,生成内心想法并收集工具调用结果
参数:
observations: 观察信息
返回:
如果return_prompt为False:
tuple: (current_mind, past_mind) 当前想法和过去的想法列表
如果return_prompt为True:
tuple: (current_mind, past_mind, prompt) 当前想法、过去的想法列表和使用的prompt
"""
memory_str = ""
if running_memorys:
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
for running_memory in running_memorys:
memory_str += f"{running_memory['topic']}: {running_memory['content']}\n"
if observations is None:
observations = []
for observation in observations:
if isinstance(observation, ChattingObservation):
# 获取聊天元信息
is_group_chat = observation.is_group_chat
chat_target_info = observation.chat_target_info
chat_target_name = "对方" # 私聊默认名称
if not is_group_chat and chat_target_info:
# 优先使用person_name其次user_nickname最后回退到默认值
chat_target_name = (
chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or chat_target_name
)
# 获取聊天内容
chat_observe_info = observation.get_observe_info()
person_list = observation.person_list
if isinstance(observation, HFCloopObservation):
hfcloop_observe_info = observation.get_observe_info()
individuality = Individuality.get_instance()
personality_block = individuality.get_prompt(x_person=2, level=2)
relation_prompt = ""
for person in person_list:
relation_prompt += await relationship_manager.build_relationship_info(person, is_id=True)
prompt = (await global_prompt_manager.get_prompt_async("indentify_prompt")).format(
bot_name=individuality.name,
prompt_personality=personality_block,
memory_str=memory_str,
relation_prompt=relation_prompt,
time_now=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
chat_observe_info=chat_observe_info,
)
content = ""
try:
content, _ = await self.llm_model.generate_response_async(prompt=prompt)
if not content:
logger.warning(f"{self.log_prefix} LLM返回空结果自我识别失败。")
except Exception as e:
# 处理总体异常
logger.error(f"{self.log_prefix} 执行LLM请求或处理响应时出错: {e}")
logger.error(traceback.format_exc())
content = "自我识别过程中出现错误"
if content == 'None':
content = ""
# 记录初步思考结果
logger.debug(f"{self.log_prefix} 自我识别prompt: \n{prompt}\n")
logger.info(f"{self.log_prefix} 自我识别结果: {content}")
return content
init_prompt()

View File

@@ -11,8 +11,8 @@ from src.chat.person_info.relationship_manager import relationship_manager
from .base_processor import BaseProcessor
from typing import List, Optional, Dict
from src.chat.heart_flow.observation.observation import Observation
from src.chat.heart_flow.observation.working_observation import WorkingObservation
from src.chat.focus_chat.info.structured_info import StructuredInfo
from src.chat.heart_flow.observation.structure_observation import StructureObservation
logger = get_logger("processor")
@@ -24,9 +24,6 @@ def init_prompt():
tool_executor_prompt = """
你是一个专门执行工具的助手。你的名字是{bot_name}。现在是{time_now}
你要在群聊中扮演以下角色:
{prompt_personality}
你当前的额外信息:
{memory_str}
@@ -70,6 +67,8 @@ class ToolProcessor(BaseProcessor):
list: 处理后的结构化信息列表
"""
working_infos = []
if observations:
for observation in observations:
if isinstance(observation, ChattingObservation):
@@ -77,7 +76,7 @@ class ToolProcessor(BaseProcessor):
# 更新WorkingObservation中的结构化信息
for observation in observations:
if isinstance(observation, WorkingObservation):
if isinstance(observation, StructureObservation):
for structured_info in result:
logger.debug(f"{self.log_prefix} 更新WorkingObservation中的结构化信息: {structured_info}")
observation.add_structured_info(structured_info)
@@ -86,6 +85,7 @@ class ToolProcessor(BaseProcessor):
logger.debug(f"{self.log_prefix} 获取更新后WorkingObservation中的结构化信息: {working_infos}")
structured_info = StructuredInfo()
if working_infos:
for working_info in working_infos:
structured_info.set_info(working_info.get("type"), working_info.get("content"))
@@ -148,7 +148,7 @@ class ToolProcessor(BaseProcessor):
# chat_target_name=chat_target_name,
is_group_chat=is_group_chat,
# relation_prompt=relation_prompt,
prompt_personality=prompt_personality,
# prompt_personality=prompt_personality,
# mood_info=mood_info,
bot_name=individuality.name,
time_now=time_now,

View File

@@ -0,0 +1,247 @@
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.heart_flow.observation.observation import Observation
from src.chat.models.utils_model import LLMRequest
from src.config.config import global_config
import time
import traceback
from src.common.logger_manager import get_logger
from src.individuality.individuality import Individuality
import random
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.utils.json_utils import safe_json_dumps
from src.chat.message_receive.chat_stream import chat_manager
import difflib
from src.chat.person_info.relationship_manager import relationship_manager
from .base_processor import BaseProcessor
from src.chat.focus_chat.info.mind_info import MindInfo
from typing import List, Optional
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
from src.chat.heart_flow.observation.working_observation import WorkingMemoryObservation
from src.chat.focus_chat.working_memory.working_memory import WorkingMemory
from typing import Dict
from src.chat.focus_chat.info.info_base import InfoBase
from json_repair import repair_json
from src.chat.focus_chat.info.workingmemory_info import WorkingMemoryInfo
import asyncio
import json
logger = get_logger("processor")
def init_prompt():
memory_proces_prompt = """
你的名字是{bot_name}
现在是{time_now}你正在上网和qq群里的网友们聊天以下是正在进行的聊天内容
{chat_observe_info}
以下是你已经总结的记忆你可以调取这些记忆来帮助你聊天不要一次调取太多记忆最多调取3个左右记忆
{memory_str}
观察聊天内容和已经总结的记忆,思考是否有新内容需要总结成记忆,如果有,就输出 true否则输出 false
如果当前聊天记录的内容已经被总结千万不要总结新记忆输出false
如果已经总结的记忆包含了当前聊天记录的内容千万不要总结新记忆输出false
如果已经总结的记忆摘要,包含了当前聊天记录的内容千万不要总结新记忆输出false
如果有相近的记忆请合并记忆输出merge_memory格式为[["id1", "id2"], ["id3", "id4"],...]你可以进行多组合并但是每组合并只能有两个记忆id不要输出其他内容
请根据聊天内容选择你需要调取的记忆并考虑是否添加新记忆以JSON格式输出格式如下
```json
{{
"selected_memory_ids": ["id1", "id2", ...],
"new_memory": "true" or "false",
"merge_memory": [["id1", "id2"], ["id3", "id4"],...]
}}
```
"""
Prompt(memory_proces_prompt, "prompt_memory_proces")
class WorkingMemoryProcessor(BaseProcessor):
log_prefix = "工作记忆"
def __init__(self, subheartflow_id: str):
super().__init__()
self.subheartflow_id = subheartflow_id
self.llm_model = LLMRequest(
model=global_config.llm_sub_heartflow,
temperature=global_config.llm_sub_heartflow["temp"],
max_tokens=800,
request_type="working_memory",
)
name = chat_manager.get_stream_name(self.subheartflow_id)
self.log_prefix = f"[{name}] "
async def process_info(
self, observations: Optional[List[Observation]] = None, running_memorys: Optional[List[Dict]] = None, *infos
) -> List[InfoBase]:
"""处理信息对象
Args:
*infos: 可变数量的InfoBase类型的信息对象
Returns:
List[InfoBase]: 处理后的结构化信息列表
"""
working_memory = None
chat_info = ""
try:
for observation in observations:
if isinstance(observation, WorkingMemoryObservation):
working_memory = observation.get_observe_info()
working_memory_obs = observation
if isinstance(observation, ChattingObservation):
chat_info = observation.get_observe_info()
# chat_info_truncate = observation.talking_message_str_truncate
if not working_memory:
logger.warning(f"{self.log_prefix} 没有找到工作记忆对象")
mind_info = MindInfo()
return [mind_info]
except Exception as e:
logger.error(f"{self.log_prefix} 处理观察时出错: {e}")
logger.error(traceback.format_exc())
return []
all_memory = working_memory.get_all_memories()
memory_prompts = []
for memory in all_memory:
memory_content = memory.data
memory_summary = memory.summary
memory_id = memory.id
memory_brief = memory_summary.get("brief")
memory_detailed = memory_summary.get("detailed")
memory_keypoints = memory_summary.get("keypoints")
memory_events = memory_summary.get("events")
memory_single_prompt = f"记忆id:{memory_id},记忆摘要:{memory_brief}\n"
memory_prompts.append(memory_single_prompt)
memory_choose_str = "".join(memory_prompts)
# 使用提示模板进行处理
prompt = (await global_prompt_manager.get_prompt_async("prompt_memory_proces")).format(
bot_name=global_config.BOT_NICKNAME,
time_now=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
chat_observe_info=chat_info,
memory_str=memory_choose_str
)
# 调用LLM处理记忆
content = ""
try:
logger.debug(f"{self.log_prefix} 处理工作记忆的prompt: {prompt}")
content, _ = await self.llm_model.generate_response_async(prompt=prompt)
if not content:
logger.warning(f"{self.log_prefix} LLM返回空结果处理工作记忆失败。")
except Exception as e:
logger.error(f"{self.log_prefix} 执行LLM请求或处理响应时出错: {e}")
logger.error(traceback.format_exc())
# 解析LLM返回的JSON
try:
result = repair_json(content)
if isinstance(result, str):
result = json.loads(result)
if not isinstance(result, dict):
logger.error(f"{self.log_prefix} 解析LLM返回的JSON失败结果不是字典类型: {type(result)}")
return []
selected_memory_ids = result.get("selected_memory_ids", [])
new_memory = result.get("new_memory", "")
merge_memory = result.get("merge_memory", [])
except Exception as e:
logger.error(f"{self.log_prefix} 解析LLM返回的JSON失败: {e}")
logger.error(traceback.format_exc())
return []
logger.debug(f"{self.log_prefix} 解析LLM返回的JSON成功: {result}")
# 根据selected_memory_ids调取记忆
memory_str = ""
if selected_memory_ids:
for memory_id in selected_memory_ids:
memory = await working_memory.retrieve_memory(memory_id)
if memory:
memory_content = memory.data
memory_summary = memory.summary
memory_id = memory.id
memory_brief = memory_summary.get("brief")
memory_detailed = memory_summary.get("detailed")
memory_keypoints = memory_summary.get("keypoints")
memory_events = memory_summary.get("events")
for keypoint in memory_keypoints:
memory_str += f"记忆要点:{keypoint}\n"
for event in memory_events:
memory_str += f"记忆事件:{event}\n"
# memory_str += f"记忆摘要:{memory_detailed}\n"
# memory_str += f"记忆主题:{memory_brief}\n"
working_memory_info = WorkingMemoryInfo()
if memory_str:
working_memory_info.add_working_memory(memory_str)
logger.debug(f"{self.log_prefix} 取得工作记忆: {memory_str}")
else:
logger.warning(f"{self.log_prefix} 没有找到工作记忆")
# 根据聊天内容添加新记忆
if new_memory:
# 使用异步方式添加新记忆,不阻塞主流程
logger.debug(f"{self.log_prefix} {new_memory}新记忆: ")
asyncio.create_task(self.add_memory_async(working_memory, chat_info))
if merge_memory:
for merge_pairs in merge_memory:
memory1 = await working_memory.retrieve_memory(merge_pairs[0])
memory2 = await working_memory.retrieve_memory(merge_pairs[1])
if memory1 and memory2:
memory_str = f"记忆id:{memory1.id},记忆摘要:{memory1.summary.get('brief')}\n"
memory_str += f"记忆id:{memory2.id},记忆摘要:{memory2.summary.get('brief')}\n"
asyncio.create_task(self.merge_memory_async(working_memory, merge_pairs[0], merge_pairs[1]))
return [working_memory_info]
async def add_memory_async(self, working_memory: WorkingMemory, content: str):
"""异步添加记忆,不阻塞主流程
Args:
working_memory: 工作记忆对象
content: 记忆内容
"""
try:
await working_memory.add_memory(content=content, from_source="chat_text")
logger.debug(f"{self.log_prefix} 异步添加新记忆成功: {content[:30]}...")
except Exception as e:
logger.error(f"{self.log_prefix} 异步添加新记忆失败: {e}")
logger.error(traceback.format_exc())
async def merge_memory_async(self, working_memory: WorkingMemory, memory_id1: str, memory_id2: str):
"""异步合并记忆,不阻塞主流程
Args:
working_memory: 工作记忆对象
memory_str: 记忆内容
"""
try:
merged_memory = await working_memory.merge_memory(memory_id1, memory_id2)
logger.debug(f"{self.log_prefix} 异步合并记忆成功: {memory_id1}{memory_id2}...")
logger.debug(f"{self.log_prefix} 合并后的记忆梗概: {merged_memory.summary.get('brief')}")
logger.debug(f"{self.log_prefix} 合并后的记忆详情: {merged_memory.summary.get('detailed')}")
logger.debug(f"{self.log_prefix} 合并后的记忆要点: {merged_memory.summary.get('keypoints')}")
logger.debug(f"{self.log_prefix} 合并后的记忆事件: {merged_memory.summary.get('events')}")
except Exception as e:
logger.error(f"{self.log_prefix} 异步合并记忆失败: {e}")
logger.error(traceback.format_exc())
init_prompt()

