doc:完善doc

This commit is contained in:
SengokuCola
2025-06-19 23:21:31 +08:00
parent 98735b067c
commit 43425b3c1f
16 changed files with 2824 additions and 521 deletions

View File

@@ -0,0 +1,341 @@
# 回复生成器API
回复生成器API模块提供智能回复生成功能让插件能够使用系统的回复生成器来产生自然的聊天回复。
## 导入方式
```python
from src.plugin_system.apis import generator_api
```
## 主要功能
### 1. 回复器获取
#### `get_replyer(chat_stream=None, platform=None, chat_id=None, is_group=True)`
获取回复器对象
**参数:**
- `chat_stream`:聊天流对象(优先)
- `platform`:平台名称,如"qq"
- `chat_id`聊天ID群ID或用户ID
- `is_group`:是否为群聊
**返回:**
- `DefaultReplyer`回复器对象如果获取失败则返回None
**示例:**
```python
# 使用聊天流获取回复器
replyer = generator_api.get_replyer(chat_stream=chat_stream)
# 使用平台和ID获取回复器
replyer = generator_api.get_replyer(
platform="qq",
chat_id="123456789",
is_group=True
)
```
### 2. 回复生成
#### `generate_reply(chat_stream=None, action_data=None, platform=None, chat_id=None, is_group=True)`
生成回复
**参数:**
- `chat_stream`:聊天流对象(优先)
- `action_data`:动作数据
- `platform`:平台名称(备用)
- `chat_id`聊天ID备用
- `is_group`:是否为群聊(备用)
**返回:**
- `Tuple[bool, List[Tuple[str, Any]]]`(是否成功, 回复集合)
**示例:**
```python
success, reply_set = await generator_api.generate_reply(
chat_stream=chat_stream,
action_data={"message": "你好", "intent": "greeting"}
)
if success:
for reply_type, reply_content in reply_set:
print(f"回复类型: {reply_type}, 内容: {reply_content}")
```
#### `rewrite_reply(chat_stream=None, reply_data=None, platform=None, chat_id=None, is_group=True)`
重写回复
**参数:**
- `chat_stream`:聊天流对象(优先)
- `reply_data`:回复数据
- `platform`:平台名称(备用)
- `chat_id`聊天ID备用
- `is_group`:是否为群聊(备用)
**返回:**
- `Tuple[bool, List[Tuple[str, Any]]]`(是否成功, 回复集合)
**示例:**
```python
success, reply_set = await generator_api.rewrite_reply(
chat_stream=chat_stream,
reply_data={"original_text": "原始回复", "style": "more_friendly"}
)
```
## 使用示例
### 1. 基础回复生成
```python
from src.plugin_system.apis import generator_api
async def generate_greeting_reply(chat_stream, user_name):
"""生成问候回复"""
action_data = {
"intent": "greeting",
"user_name": user_name,
"context": "morning_greeting"
}
success, reply_set = await generator_api.generate_reply(
chat_stream=chat_stream,
action_data=action_data
)
if success and reply_set:
# 获取第一个回复
reply_type, reply_content = reply_set[0]
return reply_content
return "你好!" # 默认回复
```
### 2. 在Action中使用回复生成器
```python
from src.plugin_system.base import BaseAction
class ChatAction(BaseAction):
async def execute(self, action_data, chat_stream):
# 准备回复数据
reply_context = {
"message_type": "response",
"user_input": action_data.get("user_message", ""),
"intent": action_data.get("intent", ""),
"entities": action_data.get("entities", {}),
"context": self.get_conversation_context(chat_stream)
}
# 生成回复
success, reply_set = await generator_api.generate_reply(
chat_stream=chat_stream,
action_data=reply_context
)
if success:
return {
"success": True,
"replies": reply_set,
"generated_count": len(reply_set)
}
return {
"success": False,
"error": "回复生成失败",
"fallback_reply": "抱歉,我现在无法理解您的消息。"
}
```
### 3. 多样化回复生成
```python
async def generate_diverse_replies(chat_stream, topic, count=3):
"""生成多个不同风格的回复"""
styles = ["formal", "casual", "humorous"]
all_replies = []
