fix typing

This commit is contained in:
UnCLAS-Prommer
2025-08-03 13:08:28 +08:00
parent a5631fd23a
commit 44f53213af
2 changed files with 49 additions and 49 deletions

View File

@@ -11,6 +11,7 @@ from src.plugin_system import (
BaseEventHandler,
EventType,
MaiMessages,
ToolParamType
)
@@ -20,8 +21,8 @@ class CompareNumbersTool(BaseTool):
name = "compare_numbers"
description = "使用工具 比较两个数的大小,返回较大的数"
parameters = [
("num1", "number", "第一个数字", True),
("num2", "number", "第二个数字", True),
("num1", ToolParamType.FLOAT, "第一个数字", True, None),
("num2", ToolParamType.FLOAT, "第二个数字", True, None),
]
async def execute(self, function_args: dict[str, Any]) -> dict[str, Any]:

View File

@@ -28,7 +28,7 @@ class QAManager:
self.kg_manager = kg_manager
self.qa_model = LLMRequest(model_set=model_config.model_task_config.lpmm_qa, request_type="lpmm.qa")
async def process_query(self, question: str) -> Tuple[List[Tuple[str, float, float]], Optional[Dict[str, float]]]:
async def process_query(self, question: str) -> Optional[Tuple[List[Tuple[str, float, float]], Optional[Dict[str, float]]]]:
"""处理查询"""
# 生成问题的Embedding
@@ -46,61 +46,60 @@ class QAManager:
question_embedding,
global_config.lpmm_knowledge.qa_relation_search_top_k,
)
if relation_search_res is not None:
# 过滤阈值
# 考虑动态阈值:当存在显著数值差异的结果时,保留显著结果;否则,保留所有结果
relation_search_res = dyn_select_top_k(relation_search_res, 0.5, 1.0)
if not relation_search_res or relation_search_res[0][1] < global_config.lpmm_knowledge.qa_relation_threshold:
# 未找到相关关系
logger.debug("未找到相关关系,跳过关系检索")
relation_search_res = []
if relation_search_res is None:
return None
# 过滤阈值
# 考虑动态阈值:当存在显著数值差异的结果时,保留显著结果;否则,保留所有结果
relation_search_res = dyn_select_top_k(relation_search_res, 0.5, 1.0)
if not relation_search_res or relation_search_res[0][1] < global_config.lpmm_knowledge.qa_relation_threshold:
# 未找到相关关系
logger.debug("未找到相关关系,跳过关系检索")
relation_search_res = []
part_end_time = time.perf_counter()
logger.debug(f"关系检索用时:{part_end_time - part_start_time:.5f}s")
part_end_time = time.perf_counter()
logger.debug(f"关系检索用时:{part_end_time - part_start_time:.5f}s")
for res in relation_search_res:
rel_str = self.embed_manager.relation_embedding_store.store.get(res[0]).str
print(f"找到相关关系,相似度:{(res[1] * 100):.2f}% - {rel_str}")
for res in relation_search_res:
rel_str = self.embed_manager.relation_embedding_store.store.get(res[0]).str
print(f"找到相关关系,相似度:{(res[1] * 100):.2f}% - {rel_str}")
# TODO: 使用LLM过滤三元组结果
# logger.info(f"LLM过滤三元组用时{time.time() - part_start_time:.2f}s")
# part_start_time = time.time()
# TODO: 使用LLM过滤三元组结果
# logger.info(f"LLM过滤三元组用时{time.time() - part_start_time:.2f}s")
# part_start_time = time.time()
# 根据问题Embedding查询Paragraph Embedding库
# 根据问题Embedding查询Paragraph Embedding库
part_start_time = time.perf_counter()
paragraph_search_res = self.embed_manager.paragraphs_embedding_store.search_top_k(
question_embedding,
global_config.lpmm_knowledge.qa_paragraph_search_top_k,
)
part_end_time = time.perf_counter()
logger.debug(f"文段检索用时:{part_end_time - part_start_time:.5f}s")
if len(relation_search_res) != 0:
logger.info("找到相关关系将使用RAG进行检索")
# 使用KG检索
part_start_time = time.perf_counter()
paragraph_search_res = self.embed_manager.paragraphs_embedding_store.search_top_k(
question_embedding,
global_config.lpmm_knowledge.qa_paragraph_search_top_k,
result, ppr_node_weights = self.kg_manager.kg_search(
relation_search_res, paragraph_search_res, self.embed_manager
)
part_end_time = time.perf_counter()
logger.debug(f"文段检索用时:{part_end_time - part_start_time:.5f}s")
if len(relation_search_res) != 0:
logger.info("找到相关关系将使用RAG进行检索")
# 使用KG检索
part_start_time = time.perf_counter()
result, ppr_node_weights = self.kg_manager.kg_search(
relation_search_res, paragraph_search_res, self.embed_manager
)
part_end_time = time.perf_counter()
logger.info(f"RAG检索用时{part_end_time - part_start_time:.5f}s")
else:
logger.info("未找到相关关系,将使用文段检索结果")
result = paragraph_search_res
ppr_node_weights = None
# 过滤阈值
result = dyn_select_top_k(result, 0.5, 1.0)
for res in result:
raw_paragraph = self.embed_manager.paragraphs_embedding_store.store[res[0]].str
print(f"找到相关文段,相关系数:{res[1]:.8f}\n{raw_paragraph}\n\n")
return result, ppr_node_weights
logger.info(f"RAG检索用时:{part_end_time - part_start_time:.5f}s")
else:
return None
logger.info("未找到相关关系,将使用文段检索结果")
result = paragraph_search_res
ppr_node_weights = None
async def get_knowledge(self, question: str) -> str:
# 过滤阈值
result = dyn_select_top_k(result, 0.5, 1.0)
for res in result:
raw_paragraph = self.embed_manager.paragraphs_embedding_store.store[res[0]].str
print(f"找到相关文段,相关系数:{res[1]:.8f}\n{raw_paragraph}\n\n")
return result, ppr_node_weights
async def get_knowledge(self, question: str) -> Optional[str]:
"""获取知识"""
# 处理查询
processed_result = await self.process_query(question)