View File

@@ -1,5 +1,5 @@
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.heart_flow.observation.working_observation import WorkingObservation
from src.chat.heart_flow.observation.structure_observation import StructureObservation
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
from src.chat.models.utils_model import LLMRequest
from src.config.config import global_config
@@ -53,7 +53,7 @@ class MemoryActivator:
for observation in observations:
if isinstance(observation, ChattingObservation):
obs_info_text += observation.get_observe_info()
elif isinstance(observation, WorkingObservation):
elif isinstance(observation, StructureObservation):
working_info = observation.get_observe_info()
for working_info_item in working_info:
obs_info_text += f"{working_info_item['type']}: {working_info_item['content']}\n"

View File

@@ -77,10 +77,10 @@ class ActionManager:
if is_default:
self._default_actions[action_name] = action_info
logger.info(f"所有注册动作: {list(self._registered_actions.keys())}")
logger.info(f"默认动作: {list(self._default_actions.keys())}")
for action_name, action_info in self._default_actions.items():
logger.info(f"动作名称: {action_name}, 动作信息: {action_info}")
# logger.info(f"所有注册动作: {list(self._registered_actions.keys())}")
# logger.info(f"默认动作: {list(self._default_actions.keys())}")
# for action_name, action_info in self._default_actions.items():
# logger.info(f"动作名称: {action_name}, 动作信息: {action_info}")
except Exception as e:
logger.error(f"加载已注册动作失败: {e}")

View File

@@ -24,13 +24,13 @@ class ReplyAction(BaseAction):
action_description: str = "表达想法,可以只包含文本、表情或两者都有"
action_parameters: dict[str:str] = {
"text": "你想要表达的内容(可选)",
"emojis": "描述当前使用表情包的场景(可选)",
"emojis": "描述当前使用表情包的场景,一段话描述(可选)",
"target": "你想要回复的原始文本内容(非必须,仅文本,不包含发送者)(可选)",
}
action_require: list[str] = [
"有实质性内容需要表达",
"有人提到你,但你还没有回应他",
"在合适的时候添加表情(不要总是添加)",
"在合适的时候添加表情(不要总是添加),表情描述要详细,描述当前场景,一段话描述",
"如果你有明确的,要回复特定某人的某句话或者你想回复较早的消息请在target中指定那句话的原始文本",
"一次只回复一个人,一次只回复一个话题,突出重点",
"如果是自己发的消息想继续,需自然衔接",

View File

@@ -24,7 +24,8 @@ def init_prompt():
Prompt(
"""{extra_info_block}
的名字是{bot_name},{prompt_personality}{chat_context_description}需要基于以下信息决定如何参与对话
你需要基于以下信息决定如何参与对话
这些信息可能会有冲突请你整合这些信息并选择一个最合适的action
{chat_content_block}
{mind_info_block}
@@ -92,7 +93,7 @@ class ActionPlanner:
extra_info: list[str] = []
for info in all_plan_info:
if isinstance(info, ObsInfo):
logger.debug(f"{self.log_prefix} 观察信息: {info}")
# logger.debug(f"{self.log_prefix} 观察信息: {info}")
observed_messages = info.get_talking_message()
observed_messages_str = info.get_talking_message_str_truncate()
chat_type = info.get_chat_type()
@@ -101,15 +102,16 @@ class ActionPlanner:
else:
is_group_chat = False
elif isinstance(info, MindInfo):
logger.debug(f"{self.log_prefix} 思维信息: {info}")
# logger.debug(f"{self.log_prefix} 思维信息: {info}")
current_mind = info.get_current_mind()
elif isinstance(info, CycleInfo):
logger.debug(f"{self.log_prefix} 循环信息: {info}")
# logger.debug(f"{self.log_prefix} 循环信息: {info}")
cycle_info = info.get_observe_info()
elif isinstance(info, StructuredInfo):
logger.debug(f"{self.log_prefix} 结构化信息: {info}")
# logger.debug(f"{self.log_prefix} 结构化信息: {info}")
structured_info = info.get_data()
else:
logger.debug(f"{self.log_prefix} 其他信息: {info}")
extra_info.append(info.get_processed_info())
current_available_actions = self.action_manager.get_using_actions()

View File

@@ -0,0 +1,119 @@
from typing import Dict, Any, Type, TypeVar, Generic, List, Optional, Callable, Set, Tuple
import time
import uuid
import traceback
import random
import string
from json_repair import repair_json
from rich.traceback import install
from src.common.logger_manager import get_logger
from src.chat.models.utils_model import LLMRequest
from src.config.config import global_config
class MemoryItem:
"""记忆项类,用于存储单个记忆的所有相关信息"""
def __init__(self, data: Any, from_source: str = "", tags: Optional[List[str]] = None):
"""
初始化记忆项
Args:
data: 记忆数据
from_source: 数据来源
tags: 数据标签列表
"""
# 生成可读ID时间戳_随机字符串
timestamp = int(time.time())
random_str = ''.join(random.choices(string.ascii_lowercase + string.digits, k=2))
self.id = f"{timestamp}_{random_str}"
self.data = data
self.data_type = type(data)
self.from_source = from_source
self.tags = set(tags) if tags else set()
self.timestamp = time.time()
# 修改summary的结构说明用于存储可能的总结信息
# summary结构{
# "brief": "记忆内容主题",
# "detailed": "记忆内容概括",
# "keypoints": ["关键概念1", "关键概念2"],
# "events": ["事件1", "事件2"]
# }
self.summary = None
# 记忆精简次数
self.compress_count = 0
# 记忆提取次数
self.retrieval_count = 0
# 记忆强度 (初始为10)
self.memory_strength = 10.0
# 记忆操作历史记录
# 格式: [(操作类型, 时间戳, 当时精简次数, 当时强度), ...]
self.history = [("create", self.timestamp, self.compress_count, self.memory_strength)]
def add_tag(self, tag: str) -> None:
"""添加标签"""
self.tags.add(tag)
def remove_tag(self, tag: str) -> None:
"""移除标签"""
if tag in self.tags:
self.tags.remove(tag)
def has_tag(self, tag: str) -> bool:
"""检查是否有特定标签"""
return tag in self.tags
def has_all_tags(self, tags: List[str]) -> bool:
"""检查是否有所有指定的标签"""
return all(tag in self.tags for tag in tags)
def matches_source(self, source: str) -> bool:
"""检查来源是否匹配"""
return self.from_source == source
def set_summary(self, summary: Dict[str, Any]) -> None:
"""设置总结信息"""
self.summary = summary
def increase_strength(self, amount: float) -> None:
"""增加记忆强度"""
self.memory_strength = min(10.0, self.memory_strength + amount)
# 记录操作历史
self.record_operation("strengthen")
def decrease_strength(self, amount: float) -> None:
"""减少记忆强度"""
self.memory_strength = max(0.1, self.memory_strength - amount)
# 记录操作历史
self.record_operation("weaken")
def increase_compress_count(self) -> None:
"""增加精简次数并减弱记忆强度"""
self.compress_count += 1
# 记录操作历史
self.record_operation("compress")
def record_retrieval(self) -> None:
"""记录记忆被提取的情况"""
self.retrieval_count += 1
# 提取后强度翻倍
self.memory_strength = min(10.0, self.memory_strength * 2)
# 记录操作历史
self.record_operation("retrieval")
def record_operation(self, operation_type: str) -> None:
"""记录操作历史"""
current_time = time.time()
self.history.append((operation_type, current_time, self.compress_count, self.memory_strength))
def to_tuple(self) -> Tuple[Any, str, Set[str], float, str]:
"""转换为元组格式(为了兼容性)"""
return (self.data, self.from_source, self.tags, self.timestamp, self.id)
def is_memory_valid(self) -> bool:
"""检查记忆是否有效强度是否大于等于1"""
return self.memory_strength >= 1.0

