ruff,私聊视为提及了bot

This commit is contained in:
Windpicker-owo
2025-09-20 22:34:22 +08:00
parent 006f9130b9
commit 444f1ca315
76 changed files with 1066 additions and 882 deletions

View File

@@ -6,6 +6,7 @@ class BaseDataModel:
def deepcopy(self):
return copy.deepcopy(self)
def temporarily_transform_class_to_dict(obj: Any) -> Any:
# sourcery skip: assign-if-exp, reintroduce-else
"""

View File

@@ -2,6 +2,7 @@
机器人兴趣标签数据模型
定义机器人的兴趣标签和相关的embedding数据结构
"""
from dataclasses import dataclass, field
from typing import List, Dict, Optional, Any
from datetime import datetime
@@ -12,6 +13,7 @@ from . import BaseDataModel
@dataclass
class BotInterestTag(BaseDataModel):
"""机器人兴趣标签"""
tag_name: str
weight: float = 1.0 # 权重,表示对这个兴趣的喜好程度 (0.0-1.0)
embedding: Optional[List[float]] = None # 标签的embedding向量
@@ -27,7 +29,7 @@ class BotInterestTag(BaseDataModel):
"embedding": self.embedding,
"created_at": self.created_at.isoformat(),
"updated_at": self.updated_at.isoformat(),
"is_active": self.is_active
"is_active": self.is_active,
}
@classmethod
@@ -39,13 +41,14 @@ class BotInterestTag(BaseDataModel):
embedding=data.get("embedding"),
created_at=datetime.fromisoformat(data["created_at"]) if data.get("created_at") else datetime.now(),
updated_at=datetime.fromisoformat(data["updated_at"]) if data.get("updated_at") else datetime.now(),
is_active=data.get("is_active", True)
is_active=data.get("is_active", True),
)
@dataclass
class BotPersonalityInterests(BaseDataModel):
"""机器人人格化兴趣配置"""
personality_id: str
personality_description: str # 人设描述文本
interest_tags: List[BotInterestTag] = field(default_factory=list)
@@ -57,7 +60,6 @@ class BotPersonalityInterests(BaseDataModel):
"""获取活跃的兴趣标签"""
return [tag for tag in self.interest_tags if tag.is_active]
def to_dict(self) -> Dict[str, Any]:
"""转换为字典格式"""
return {
@@ -66,7 +68,7 @@ class BotPersonalityInterests(BaseDataModel):
"interest_tags": [tag.to_dict() for tag in self.interest_tags],
"embedding_model": self.embedding_model,
"last_updated": self.last_updated.isoformat(),
"version": self.version
"version": self.version,
}
@classmethod
@@ -78,13 +80,14 @@ class BotPersonalityInterests(BaseDataModel):
interest_tags=[BotInterestTag.from_dict(tag_data) for tag_data in data.get("interest_tags", [])],
embedding_model=data.get("embedding_model", "text-embedding-ada-002"),
last_updated=datetime.fromisoformat(data["last_updated"]) if data.get("last_updated") else datetime.now(),
version=data.get("version", 1)
version=data.get("version", 1),
)
@dataclass
class InterestMatchResult(BaseDataModel):
"""兴趣匹配结果"""
message_id: str
matched_tags: List[str] = field(default_factory=list)
match_scores: Dict[str, float] = field(default_factory=dict) # tag_name -> score
@@ -120,7 +123,9 @@ class InterestMatchResult(BaseDataModel):
# 计算置信度(基于匹配标签数量和分数分布)
if len(self.match_scores) > 0:
avg_score = self.overall_score
score_variance = sum((score - avg_score) ** 2 for score in self.match_scores.values()) / len(self.match_scores)
score_variance = sum((score - avg_score) ** 2 for score in self.match_scores.values()) / len(
self.match_scores
)
# 分数越集中,置信度越高
self.confidence = max(0.0, 1.0 - score_variance)
else:
@@ -129,4 +134,4 @@ class InterestMatchResult(BaseDataModel):
def get_top_matches(self, top_n: int = 3) -> List[tuple]:
"""获取前N个最佳匹配"""
sorted_matches = sorted(self.match_scores.items(), key=lambda x: x[1], reverse=True)
return sorted_matches[:top_n]
return sorted_matches[:top_n]

View File

@@ -208,6 +208,7 @@ class DatabaseMessages(BaseDataModel):
"chat_info_user_cardname": self.chat_info.user_info.user_cardname,
}
@dataclass(init=False)
class DatabaseActionRecords(BaseDataModel):
def __init__(
@@ -235,4 +236,4 @@ class DatabaseActionRecords(BaseDataModel):
self.action_prompt_display = action_prompt_display
self.chat_id = chat_id
self.chat_info_stream_id = chat_info_stream_id
self.chat_info_platform = chat_info_platform
self.chat_info_platform = chat_info_platform

View File

@@ -28,6 +28,7 @@ class ActionPlannerInfo(BaseDataModel):
@dataclass
class InterestScore(BaseDataModel):
"""兴趣度评分结果"""
message_id: str
total_score: float
interest_match_score: float
@@ -41,6 +42,7 @@ class Plan(BaseDataModel):
"""
统一规划数据模型
"""
chat_id: str
mode: "ChatMode"

View File

@@ -2,9 +2,11 @@ from dataclasses import dataclass
from typing import Optional, List, Tuple, TYPE_CHECKING, Any
from . import BaseDataModel
if TYPE_CHECKING:
from src.llm_models.payload_content.tool_option import ToolCall
@dataclass
class LLMGenerationDataModel(BaseDataModel):
content: Optional[str] = None
@@ -13,4 +15,4 @@ class LLMGenerationDataModel(BaseDataModel):
tool_calls: Optional[List["ToolCall"]] = None
prompt: Optional[str] = None
selected_expressions: Optional[List[int]] = None
reply_set: Optional[List[Tuple[str, Any]]] = None
reply_set: Optional[List[Tuple[str, Any]]] = None

View File

@@ -2,6 +2,7 @@
消息管理模块数据模型
定义消息管理器使用的数据结构
"""
import asyncio
import time
from dataclasses import dataclass, field
@@ -16,14 +17,16 @@ if TYPE_CHECKING:
class MessageStatus(Enum):
"""消息状态枚举"""
UNREAD = "unread" # 未读消息
READ = "read" # 读消息
UNREAD = "unread" # 读消息
READ = "read" # 已读消息
PROCESSING = "processing" # 处理中
@dataclass
class StreamContext(BaseDataModel):
"""聊天流上下文信息"""
stream_id: str
unread_messages: List["DatabaseMessages"] = field(default_factory=list)
history_messages: List["DatabaseMessages"] = field(default_factory=list)
@@ -59,6 +62,7 @@ class StreamContext(BaseDataModel):
@dataclass
class MessageManagerStats(BaseDataModel):
"""消息管理器统计信息"""
total_streams: int = 0
active_streams: int = 0
total_unread_messages: int = 0
@@ -74,9 +78,10 @@ class MessageManagerStats(BaseDataModel):
@dataclass
class StreamStats(BaseDataModel):
"""聊天流统计信息"""
stream_id: str
is_active: bool
unread_count: int
history_count: int
last_check_time: float
has_active_task: bool
has_active_task: bool