for i, style in enumerate(styles[:count]):
action_data = {
"topic": topic,
"style": style,
"variation": i
}
success, reply_set = await generator_api.generate_reply(
chat_stream=chat_stream,
action_data=action_data
)
if success and reply_set:
all_replies.extend(reply_set)
return all_replies
```
### 4. 回复重写功能
```python
async def improve_reply(chat_stream, original_reply, improvement_type="more_friendly"):
"""改进原始回复"""
reply_data = {
"original_text": original_reply,
"improvement_type": improvement_type,
"target_audience": "young_users",
"tone": "positive"
}
success, improved_replies = await generator_api.rewrite_reply(
chat_stream=chat_stream,
reply_data=reply_data
)
if success and improved_replies:
# 返回改进后的第一个回复
_, improved_content = improved_replies[0]
return improved_content
return original_reply # 如果改进失败,返回原始回复
```
### 5. 条件回复生成
```python
async def conditional_reply_generation(chat_stream, user_message, user_emotion):
"""根据用户情感生成条件回复"""
# 根据情感调整回复策略
if user_emotion == "sad":
action_data = {
"intent": "comfort",
"tone": "empathetic",
"style": "supportive"
}
elif user_emotion == "angry":
action_data = {
"intent": "calm",
"tone": "peaceful",
"style": "understanding"
}
else:
action_data = {
"intent": "respond",
"tone": "neutral",
"style": "helpful"
}
action_data["user_message"] = user_message
action_data["user_emotion"] = user_emotion
success, reply_set = await generator_api.generate_reply(
chat_stream=chat_stream,
action_data=action_data
)
return reply_set if success else []
```
## 回复集合格式
### 回复类型
生成的回复集合包含多种类型的回复:
- `"text"`:纯文本回复
- `"emoji"`:表情包回复
- `"image"`:图片回复
- `"mixed"`:混合类型回复
### 回复集合结构
```python
# 示例回复集合
reply_set = [
("text", "很高兴见到你!"),
("emoji", "emoji_base64_data"),
("text", "有什么可以帮助你的吗?")
]
```
## 高级用法
### 1. 自定义回复器配置
```python
async def generate_with_custom_config(chat_stream, action_data):
"""使用自定义配置生成回复"""
# 获取回复器
replyer = generator_api.get_replyer(chat_stream=chat_stream)
if replyer:
# 可以访问回复器的内部方法
success, reply_set = await replyer.generate_reply_with_context(
reply_data=action_data,
# 可以传递额外的配置参数
)
return success, reply_set
return False, []
```
### 2. 回复质量评估
```python
async def generate_and_evaluate_replies(chat_stream, action_data):
"""生成回复并评估质量"""
success, reply_set = await generator_api.generate_reply(
chat_stream=chat_stream,
action_data=action_data
)
if success:
evaluated_replies = []
for reply_type, reply_content in reply_set:
# 简单的质量评估
quality_score = evaluate_reply_quality(reply_content)
evaluated_replies.append({
"type": reply_type,
"content": reply_content,
"quality": quality_score
})
# 按质量排序
evaluated_replies.sort(key=lambda x: x["quality"], reverse=True)
return evaluated_replies
return []
def evaluate_reply_quality(reply_content):
"""简单的回复质量评估"""
if not reply_content:
return 0
score = 50 # 基础分
# 长度适中加分
if 5 <= len(reply_content) <= 100:
score += 20
# 包含积极词汇加分
positive_words = ["好", "棒", "不错", "感谢", "开心"]
for word in positive_words:
if word in reply_content:
score += 10
break
return min(score, 100)
```
## 注意事项
1. **异步操作**:所有生成函数都是异步的,必须使用`await`
2. **错误处理**函数内置错误处理失败时返回False和空列表
3. **聊天流依赖**:需要有效的聊天流对象才能正常工作
4. **性能考虑**回复生成可能需要一些时间特别是使用LLM时
5. **回复格式**:返回的回复集合是元组列表,包含类型和内容
6. **上下文感知**:生成器会考虑聊天上下文和历史消息