View File

@@ -0,0 +1,798 @@
from typing import Dict, Any, Type, TypeVar, Generic, List, Optional, Callable, Set, Tuple
import time
import uuid
import traceback
from json_repair import repair_json
from rich.traceback import install
from src.common.logger_manager import get_logger
from src.chat.models.utils_model import LLMRequest
from src.config.config import global_config
from src.chat.focus_chat.working_memory.memory_item import MemoryItem
import json # 添加json模块导入
install(extra_lines=3)
logger = get_logger("working_memory")
T = TypeVar('T')
class MemoryManager:
def __init__(self, chat_id: str):
"""
初始化工作记忆
Args:
chat_id: 关联的聊天ID用于标识该工作记忆属于哪个聊天
"""
# 关联的聊天ID
self._chat_id = chat_id
# 主存储: 数据类型 -> 记忆项列表
self._memory: Dict[Type, List[MemoryItem]] = {}
# ID到记忆项的映射
self._id_map: Dict[str, MemoryItem] = {}
self.llm_summarizer = LLMRequest(
model=global_config.llm_summary,
temperature=0.3,
max_tokens=512,
request_type="memory_summarization"
)
@property
def chat_id(self) -> str:
"""获取关联的聊天ID"""
return self._chat_id
@chat_id.setter
def chat_id(self, value: str):
"""设置关联的聊天ID"""
self._chat_id = value
def push_item(self, memory_item: MemoryItem) -> str:
"""
推送一个已创建的记忆项到工作记忆中
Args:
memory_item: 要存储的记忆项
Returns:
记忆项的ID
"""
data_type = memory_item.data_type
# 确保存在该类型的存储列表
if data_type not in self._memory:
self._memory[data_type] = []
# 添加到内存和ID映射
self._memory[data_type].append(memory_item)
self._id_map[memory_item.id] = memory_item
return memory_item.id
async def push_with_summary(self, data: T, from_source: str = "", tags: Optional[List[str]] = None) -> MemoryItem:
"""
推送一段有类型的信息到工作记忆中,并自动生成总结
Args:
data: 要存储的数据
from_source: 数据来源
tags: 数据标签列表
Returns:
包含原始数据和总结信息的字典
"""
# 如果数据是字符串类型,则先进行总结
if isinstance(data, str):
# 先生成总结
summary = await self.summarize_memory_item(data)
# 准备标签
memory_tags = list(tags) if tags else []
# 创建记忆项
memory_item = MemoryItem(data, from_source, memory_tags)
# 将总结信息保存到记忆项中
memory_item.set_summary(summary)
# 推送记忆项
self.push_item(memory_item)
return memory_item
else:
# 非字符串类型,直接创建并推送记忆项
memory_item = MemoryItem(data, from_source, tags)
self.push_item(memory_item)
return memory_item
def get_by_id(self, memory_id: str) -> Optional[MemoryItem]:
"""
通过ID获取记忆项
Args:
memory_id: 记忆项ID
Returns:
找到的记忆项如果不存在则返回None
"""
memory_item = self._id_map.get(memory_id)
if memory_item:
# 检查记忆强度如果小于1则删除
if not memory_item.is_memory_valid():
print(f"记忆 {memory_id} 强度过低 ({memory_item.memory_strength}),已自动移除")
self.delete(memory_id)
return None
return memory_item
def get_all_items(self) -> List[MemoryItem]:
"""获取所有记忆项"""
return list(self._id_map.values())
def find_items(self,
data_type: Optional[Type] = None,
source: Optional[str] = None,
tags: Optional[List[str]] = None,
start_time: Optional[float] = None,
end_time: Optional[float] = None,
memory_id: Optional[str] = None,
limit: Optional[int] = None,
newest_first: bool = False,
min_strength: float = 0.0) -> List[MemoryItem]:
"""
按条件查找记忆项
Args:
data_type: 要查找的数据类型
source: 数据来源
tags: 必须包含的标签列表
start_time: 开始时间戳
end_time: 结束时间戳
memory_id: 特定记忆项ID
limit: 返回结果的最大数量
newest_first: 是否按最新优先排序
min_strength: 最小记忆强度
Returns:
符合条件的记忆项列表
"""
# 如果提供了特定ID直接查找
if memory_id:
item = self.get_by_id(memory_id)
return [item] if item else []
results = []
# 确定要搜索的类型列表
types_to_search = [data_type] if data_type else list(self._memory.keys())
# 对每个类型进行搜索
for typ in types_to_search:
if typ not in self._memory:
continue
# 获取该类型的所有项目
items = self._memory[typ]
# 如果需要最新优先,则反转遍历顺序
if newest_first:
items_to_check = list(reversed(items))
else:
items_to_check = items
# 遍历项目
for item in items_to_check:
# 检查来源是否匹配
if source is not None and not item.matches_source(source):
continue
# 检查标签是否匹配
if tags is not None and not item.has_all_tags(tags):
continue
# 检查时间范围
if start_time is not None and item.timestamp < start_time:
continue
if end_time is not None and item.timestamp > end_time:
continue
# 检查记忆强度
if min_strength > 0 and item.memory_strength < min_strength:
continue
# 所有条件都满足,添加到结果中
results.append(item)
# 如果达到限制数量,提前返回
if limit is not None and len(results) >= limit:
return results
return results
async def summarize_memory_item(self, content: str) -> Dict[str, Any]:
"""
使用LLM总结记忆项
Args:
content: 需要总结的内容
Returns:
包含总结、概括、关键概念和事件的字典
"""
prompt = f"""请对以下内容进行总结,总结成记忆,输出四部分:
1. 记忆内容主题精简20字以内让用户可以一眼看出记忆内容是什么
2. 记忆内容概括200字以内让用户可以了解记忆内容的大致内容
3. 关键概念和知识keypoints多条提取关键的概念、知识点和关键词要包含对概念的解释
4. 事件描述events多条描述谁人物在什么时候时间做了什么事件
内容:
{content}
请按以下JSON格式输出
```json
{{
"brief": "记忆内容主题20字以内",
"detailed": "记忆内容概括200字以内",
"keypoints": [
"概念1解释",
"概念2解释",
...
],
"events": [
"事件1谁在什么时候做了什么",
"事件2谁在什么时候做了什么",
...
]
}}
```
请确保输出是有效的JSON格式不要添加任何额外的说明或解释。
"""
default_summary = {
"brief": "主题未知的记忆",
"detailed": "大致内容未知的记忆",
"keypoints": ["未知的概念"],
"events": ["未知的事件"]
}
try:
# 调用LLM生成总结
response, _ = await self.llm_summarizer.generate_response_async(prompt)
# 使用repair_json解析响应
try:
# 使用repair_json修复JSON格式
fixed_json_string = repair_json(response)
# 如果repair_json返回的是字符串需要解析为Python对象
if isinstance(fixed_json_string, str):
try:
json_result = json.loads(fixed_json_string)
except json.JSONDecodeError as decode_error:
logger.error(f"JSON解析错误: {str(decode_error)}")
return default_summary
else:
# 如果repair_json直接返回了字典对象直接使用
json_result = fixed_json_string
# 进行额外的类型检查
if not isinstance(json_result, dict):
logger.error(f"修复后的JSON不是字典类型: {type(json_result)}")
return default_summary
# 确保所有必要字段都存在且类型正确
if "brief" not in json_result or not isinstance(json_result["brief"], str):
json_result["brief"] = "主题未知的记忆"
if "detailed" not in json_result or not isinstance(json_result["detailed"], str):
json_result["detailed"] = "大致内容未知的记忆"
# 处理关键概念
if "keypoints" not in json_result or not isinstance(json_result["keypoints"], list):
json_result["keypoints"] = ["未知的概念"]
else:
# 确保keypoints中的每个项目都是字符串
json_result["keypoints"] = [
str(point) for point in json_result["keypoints"]
if point is not None
]
if not json_result["keypoints"]:
json_result["keypoints"] = ["未知的概念"]
# 处理事件
if "events" not in json_result or not isinstance(json_result["events"], list):
json_result["events"] = ["未知的事件"]
else:
# 确保events中的每个项目都是字符串
json_result["events"] = [
str(event) for event in json_result["events"]
if event is not None
]
if not json_result["events"]:
json_result["events"] = ["未知的事件"]
# 兼容旧版将keypoints和events合并到key_points中
json_result["key_points"] = json_result["keypoints"] + json_result["events"]
return json_result
except Exception as json_error:
logger.error(f"JSON处理失败: {str(json_error)},将使用默认摘要")
# 返回默认结构
return default_summary
except Exception as e:
# 出错时返回简单的结构
logger.error(f"生成总结时出错: {str(e)}")
return default_summary
async def refine_memory(self,
memory_id: str,
requirements: str = "") -> Dict[str, Any]:
"""
对记忆进行精简操作,根据要求修改要点、总结和概括
Args:
memory_id: 记忆ID
requirements: 精简要求,描述如何修改记忆,包括可能需要移除的要点
Returns:
修改后的记忆总结字典
"""
# 获取指定ID的记忆项
logger.info(f"精简记忆: {memory_id}")
memory_item = self.get_by_id(memory_id)
if not memory_item:
raise ValueError(f"未找到ID为{memory_id}的记忆项")
# 增加精简次数
memory_item.increase_compress_count()
summary = memory_item.summary
# 使用LLM根据要求对总结、概括和要点进行精简修改
prompt = f"""
请根据以下要求,对记忆内容的主题、概括、关键概念和事件进行精简,模拟记忆的遗忘过程:
要求:{requirements}
你可以随机对关键概念和事件进行压缩,模糊或者丢弃,修改后,同样修改主题和概括
目前主题:{summary["brief"]}
目前概括:{summary["detailed"]}
目前关键概念:
{chr(10).join([f"- {point}" for point in summary.get("keypoints", [])])}
目前事件:
{chr(10).join([f"- {point}" for point in summary.get("events", [])])}
请生成修改后的主题、概括、关键概念和事件,遵循以下格式:
```json
{{
"brief": "修改后的主题20字以内",
"detailed": "修改后的概括200字以内",
"keypoints": [
"修改后的概念1解释",
"修改后的概念2解释"
],
"events": [
"修改后的事件1谁在什么时候做了什么",
"修改后的事件2谁在什么时候做了什么"
]
}}
```
请确保输出是有效的JSON格式不要添加任何额外的说明或解释。
"""
# 检查summary中是否有旧版结构转换为新版结构
if "keypoints" not in summary and "events" not in summary and "key_points" in summary:
# 尝试区分key_points中的keypoints和events
# 简单地将前半部分视为keypoints后半部分视为events
key_points = summary.get("key_points", [])
halfway = len(key_points) // 2
summary["keypoints"] = key_points[:halfway] or ["未知的概念"]
summary["events"] = key_points[halfway:] or ["未知的事件"]
# 定义默认的精简结果
default_refined = {
"brief": summary["brief"],
"detailed": summary["detailed"],
"keypoints": summary.get("keypoints", ["未知的概念"])[:1], # 默认只保留第一个关键概念
"events": summary.get("events", ["未知的事件"])[:1] # 默认只保留第一个事件
}
try:
# 调用LLM修改总结、概括和要点
response, _ = await self.llm_summarizer.generate_response_async(prompt)
logger.info(f"精简记忆响应: {response}")
# 使用repair_json处理响应
try:
# 修复JSON格式
fixed_json_string = repair_json(response)
# 将修复后的字符串解析为Python对象
if isinstance(fixed_json_string, str):
try:
refined_data = json.loads(fixed_json_string)
except json.JSONDecodeError as decode_error:
logger.error(f"JSON解析错误: {str(decode_error)}")
refined_data = default_refined
else:
# 如果repair_json直接返回了字典对象直接使用
refined_data = fixed_json_string
# 确保是字典类型
if not isinstance(refined_data, dict):
logger.error(f"修复后的JSON不是字典类型: {type(refined_data)}")
refined_data = default_refined
# 更新总结、概括
summary["brief"] = refined_data.get("brief", "主题未知的记忆")
summary["detailed"] = refined_data.get("detailed", "大致内容未知的记忆")
# 更新关键概念
keypoints = refined_data.get("keypoints", [])
if isinstance(keypoints, list) and keypoints:
# 确保所有关键概念都是字符串
summary["keypoints"] = [str(point) for point in keypoints if point is not None]
else:
# 如果keypoints不是列表或为空使用默认值
summary["keypoints"] = ["主要概念已遗忘"]
# 更新事件
events = refined_data.get("events", [])
if isinstance(events, list) and events:
# 确保所有事件都是字符串
summary["events"] = [str(event) for event in events if event is not None]
else:
# 如果events不是列表或为空使用默认值
summary["events"] = ["事件细节已遗忘"]
# 兼容旧版维护key_points
summary["key_points"] = summary["keypoints"] + summary["events"]
except Exception as e:
logger.error(f"精简记忆出错: {str(e)}")
traceback.print_exc()
# 出错时使用简化的默认精简
summary["brief"] = summary["brief"] + " (已简化)"
summary["keypoints"] = summary.get("keypoints", ["未知的概念"])[:1]
summary["events"] = summary.get("events", ["未知的事件"])[:1]
summary["key_points"] = summary["keypoints"] + summary["events"]
except Exception as e:
logger.error(f"精简记忆调用LLM出错: {str(e)}")
traceback.print_exc()
# 更新原记忆项的总结
memory_item.set_summary(summary)
return memory_item
def decay_memory(self, memory_id: str, decay_factor: float = 0.8) -> bool:
"""
使单个记忆衰减
Args:
memory_id: 记忆ID
decay_factor: 衰减因子(0-1之间)
Returns:
是否成功衰减
"""
memory_item = self.get_by_id(memory_id)
if not memory_item:
return False
# 计算衰减量(当前强度 * (1-衰减因子)
old_strength = memory_item.memory_strength
decay_amount = old_strength * (1 - decay_factor)
# 更新强度
memory_item.memory_strength = decay_amount
return True
def delete(self, memory_id: str) -> bool:
"""
删除指定ID的记忆项
Args:
memory_id: 要删除的记忆项ID
Returns:
是否成功删除
"""
if memory_id not in self._id_map:
return False
# 获取要删除的项
item = self._id_map[memory_id]
# 从内存中删除
data_type = item.data_type
if data_type in self._memory:
self._memory[data_type] = [i for i in self._memory[data_type] if i.id != memory_id]
# 从ID映射中删除
del self._id_map[memory_id]
return True
def clear(self, data_type: Optional[Type] = None) -> None:
"""
清除记忆中的数据
Args:
data_type: 要清除的数据类型如果为None则清除所有数据
"""
if data_type is None:
# 清除所有数据
self._memory.clear()
self._id_map.clear()
elif data_type in self._memory:
# 清除指定类型的数据
for item in self._memory[data_type]:
if item.id in self._id_map:
del self._id_map[item.id]
del self._memory[data_type]
async def merge_memories(self, memory_id1: str, memory_id2: str, reason: str, delete_originals: bool = True) -> MemoryItem:
"""
合并两个记忆项
Args:
memory_id1: 第一个记忆项ID
memory_id2: 第二个记忆项ID
reason: 合并原因
delete_originals: 是否删除原始记忆默认为True
Returns:
包含合并后的记忆信息的字典
"""
# 获取两个记忆项
memory_item1 = self.get_by_id(memory_id1)
memory_item2 = self.get_by_id(memory_id2)
if not memory_item1 or not memory_item2:
raise ValueError("无法找到指定的记忆项")
content1 = memory_item1.data
content2 = memory_item2.data
# 获取记忆的摘要信息(如果有)
summary1 = memory_item1.summary
summary2 = memory_item2.summary
# 构建合并提示
prompt = f"""
请根据以下原因,将两段记忆内容有机合并成一段新的记忆内容。
合并时保留两段记忆的重要信息,避免重复,确保生成的内容连贯、自然。
合并原因:{reason}
"""
# 如果有摘要信息,添加到提示中
if summary1:
prompt += f"记忆1主题{summary1['brief']}\n"
prompt += f"记忆1概括{summary1['detailed']}\n"
if "keypoints" in summary1:
prompt += f"记忆1关键概念\n" + "\n".join([f"- {point}" for point in summary1['keypoints']]) + "\n\n"
if "events" in summary1:
prompt += f"记忆1事件\n" + "\n".join([f"- {point}" for point in summary1['events']]) + "\n\n"
elif "key_points" in summary1:
prompt += f"记忆1要点\n" + "\n".join([f"- {point}" for point in summary1['key_points']]) + "\n\n"
if summary2:
prompt += f"记忆2主题{summary2['brief']}\n"
prompt += f"记忆2概括{summary2['detailed']}\n"
if "keypoints" in summary2:
prompt += f"记忆2关键概念\n" + "\n".join([f"- {point}" for point in summary2['keypoints']]) + "\n\n"
if "events" in summary2:
prompt += f"记忆2事件\n" + "\n".join([f"- {point}" for point in summary2['events']]) + "\n\n"
elif "key_points" in summary2:
prompt += f"记忆2要点\n" + "\n".join([f"- {point}" for point in summary2['key_points']]) + "\n\n"
# 添加记忆原始内容
prompt += f"""
记忆1原始内容
{content1}
记忆2原始内容
{content2}
请按以下JSON格式输出合并结果
```json
{{
"content": "合并后的记忆内容文本(尽可能保留原信息,但去除重复)",
"brief": "合并后的主题20字以内",
"detailed": "合并后的概括200字以内",
"keypoints": [
"合并后的概念1解释",
"合并后的概念2解释",
"合并后的概念3解释"
],
"events": [
"合并后的事件1谁在什么时候做了什么",
"合并后的事件2谁在什么时候做了什么"
]
}}
```
请确保输出是有效的JSON格式不要添加任何额外的说明或解释。
"""
# 默认合并结果
default_merged = {
"content": f"{content1}\n\n{content2}",
"brief": f"合并:{summary1['brief']} + {summary2['brief']}",
"detailed": f"合并了两个记忆:{summary1['detailed']} 以及 {summary2['detailed']}",
"keypoints": [],
"events": []
}
# 合并旧版key_points
if "key_points" in summary1:
default_merged["keypoints"].extend(summary1.get("keypoints", []))
default_merged["events"].extend(summary1.get("events", []))
# 如果没有新的结构,尝试从旧结构分离
if not default_merged["keypoints"] and not default_merged["events"] and "key_points" in summary1:
key_points = summary1["key_points"]
halfway = len(key_points) // 2
default_merged["keypoints"].extend(key_points[:halfway])
default_merged["events"].extend(key_points[halfway:])
if "key_points" in summary2:
default_merged["keypoints"].extend(summary2.get("keypoints", []))
default_merged["events"].extend(summary2.get("events", []))
# 如果没有新的结构,尝试从旧结构分离
if not default_merged["keypoints"] and not default_merged["events"] and "key_points" in summary2:
key_points = summary2["key_points"]
halfway = len(key_points) // 2
default_merged["keypoints"].extend(key_points[:halfway])
default_merged["events"].extend(key_points[halfway:])
# 确保列表不为空
if not default_merged["keypoints"]:
default_merged["keypoints"] = ["合并的关键概念"]
if not default_merged["events"]:
default_merged["events"] = ["合并的事件"]
# 添加key_points兼容
default_merged["key_points"] = default_merged["keypoints"] + default_merged["events"]
try:
# 调用LLM合并记忆
response, _ = await self.llm_summarizer.generate_response_async(prompt)
# 处理LLM返回的合并结果
try:
# 修复JSON格式
fixed_json_string = repair_json(response)
# 将修复后的字符串解析为Python对象
if isinstance(fixed_json_string, str):
try:
merged_data = json.loads(fixed_json_string)
except json.JSONDecodeError as decode_error:
logger.error(f"JSON解析错误: {str(decode_error)}")
merged_data = default_merged
else:
# 如果repair_json直接返回了字典对象直接使用
merged_data = fixed_json_string
# 确保是字典类型
if not isinstance(merged_data, dict):
logger.error(f"修复后的JSON不是字典类型: {type(merged_data)}")
merged_data = default_merged
# 确保所有必要字段都存在且类型正确
if "content" not in merged_data or not isinstance(merged_data["content"], str):
merged_data["content"] = default_merged["content"]
if "brief" not in merged_data or not isinstance(merged_data["brief"], str):
merged_data["brief"] = default_merged["brief"]
if "detailed" not in merged_data or not isinstance(merged_data["detailed"], str):
merged_data["detailed"] = default_merged["detailed"]
# 处理关键概念
if "keypoints" not in merged_data or not isinstance(merged_data["keypoints"], list):
merged_data["keypoints"] = default_merged["keypoints"]
else:
# 确保keypoints中的每个项目都是字符串
merged_data["keypoints"] = [
str(point) for point in merged_data["keypoints"]
if point is not None
]
if not merged_data["keypoints"]:
merged_data["keypoints"] = ["合并的关键概念"]
# 处理事件
if "events" not in merged_data or not isinstance(merged_data["events"], list):
merged_data["events"] = default_merged["events"]
else:
# 确保events中的每个项目都是字符串
merged_data["events"] = [
str(event) for event in merged_data["events"]
if event is not None
]
if not merged_data["events"]:
merged_data["events"] = ["合并的事件"]
# 添加key_points兼容
merged_data["key_points"] = merged_data["keypoints"] + merged_data["events"]
except Exception as e:
logger.error(f"合并记忆时处理JSON出错: {str(e)}")
traceback.print_exc()
merged_data = default_merged
except Exception as e:
logger.error(f"合并记忆调用LLM出错: {str(e)}")
traceback.print_exc()
merged_data = default_merged
# 创建新的记忆项
# 合并记忆项的标签
merged_tags = memory_item1.tags.union(memory_item2.tags)
# 取两个记忆项中更强的来源
merged_source = memory_item1.from_source if memory_item1.memory_strength >= memory_item2.memory_strength else memory_item2.from_source
# 创建新的记忆项
merged_memory = MemoryItem(
data=merged_data["content"],
from_source=merged_source,
tags=list(merged_tags)
)
# 设置合并后的摘要
summary = {
"brief": merged_data["brief"],
"detailed": merged_data["detailed"],
"keypoints": merged_data["keypoints"],
"events": merged_data["events"],
"key_points": merged_data["key_points"]
}
merged_memory.set_summary(summary)
# 记忆强度取两者最大值
merged_memory.memory_strength = max(memory_item1.memory_strength, memory_item2.memory_strength)
# 添加到存储中
self.push_item(merged_memory)
# 如果需要,删除原始记忆
if delete_originals:
self.delete(memory_id1)
self.delete(memory_id2)
return merged_memory
def delete_earliest_memory(self) -> bool:
"""
删除最早的记忆项
Returns:
是否成功删除
"""
# 获取所有记忆项
all_memories = self.get_all_items()
if not all_memories:
return False
# 按时间戳排序,找到最早的记忆项
earliest_memory = min(all_memories, key=lambda item: item.timestamp)
# 删除最早的记忆项
return self.delete(earliest_memory.id)

View File

@@ -0,0 +1,169 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import asyncio
from typing import List, Dict, Any, Optional
from pathlib import Path
from src.chat.focus_chat.working_memory.working_memory import WorkingMemory
from src.chat.focus_chat.working_memory.memory_item import MemoryItem
from src.common.logger_manager import get_logger
logger = get_logger("memory_loader")
class MemoryFileLoader:
"""从文件加载记忆内容的工具类"""
def __init__(self, working_memory: WorkingMemory):
"""
初始化记忆文件加载器
Args:
working_memory: 工作记忆实例
"""
self.working_memory = working_memory
async def load_from_directory(self,
directory_path: str,
file_pattern: str = "*.txt",
common_tags: List[str] = None,
source_prefix: str = "文件") -> List[MemoryItem]:
"""
从指定目录加载符合模式的文件作为记忆
Args:
directory_path: 目录路径
file_pattern: 文件模式(默认为*.txt
common_tags: 所有记忆共有的标签
source_prefix: 来源前缀
Returns:
加载的记忆项列表
"""
directory = Path(directory_path)
if not directory.exists() or not directory.is_dir():
logger.error(f"目录不存在或不是有效目录: {directory_path}")
return []
# 获取文件列表
files = list(directory.glob(file_pattern))
if not files:
logger.warning(f"在目录 {directory_path} 中没有找到符合 {file_pattern} 的文件")
return []
logger.info(f"在目录 {directory_path} 中找到 {len(files)} 个符合条件的文件")
# 加载文件内容为记忆
loaded_memories = []
for file_path in files:
try:
memory_item = await self._load_single_file(
file_path=str(file_path),
common_tags=common_tags,
source_prefix=source_prefix
)
if memory_item:
loaded_memories.append(memory_item)
logger.info(f"成功加载记忆: {file_path.name}")
except Exception as e:
logger.error(f"加载文件 {file_path} 失败: {str(e)}")
logger.info(f"完成加载,共加载了 {len(loaded_memories)} 个记忆")
return loaded_memories
async def _load_single_file(self,
file_path: str,
common_tags: Optional[List[str]] = None,
source_prefix: str = "文件") -> Optional[MemoryItem]:
"""
加载单个文件作为记忆
Args:
file_path: 文件路径
common_tags: 记忆共有的标签
source_prefix: 来源前缀
Returns:
记忆项加载失败则返回None
"""
try:
# 读取文件内容
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
if not content.strip():
logger.warning(f"文件 {file_path} 内容为空")
return None
# 准备标签和来源
file_name = os.path.basename(file_path)
tags = list(common_tags) if common_tags else []
tags.append(file_name) # 添加文件名作为标签
source = f"{source_prefix}_{file_name}"
# 添加到工作记忆
memory = await self.working_memory.add_memory(
content=content,
from_source=source,
tags=tags
)
return memory
except Exception as e:
logger.error(f"加载文件 {file_path} 失败: {str(e)}")
return None
async def main():
"""示例使用"""
# 初始化工作记忆
chat_id = "demo_chat"
working_memory = WorkingMemory(chat_id=chat_id)
try:
# 初始化加载器
loader = MemoryFileLoader(working_memory)
# 加载当前目录中的txt文件
current_dir = Path(__file__).parent
memories = await loader.load_from_directory(
directory_path=str(current_dir),
file_pattern="*.txt",
common_tags=["测试数据", "自动加载"],
source_prefix="测试文件"
)
# 显示加载结果
print(f"共加载了 {len(memories)} 个记忆")
# 获取并显示所有记忆的概要
all_memories = working_memory.memory_manager.get_all_items()
for memory in all_memories:
print("\n" + "=" * 40)
print(f"记忆ID: {memory.id}")
print(f"来源: {memory.from_source}")
print(f"标签: {', '.join(memory.tags)}")
if memory.summary:
print(f"\n主题: {memory.summary.get('brief', '无主题')}")
print(f"概述: {memory.summary.get('detailed', '无概述')}")
print("\n要点:")
for point in memory.summary.get('key_points', []):
print(f"- {point}")
else:
print("\n无摘要信息")
print("=" * 40)
finally:
# 关闭工作记忆
await working_memory.shutdown()
if __name__ == "__main__":
# 运行示例
asyncio.run(main())

View File

@@ -0,0 +1,92 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import asyncio
import os
import sys
from pathlib import Path
# 添加项目根目录到系统路径
current_dir = Path(__file__).parent
project_root = current_dir.parent.parent.parent.parent.parent
sys.path.insert(0, str(project_root))
from src.chat.focus_chat.working_memory.working_memory import WorkingMemory
async def test_load_memories_from_files():
"""测试从文件加载记忆的功能"""
print("开始测试从文件加载记忆...")
# 初始化工作记忆
chat_id = "test_memory_load"
working_memory = WorkingMemory(chat_id=chat_id, max_memories_per_chat=10, auto_decay_interval=60)
try:
# 获取测试文件列表
test_dir = Path(__file__).parent
test_files = [
os.path.join(test_dir, f)
for f in os.listdir(test_dir)
if f.endswith(".txt")
]
print(f"找到 {len(test_files)} 个测试文件")
# 从每个文件加载记忆
for file_path in test_files:
file_name = os.path.basename(file_path)
print(f"从文件 {file_name} 加载记忆...")
# 读取文件内容
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
# 添加记忆
memory = await working_memory.add_memory(
content=content,
from_source=f"文件_{file_name}",
tags=["测试文件", file_name]
)
print(f"已添加记忆: ID={memory.id}")
if memory.summary:
print(f"记忆概要: {memory.summary.get('brief', '无概要')}")
print(f"记忆要点: {', '.join(memory.summary.get('key_points', ['无要点']))}")
print("-" * 50)
# 获取所有记忆
all_memories = working_memory.memory_manager.get_all_items()
print(f"\n成功加载 {len(all_memories)} 个记忆")
# 测试检索记忆
if all_memories:
print("\n测试检索第一个记忆...")
first_memory = all_memories[0]
retrieved = await working_memory.retrieve_memory(first_memory.id)
if retrieved:
print(f"成功检索记忆: ID={retrieved.id}")
print(f"检索后强度: {retrieved.memory_strength} (初始为10.0)")
print(f"检索次数: {retrieved.retrieval_count}")
else:
print("检索失败")
# 测试记忆衰减
print("\n测试记忆衰减...")
for memory in all_memories:
print(f"记忆 {memory.id} 衰减前强度: {memory.memory_strength}")
await working_memory.decay_all_memories(decay_factor=0.5)
all_memories_after = working_memory.memory_manager.get_all_items()
for memory in all_memories_after:
print(f"记忆 {memory.id} 衰减后强度: {memory.memory_strength}")
finally:
# 关闭工作记忆
await working_memory.shutdown()
print("\n测试完成,已关闭工作记忆")
if __name__ == "__main__":
# 运行测试
asyncio.run(test_load_memories_from_files())

View File

@@ -0,0 +1,197 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import asyncio
import os
import sys
import time
import random
from pathlib import Path
from datetime import datetime
# 添加项目根目录到系统路径
current_dir = Path(__file__).parent
project_root = current_dir.parent.parent.parent.parent.parent
sys.path.insert(0, str(project_root))
from src.chat.focus_chat.working_memory.working_memory import WorkingMemory
from src.chat.focus_chat.working_memory.memory_item import MemoryItem
from src.common.logger_manager import get_logger
logger = get_logger("real_usage_simulation")
class WorkingMemorySimulator:
"""模拟工作记忆的真实使用场景"""
def __init__(self, chat_id="real_usage_test", cycle_interval=20):
"""
初始化模拟器
Args:
chat_id: 聊天ID
cycle_interval: 循环间隔时间(秒)
"""
self.chat_id = chat_id
self.cycle_interval = cycle_interval
self.working_memory = WorkingMemory(chat_id=chat_id, max_memories_per_chat=20, auto_decay_interval=60)
self.cycle_count = 0
self.running = False
# 获取测试文件路径
self.test_files = self._get_test_files()
if not self.test_files:
raise FileNotFoundError("找不到测试文件请确保test目录中有.txt文件")
# 存储所有添加的记忆ID
self.memory_ids = []
async def start(self, total_cycles=5):
"""
开始模拟循环
Args:
total_cycles: 总循环次数设为None表示无限循环
"""
self.running = True
logger.info(f"开始模拟真实使用场景,循环间隔: {self.cycle_interval}")
try:
while self.running and (total_cycles is None or self.cycle_count < total_cycles):
self.cycle_count += 1
logger.info(f"\n===== 开始第 {self.cycle_count} 次循环 =====")
# 执行一次循环
await self._run_one_cycle()
# 如果还有更多循环,则等待
if self.running and (total_cycles is None or self.cycle_count < total_cycles):
wait_time = self.cycle_interval
logger.info(f"等待 {wait_time} 秒后开始下一循环...")
await asyncio.sleep(wait_time)
logger.info(f"模拟完成,共执行了 {self.cycle_count} 次循环")
except KeyboardInterrupt:
logger.info("接收到中断信号,停止模拟")
except Exception as e:
logger.error(f"模拟过程中出错: {str(e)}", exc_info=True)
finally:
# 关闭工作记忆
await self.working_memory.shutdown()
def stop(self):
"""停止模拟循环"""
self.running = False
logger.info("正在停止模拟...")
async def _run_one_cycle(self):
"""运行一次完整循环:先检索记忆,再添加新记忆"""
start_time = time.time()
# 1. 先检索已有记忆(如果有)
await self._retrieve_memories()
# 2. 添加新记忆
await self._add_new_memory()
# 3. 显示工作记忆状态
await self._show_memory_status()
# 计算循环耗时
cycle_duration = time.time() - start_time
logger.info(f"{self.cycle_count} 次循环完成,耗时: {cycle_duration:.2f}")
async def _retrieve_memories(self):
"""检索现有记忆"""
# 如果有已保存的记忆ID随机选择1-3个进行检索
if self.memory_ids:
num_to_retrieve = min(len(self.memory_ids), random.randint(1, 3))
retrieval_ids = random.sample(self.memory_ids, num_to_retrieve)
logger.info(f"正在检索 {num_to_retrieve} 条记忆...")
for memory_id in retrieval_ids:
memory = await self.working_memory.retrieve_memory(memory_id)
if memory:
logger.info(f"成功检索记忆 ID: {memory_id}")
logger.info(f" - 强度: {memory.memory_strength:.2f},检索次数: {memory.retrieval_count}")
if memory.summary:
logger.info(f" - 主题: {memory.summary.get('brief', '无主题')}")
else:
logger.warning(f"记忆 ID: {memory_id} 不存在或已被移除")
# 从ID列表中移除
if memory_id in self.memory_ids:
self.memory_ids.remove(memory_id)
else:
logger.info("当前没有可检索的记忆")
async def _add_new_memory(self):
"""添加新记忆"""
# 随机选择一个测试文件作为记忆内容
file_path = random.choice(self.test_files)
file_name = os.path.basename(file_path)
try:
# 读取文件内容
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
# 添加时间戳,模拟不同内容
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
content_with_timestamp = f"[{timestamp}] {content}"
# 添加记忆
logger.info(f"正在添加新记忆,来源: {file_name}")
memory = await self.working_memory.add_memory(
content=content_with_timestamp,
from_source=f"模拟_{file_name}",
tags=["模拟测试", f"循环{self.cycle_count}", file_name]
)
# 保存记忆ID
self.memory_ids.append(memory.id)
# 显示记忆信息
logger.info(f"已添加新记忆 ID: {memory.id}")
if memory.summary:
logger.info(f"记忆主题: {memory.summary.get('brief', '无主题')}")
logger.info(f"记忆要点: {', '.join(memory.summary.get('key_points', ['无要点'])[:2])}...")
except Exception as e:
logger.error(f"添加记忆失败: {str(e)}")
async def _show_memory_status(self):
"""显示当前工作记忆状态"""
all_memories = self.working_memory.memory_manager.get_all_items()
logger.info(f"\n当前工作记忆状态:")
logger.info(f"记忆总数: {len(all_memories)}")
# 按强度排序
sorted_memories = sorted(all_memories, key=lambda x: x.memory_strength, reverse=True)
logger.info("记忆强度排名 (前5项):")
for i, memory in enumerate(sorted_memories[:5], 1):
logger.info(f"{i}. ID: {memory.id}, 强度: {memory.memory_strength:.2f}, "
f"检索次数: {memory.retrieval_count}, "
f"主题: {memory.summary.get('brief', '无主题') if memory.summary else '无摘要'}")
def _get_test_files(self):
"""获取测试文件列表"""
test_dir = Path(__file__).parent
return [
os.path.join(test_dir, f)
for f in os.listdir(test_dir)
if f.endswith(".txt")
]
async def main():
"""主函数"""
# 创建模拟器
simulator = WorkingMemorySimulator(cycle_interval=20) # 设置20秒的循环间隔
# 设置运行5个循环
await simulator.start(total_cycles=5)
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -0,0 +1,323 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import asyncio
import os
import sys
import time
from pathlib import Path
# 添加项目根目录到系统路径
current_dir = Path(__file__).parent
project_root = current_dir.parent.parent.parent.parent.parent
sys.path.insert(0, str(project_root))
from src.chat.focus_chat.working_memory.working_memory import WorkingMemory
from src.chat.focus_chat.working_memory.test.memory_file_loader import MemoryFileLoader
from src.common.logger_manager import get_logger
logger = get_logger("memory_decay_test")
async def test_manual_decay_until_removal():
"""测试手动衰减直到记忆被自动移除"""
print("\n===== 测试手动衰减直到记忆被自动移除 =====")
# 初始化工作记忆,设置较大的衰减间隔,避免自动衰减影响测试
chat_id = "decay_test_manual"
working_memory = WorkingMemory(chat_id=chat_id, max_memories_per_chat=10, auto_decay_interval=3600)
try:
# 创建加载器并加载测试文件
loader = MemoryFileLoader(working_memory)
test_dir = current_dir
# 加载第一个测试文件作为记忆
memories = await loader.load_from_directory(
directory_path=str(test_dir),
file_pattern="test1.txt", # 只加载test1.txt
common_tags=["测试", "衰减", "自动移除"],
source_prefix="衰减测试"
)
if not memories:
print("未能加载记忆文件,测试结束")
return
# 获取加载的记忆
memory = memories[0]
memory_id = memory.id
print(f"已加载测试记忆ID: {memory_id}")
print(f"初始强度: {memory.memory_strength}")
if memory.summary:
print(f"记忆主题: {memory.summary.get('brief', '无主题')}")
# 执行多次衰减,直到记忆被移除
decay_count = 0
decay_factor = 0.5 # 每次衰减为原来的一半
while True:
# 获取当前记忆
current_memory = working_memory.memory_manager.get_by_id(memory_id)
# 如果记忆已被移除,退出循环
if current_memory is None:
print(f"记忆已在第 {decay_count} 次衰减后被自动移除!")
break
# 输出当前强度
print(f"衰减 {decay_count} 次后强度: {current_memory.memory_strength}")
# 执行衰减
await working_memory.decay_all_memories(decay_factor=decay_factor)
decay_count += 1
# 输出衰减后的详细信息
after_memory = working_memory.memory_manager.get_by_id(memory_id)
if after_memory:
print(f"{decay_count} 次衰减结果: 强度={after_memory.memory_strength},压缩次数={after_memory.compress_count}")
if after_memory.summary:
print(f"记忆概要: {after_memory.summary.get('brief', '无概要')}")
print(f"记忆要点数量: {len(after_memory.summary.get('key_points', []))}")
else:
print(f"{decay_count} 次衰减结果: 记忆已被移除")
# 防止无限循环
if decay_count > 20:
print("达到最大衰减次数(20),退出测试。")
break
# 短暂等待
await asyncio.sleep(0.5)
# 验证记忆是否真的被移除
all_memories = working_memory.memory_manager.get_all_items()
print(f"剩余记忆数量: {len(all_memories)}")
if len(all_memories) == 0:
print("测试通过: 记忆在强度低于阈值后被成功移除。")
else:
print("测试失败: 记忆应该被移除但仍然存在。")
finally:
await working_memory.shutdown()
async def test_auto_decay():
"""测试自动衰减功能"""
print("\n===== 测试自动衰减功能 =====")
# 初始化工作记忆,设置短的衰减间隔,便于测试
chat_id = "decay_test_auto"
decay_interval = 3 # 3秒
working_memory = WorkingMemory(chat_id=chat_id, max_memories_per_chat=10, auto_decay_interval=decay_interval)
try:
# 创建加载器并加载测试文件
loader = MemoryFileLoader(working_memory)
test_dir = current_dir
# 加载第二个测试文件作为记忆
memories = await loader.load_from_directory(
directory_path=str(test_dir),
file_pattern="test1.txt", # 只加载test2.txt
common_tags=["测试", "自动衰减"],
source_prefix="自动衰减测试"
)
if not memories:
print("未能加载记忆文件,测试结束")
return
# 获取加载的记忆
memory = memories[0]
memory_id = memory.id
print(f"已加载测试记忆ID: {memory_id}")
print(f"初始强度: {memory.memory_strength}")
if memory.summary:
print(f"记忆主题: {memory.summary.get('brief', '无主题')}")
print(f"记忆概要: {memory.summary.get('detailed', '无概要')}")
print(f"记忆要点: {memory.summary.get('keypoints', '无要点')}")
print(f"记忆事件: {memory.summary.get('events', '无事件')}")
# 观察自动衰减
print(f"等待自动衰减任务执行 (间隔 {decay_interval} 秒)...")
for i in range(3): # 观察3次自动衰减
# 等待自动衰减发生
await asyncio.sleep(decay_interval + 1) # 多等1秒确保任务执行
# 获取当前记忆
current_memory = working_memory.memory_manager.get_by_id(memory_id)
# 如果记忆已被移除,退出循环
if current_memory is None:
print(f"记忆已在第 {i+1} 次自动衰减后被移除!")
break
# 输出当前强度和详细信息
print(f"{i+1} 次自动衰减后强度: {current_memory.memory_strength}")
print(f"自动衰减详细结果: 压缩次数={current_memory.compress_count}, 提取次数={current_memory.retrieval_count}")
if current_memory.summary:
print(f"记忆概要: {current_memory.summary.get('brief', '无概要')}")
print(f"\n自动衰减测试结束。")
# 验证自动衰减是否发生
final_memory = working_memory.memory_manager.get_by_id(memory_id)
if final_memory is None:
print("记忆已被自动衰减移除。")
elif final_memory.memory_strength < memory.memory_strength:
print(f"自动衰减有效:初始强度 {memory.memory_strength} -> 最终强度 {final_memory.memory_strength}")
print(f"衰减历史记录: {final_memory.history}")
else:
print("测试失败:记忆强度未减少,自动衰减可能未生效。")
finally:
await working_memory.shutdown()
async def test_decay_and_retrieval_balance():
"""测试记忆衰减和检索的平衡"""
print("\n===== 测试记忆衰减和检索的平衡 =====")
# 初始化工作记忆
chat_id = "decay_retrieval_balance"
working_memory = WorkingMemory(chat_id=chat_id, max_memories_per_chat=10, auto_decay_interval=60)
try:
# 创建加载器并加载测试文件
loader = MemoryFileLoader(working_memory)
test_dir = current_dir
# 加载第三个测试文件作为记忆
memories = await loader.load_from_directory(
directory_path=str(test_dir),
file_pattern="test3.txt", # 只加载test3.txt
common_tags=["测试", "衰减", "检索"],
source_prefix="平衡测试"
)
if not memories:
print("未能加载记忆文件,测试结束")
return
# 获取加载的记忆
memory = memories[0]
memory_id = memory.id
print(f"已加载测试记忆ID: {memory_id}")
print(f"初始强度: {memory.memory_strength}")
if memory.summary:
print(f"记忆主题: {memory.summary.get('brief', '无主题')}")
# 先衰减几次
print("\n开始衰减:")
for i in range(3):
await working_memory.decay_all_memories(decay_factor=0.5)
current = working_memory.memory_manager.get_by_id(memory_id)
if current:
print(f"衰减 {i+1} 次后强度: {current.memory_strength}")
print(f"衰减详细信息: 压缩次数={current.compress_count}, 历史操作数={len(current.history)}")
if current.summary:
print(f"记忆概要: {current.summary.get('brief', '无概要')}")
else:
print(f"记忆已在第 {i+1} 次衰减后被移除。")
break
# 如果记忆还存在,则检索几次增强它
current = working_memory.memory_manager.get_by_id(memory_id)
if current:
print("\n开始检索增强:")
for i in range(2):
retrieved = await working_memory.retrieve_memory(memory_id)
print(f"检索 {i+1} 次后强度: {retrieved.memory_strength}")
print(f"检索后详细信息: 提取次数={retrieved.retrieval_count}, 历史记录长度={len(retrieved.history)}")
# 再次衰减几次,测试是否会被移除
print("\n再次衰减:")
for i in range(5):
await working_memory.decay_all_memories(decay_factor=0.5)
current = working_memory.memory_manager.get_by_id(memory_id)
if current:
print(f"最终衰减 {i+1} 次后强度: {current.memory_strength}")
print(f"衰减详细结果: 压缩次数={current.compress_count}")
else:
print(f"记忆已在最终衰减第 {i+1} 次后被移除。")
break
print("\n测试结束。")
finally:
await working_memory.shutdown()
async def test_multi_memories_decay():
"""测试多条记忆同时衰减"""
print("\n===== 测试多条记忆同时衰减 =====")
# 初始化工作记忆
chat_id = "multi_decay_test"
working_memory = WorkingMemory(chat_id=chat_id, max_memories_per_chat=10, auto_decay_interval=60)
try:
# 创建加载器并加载所有测试文件
loader = MemoryFileLoader(working_memory)
test_dir = current_dir
# 加载所有测试文件作为记忆
memories = await loader.load_from_directory(
directory_path=str(test_dir),
file_pattern="*.txt",
common_tags=["测试", "多记忆衰减"],
source_prefix="多记忆测试"
)
if not memories or len(memories) < 2:
print("未能加载足够的记忆文件,测试结束")
return
# 显示已加载的记忆
print(f"已加载 {len(memories)} 条记忆:")
for idx, mem in enumerate(memories):
print(f"{idx+1}. ID: {mem.id}, 强度: {mem.memory_strength}, 来源: {mem.from_source}")
if mem.summary:
print(f" 主题: {mem.summary.get('brief', '无主题')}")
# 进行多次衰减测试
print("\n开始多记忆衰减测试:")
for decay_round in range(5):
# 执行衰减
await working_memory.decay_all_memories(decay_factor=0.5)
# 获取并显示所有记忆
all_memories = working_memory.memory_manager.get_all_items()
print(f"\n{decay_round+1} 次衰减后,剩余记忆数量: {len(all_memories)}")
for idx, mem in enumerate(all_memories):
print(f"{idx+1}. ID: {mem.id}, 强度: {mem.memory_strength}, 压缩次数: {mem.compress_count}")
if mem.summary:
print(f" 概要: {mem.summary.get('brief', '无概要')[:30]}...")
# 如果所有记忆都被移除,退出循环
if not all_memories:
print("所有记忆已被移除,测试结束。")
break
# 等待一下
await asyncio.sleep(0.5)
print("\n多记忆衰减测试结束。")
finally:
await working_memory.shutdown()
async def main():
"""运行所有测试"""
# 测试手动衰减直到移除
await test_manual_decay_until_removal()
# 测试自动衰减
await test_auto_decay()
# 测试衰减和检索的平衡
await test_decay_and_retrieval_balance()
# 测试多条记忆同时衰减
await test_multi_memories_decay()
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -0,0 +1,121 @@
import asyncio
import os
import unittest
from typing import List, Dict, Any
from pathlib import Path
from src.chat.focus_chat.working_memory.working_memory import WorkingMemory
from src.chat.focus_chat.working_memory.memory_item import MemoryItem
class TestWorkingMemory(unittest.TestCase):
"""工作记忆测试类"""
def setUp(self):
"""测试前准备"""
self.chat_id = "test_chat_123"
self.working_memory = WorkingMemory(chat_id=self.chat_id, max_memories_per_chat=10, auto_decay_interval=60)
self.test_dir = Path(__file__).parent
def tearDown(self):
"""测试后清理"""
loop = asyncio.get_event_loop()
loop.run_until_complete(self.working_memory.shutdown())
def test_init(self):
"""测试初始化"""
self.assertEqual(self.working_memory.max_memories_per_chat, 10)
self.assertEqual(self.working_memory.auto_decay_interval, 60)
def test_add_memory_from_files(self):
"""从文件添加记忆"""
loop = asyncio.get_event_loop()
test_files = self._get_test_files()
# 添加记忆
memories = []
for file_path in test_files:
content = self._read_file_content(file_path)
file_name = os.path.basename(file_path)
source = f"test_file_{file_name}"
tags = ["测试", f"文件_{file_name}"]
memory = loop.run_until_complete(
self.working_memory.add_memory(
content=content,
from_source=source,
tags=tags
)
)
memories.append(memory)
# 验证记忆数量
all_items = self.working_memory.memory_manager.get_all_items()
self.assertEqual(len(all_items), len(test_files))
# 验证每个记忆的内容和标签
for i, memory in enumerate(memories):
file_name = os.path.basename(test_files[i])
retrieved_memory = loop.run_until_complete(
self.working_memory.retrieve_memory(memory.id)
)
self.assertIsNotNone(retrieved_memory)
self.assertTrue(retrieved_memory.has_tag("测试"))
self.assertTrue(retrieved_memory.has_tag(f"文件_{file_name}"))
self.assertEqual(retrieved_memory.from_source, f"test_file_{file_name}")
# 验证检索后强度增加
self.assertGreater(retrieved_memory.memory_strength, 10.0) # 原始强度为10.0检索后增加1.5倍
self.assertEqual(retrieved_memory.retrieval_count, 1)
def test_decay_memories(self):
"""测试记忆衰减"""
loop = asyncio.get_event_loop()
test_files = self._get_test_files()[:1] # 只使用一个文件测试衰减
# 添加记忆
for file_path in test_files:
content = self._read_file_content(file_path)
loop.run_until_complete(
self.working_memory.add_memory(
content=content,
from_source="decay_test",
tags=["衰减测试"]
)
)
# 获取添加后的记忆项
all_items_before = self.working_memory.memory_manager.get_all_items()
self.assertEqual(len(all_items_before), 1)
# 记录原始强度
original_strength = all_items_before[0].memory_strength
# 执行衰减
loop.run_until_complete(
self.working_memory.decay_all_memories(decay_factor=0.5)
)
# 获取衰减后的记忆项
all_items_after = self.working_memory.memory_manager.get_all_items()
# 验证强度衰减
self.assertEqual(len(all_items_after), 1)
self.assertLess(all_items_after[0].memory_strength, original_strength)
def _get_test_files(self) -> List[str]:
"""获取测试文件列表"""
test_dir = self.test_dir
return [
os.path.join(test_dir, f)
for f in os.listdir(test_dir)
if f.endswith(".txt")
]
def _read_file_content(self, file_path: str) -> str:
"""读取文件内容"""
with open(file_path, "r", encoding="utf-8") as f:
return f.read()
if __name__ == "__main__":
unittest.main()

View File

@@ -0,0 +1,197 @@
from typing import Dict, List, Any, Optional
import asyncio
import random
from datetime import datetime
from src.common.logger_manager import get_logger
from src.chat.focus_chat.working_memory.memory_manager import MemoryManager, MemoryItem
logger = get_logger(__name__)
# 问题是我不知道这个manager是不是需要和其他manager统一管理因为这个manager是从属于每一个聊天流都有自己的定时任务
class WorkingMemory:
"""
工作记忆,负责协调和运作记忆
从属于特定的流用chat_id来标识
"""
def __init__(self,chat_id:str , max_memories_per_chat: int = 10, auto_decay_interval: int = 60):
"""
初始化工作记忆管理器
Args:
max_memories_per_chat: 每个聊天的最大记忆数量
auto_decay_interval: 自动衰减记忆的时间间隔(秒)
"""
self.memory_manager = MemoryManager(chat_id)
# 记忆容量上限
self.max_memories_per_chat = max_memories_per_chat
# 自动衰减间隔
self.auto_decay_interval = auto_decay_interval
# 衰减任务
self.decay_task = None
# 启动自动衰减任务
self._start_auto_decay()
def _start_auto_decay(self):
"""启动自动衰减任务"""
if self.decay_task is None:
self.decay_task = asyncio.create_task(self._auto_decay_loop())
async def _auto_decay_loop(self):
"""自动衰减循环"""
while True:
await asyncio.sleep(self.auto_decay_interval)
try:
await self.decay_all_memories()
except Exception as e:
print(f"自动衰减记忆时出错: {str(e)}")
async def add_memory(self,
content: Any,
from_source: str = "",
tags: Optional[List[str]] = None):
"""
添加一段记忆到指定聊天
Args:
content: 记忆内容
from_source: 数据来源
tags: 数据标签列表
Returns:
包含记忆信息的字典
"""
memory = await self.memory_manager.push_with_summary(content, from_source, tags)
if len(self.memory_manager.get_all_items()) > self.max_memories_per_chat:
self.remove_earliest_memory()
return memory
def remove_earliest_memory(self):
"""
删除最早的记忆
"""
return self.memory_manager.delete_earliest_memory()
async def retrieve_memory(self, memory_id: str) -> Optional[MemoryItem]:
"""
检索记忆
Args:
chat_id: 聊天ID
memory_id: 记忆ID
Returns:
检索到的记忆项如果不存在则返回None
"""
memory_item = self.memory_manager.get_by_id(memory_id)
if memory_item:
memory_item.retrieval_count += 1
memory_item.increase_strength(5)
return memory_item
return None
async def decay_all_memories(self, decay_factor: float = 0.5):
"""
对所有聊天的所有记忆进行衰减
衰减对记忆进行refine压缩强度会变为原先的0.5
Args:
decay_factor: 衰减因子(0-1之间)
"""
logger.debug(f"开始对所有记忆进行衰减,衰减因子: {decay_factor}")
all_memories = self.memory_manager.get_all_items()
for memory_item in all_memories:
# 如果压缩完小于1会被删除
memory_id = memory_item.id
self.memory_manager.decay_memory(memory_id, decay_factor)
if memory_item.memory_strength < 1:
self.memory_manager.delete(memory_id)
continue
# 计算衰减量
if memory_item.memory_strength < 5:
await self.memory_manager.refine_memory(memory_id, f"由于时间过去了{self.auto_decay_interval}秒,记忆变的模糊,所以需要压缩")
async def merge_memory(self, memory_id1: str, memory_id2: str) -> MemoryItem:
"""合并记忆
Args:
memory_str: 记忆内容
"""
return await self.memory_manager.merge_memories(memory_id1 = memory_id1, memory_id2 = memory_id2,reason = "两端记忆有重复的内容")
# 暂时没用,先留着
async def simulate_memory_blur(self, chat_id: str, blur_rate: float = 0.2):
"""
模拟记忆模糊过程,随机选择一部分记忆进行精简
Args:
chat_id: 聊天ID
blur_rate: 模糊比率(0-1之间),表示有多少比例的记忆会被精简
"""
memory = self.get_memory(chat_id)
# 获取所有字符串类型且有总结的记忆
all_summarized_memories = []
for type_items in memory._memory.values():
for item in type_items:
if isinstance(item.data, str) and hasattr(item, 'summary') and item.summary:
all_summarized_memories.append(item)
if not all_summarized_memories:
return
# 计算要模糊的记忆数量
blur_count = max(1, int(len(all_summarized_memories) * blur_rate))
# 随机选择要模糊的记忆
memories_to_blur = random.sample(all_summarized_memories, min(blur_count, len(all_summarized_memories)))
# 对选中的记忆进行精简
for memory_item in memories_to_blur:
try:
# 根据记忆强度决定模糊程度
if memory_item.memory_strength > 7:
requirement = "保留所有重要信息,仅略微精简"
elif memory_item.memory_strength > 4:
requirement = "保留核心要点,适度精简细节"
else:
requirement = "只保留最关键的1-2个要点大幅精简内容"
# 进行精简
await memory.refine_memory(memory_item.id, requirement)
print(f"已模糊记忆 {memory_item.id},强度: {memory_item.memory_strength}, 要求: {requirement}")
except Exception as e:
print(f"模糊记忆 {memory_item.id} 时出错: {str(e)}")
async def shutdown(self) -> None:
"""关闭管理器,停止所有任务"""
if self.decay_task and not self.decay_task.done():
self.decay_task.cancel()
try:
await self.decay_task
except asyncio.CancelledError:
pass
def get_all_memories(self) -> List[MemoryItem]:
"""
获取所有记忆项目
Returns:
List[MemoryItem]: 当前工作记忆中的所有记忆项目列表
"""
return self.memory_manager.get_all_items()

View File

@@ -120,12 +120,12 @@ class ChattingObservation(Observation):
for message in reverse_talking_message:
if message["processed_plain_text"] == text:
find_msg = message
logger.debug(f"找到的锚定消息find_msg: {find_msg}")
# logger.debug(f"找到的锚定消息find_msg: {find_msg}")
break
else:
similarity = difflib.SequenceMatcher(None, text, message["processed_plain_text"]).ratio()
msg_list.append({"message": message, "similarity": similarity})
logger.debug(f"对锚定消息检查message: {message['processed_plain_text']},similarity: {similarity}")
# logger.debug(f"对锚定消息检查message: {message['processed_plain_text']},similarity: {similarity}")
if not find_msg:
if msg_list:
msg_list.sort(key=lambda x: x["similarity"], reverse=True)

View File

@@ -1,55 +0,0 @@
from src.chat.heart_flow.observation.observation import Observation
from datetime import datetime
from src.common.logger_manager import get_logger
import traceback
# Import the new utility function
from src.chat.memory_system.Hippocampus import HippocampusManager
import jieba
from typing import List
logger = get_logger("memory")
class MemoryObservation(Observation):
def __init__(self, observe_id):
super().__init__(observe_id)
self.observe_info: str = ""
self.context: str = ""
self.running_memory: List[dict] = []
def get_observe_info(self):
for memory in self.running_memory:
self.observe_info += f"{memory['topic']}:{memory['content']}\n"
return self.observe_info
async def observe(self):
# ---------- 2. 获取记忆 ----------
try:
# 从聊天内容中提取关键词
chat_words = set(jieba.cut(self.context))
# 过滤掉停用词和单字词
keywords = [word for word in chat_words if len(word) > 1]
# 去重并限制数量
keywords = list(set(keywords))[:5]
logger.debug(f"取的关键词: {keywords}")
# 调用记忆系统获取相关记忆
related_memory = await HippocampusManager.get_instance().get_memory_from_topic(
valid_keywords=keywords, max_memory_num=3, max_memory_length=2, max_depth=3
)
logger.debug(f"获取到的记忆: {related_memory}")
if related_memory:
for topic, memory in related_memory:
# 将记忆添加到 running_memory
self.running_memory.append(
{"topic": topic, "content": memory, "timestamp": datetime.now().isoformat()}
)
logger.debug(f"添加新记忆: {topic} - {memory}")
except Exception as e:
logger.error(f"观察 记忆时出错: {e}")
logger.error(traceback.format_exc())

View File

@@ -0,0 +1,32 @@
from datetime import datetime
from src.common.logger_manager import get_logger
# Import the new utility function
logger = get_logger("observation")
# 所有观察的基类
class StructureObservation:
def __init__(self, observe_id):
self.observe_info = ""
self.observe_id = observe_id
self.last_observe_time = datetime.now().timestamp() # 初始化为当前时间
self.history_loop = []
self.structured_info = []
def get_observe_info(self):
return self.structured_info
def add_structured_info(self, structured_info: dict):
self.structured_info.append(structured_info)
async def observe(self):
observed_structured_infos = []
for structured_info in self.structured_info:
if structured_info.get("ttl") > 0:
structured_info["ttl"] -= 1
observed_structured_infos.append(structured_info)
logger.debug(f"观察到结构化信息仍旧在: {structured_info}")
self.structured_info = observed_structured_infos

View File

@@ -2,33 +2,33 @@
# 外部世界可以是某个聊天 不同平台的聊天 也可以是任意媒体
from datetime import datetime
from src.common.logger_manager import get_logger
from src.chat.focus_chat.working_memory.working_memory import WorkingMemory
from src.chat.focus_chat.working_memory.memory_item import MemoryItem
from typing import List
# Import the new utility function
logger = get_logger("observation")
# 所有观察的基类
class WorkingObservation:
def __init__(self, observe_id):
class WorkingMemoryObservation:
def __init__(self, observe_id, working_memory: WorkingMemory):
self.observe_info = ""
self.observe_id = observe_id
self.last_observe_time = datetime.now().timestamp() # 初始化为当前时间
self.history_loop = []
self.structured_info = []
self.last_observe_time = datetime.now().timestamp()
self.working_memory = working_memory
self.retrieved_working_memory = []
def get_observe_info(self):
return self.structured_info
return self.working_memory
def add_structured_info(self, structured_info: dict):
self.structured_info.append(structured_info)
def add_retrieved_working_memory(self, retrieved_working_memory: List[MemoryItem]):
self.retrieved_working_memory.append(retrieved_working_memory)
def get_retrieved_working_memory(self):
return self.retrieved_working_memory
async def observe(self):
observed_structured_infos = []
for structured_info in self.structured_info:
if structured_info.get("ttl") > 0:
structured_info["ttl"] -= 1
observed_structured_infos.append(structured_info)
logger.debug(f"观察到结构化信息仍旧在: {structured_info}")
self.structured_info = observed_structured_infos
pass

View File

@@ -629,22 +629,22 @@ PROCESSOR_STYLE_CONFIG = {
PLANNER_STYLE_CONFIG = {
"advanced": {
"console_format": "<level>{time:HH:mm:ss}</level> | <fg #36DEFF>规划器</fg #36DEFF> | <fg #36DEFF>{message}</fg #36DEFF>",
"console_format": "<level>{time:HH:mm:ss}</level> | <fg #4DCDFF>规划器</fg #4DCDFF> | <fg #4DCDFF>{message}</fg #4DCDFF>",
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 规划器 | {message}",
},
"simple": {
"console_format": "<level>{time:HH:mm:ss}</level> | <fg #36DEFF>规划器</fg #36DEFF> | <fg #36DEFF>{message}</fg #36DEFF>",
"console_format": "<level>{time:HH:mm:ss}</level> | <fg #4DCDFF>规划器</fg #4DCDFF> | <fg #4DCDFF>{message}</fg #4DCDFF>",
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 规划器 | {message}",
},
}
ACTION_TAKEN_STYLE_CONFIG = {
"advanced": {
"console_format": "<level>{time:HH:mm:ss}</level> | <fg #22DAFF>动作</fg #22DAFF> | <fg #22DAFF>{message}</fg #22DAFF>",
"console_format": "<level>{time:HH:mm:ss}</level> | <fg #FFA01F>动作</fg #FFA01F> | <fg #FFA01F>{message}</fg #FFA01F>",
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 动作 | {message}",
},
"simple": {
"console_format": "<level>{time:HH:mm:ss}</level> | <fg #22DAFF>动作</fg #22DAFF> | <fg #22DAFF>{message}</fg #22DAFF>",
"console_format": "<level>{time:HH:mm:ss}</level> | <fg #FFA01F>动作</fg #FFA01F> | <fg #FFA01F>{message}</fg #FFA01F>",
"file_format": "{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 动作 | {message}",
},
}