加入一个还没有完成的测试性功能,我要先跑路了

This commit is contained in:
minecraft1024a
2025-09-07 14:02:28 +08:00
committed by Windpicker-owo
parent e374ed7166
commit 41d5152c57
3 changed files with 340 additions and 0 deletions

View File

@@ -0,0 +1,144 @@
"""
Chat Frequency Analyzer
=======================
本模块负责分析用户的聊天时间戳,以识别出他们最活跃的聊天时段(高峰时段)。
核心功能:
- 使用滑动窗口算法来检测时间戳集中的区域。
- 提供接口查询指定用户当前是否处于其聊天高峰时段内。
- 结果会被缓存以提高性能。
可配置参数:
- ANALYSIS_WINDOW_HOURS: 用于分析的时间窗口大小(小时)。
- MIN_CHATS_FOR_PEAK: 在一个窗口内需要多少次聊天才能被认为是高峰时段。
- MIN_GAP_BETWEEN_PEAKS_HOURS: 两个独立高峰时段之间的最小间隔(小时)。
"""
import time as time_module
from datetime import datetime, timedelta, time
from typing import List, Tuple, Optional
from .tracker import chat_frequency_tracker
# --- 可配置参数 ---
# 用于分析的时间窗口大小(小时)
ANALYSIS_WINDOW_HOURS = 2
# 触发高峰时段所需的最小聊天次数
MIN_CHATS_FOR_PEAK = 4
# 两个独立高峰时段之间的最小间隔(小时)
MIN_GAP_BETWEEN_PEAKS_HOURS = 1
class ChatFrequencyAnalyzer:
"""
分析聊天时间戳,以识别用户的高频聊天时段。
"""
def __init__(self):
# 缓存分析结果,避免重复计算
# 格式: { "chat_id": (timestamp_of_analysis, [peak_windows]) }
self._analysis_cache: dict[str, tuple[float, list[tuple[time, time]]]] = {}
self._cache_ttl_seconds = 60 * 30 # 缓存30分钟
def _find_peak_windows(self, timestamps: List[float]) -> List[Tuple[datetime, datetime]]:
"""
使用滑动窗口算法来识别时间戳列表中的高峰时段。
Args:
timestamps (List[float]): 按时间排序的聊天时间戳。
Returns:
List[Tuple[datetime, datetime]]: 识别出的高峰时段列表,每个元组代表一个时间窗口的开始和结束。
"""
if len(timestamps) < MIN_CHATS_FOR_PEAK:
return []
# 将时间戳转换为 datetime 对象
datetimes = [datetime.fromtimestamp(ts) for ts in timestamps]
datetimes.sort()
peak_windows: List[Tuple[datetime, datetime]] = []
window_start_idx = 0
for i in range(len(datetimes)):
# 移动窗口的起始点
while datetimes[i] - datetimes[window_start_idx] > timedelta(hours=ANALYSIS_WINDOW_HOURS):
window_start_idx += 1
# 检查当前窗口是否满足高峰条件
if i - window_start_idx + 1 >= MIN_CHATS_FOR_PEAK:
current_window_start = datetimes[window_start_idx]
current_window_end = datetimes[i]
# 合并重叠或相邻的高峰时段
if peak_windows and current_window_start - peak_windows[-1][1] < timedelta(hours=MIN_GAP_BETWEEN_PEAKS_HOURS):
# 扩展上一个窗口的结束时间
peak_windows[-1] = (peak_windows[-1][0], current_window_end)
else:
peak_windows.append((current_window_start, current_window_end))
return peak_windows
def get_peak_chat_times(self, chat_id: str) -> List[Tuple[time, time]]:
"""
获取指定用户的高峰聊天时间段。
Args:
chat_id (str): 聊天标识符。
Returns:
List[Tuple[time, time]]: 高峰时段的列表,每个元组包含开始和结束时间 (time 对象)。
"""
# 检查缓存
cached_timestamp, cached_windows = self._analysis_cache.get(chat_id, (0, []))
if time_module.time() - cached_timestamp < self._cache_ttl_seconds:
return cached_windows
timestamps = chat_frequency_tracker.get_timestamps_for_chat(chat_id)
if not timestamps:
return []
peak_datetime_windows = self._find_peak_windows(timestamps)
# 将 datetime 窗口转换为 time 窗口,并进行归一化处理
peak_time_windows = []
for start_dt, end_dt in peak_datetime_windows:
# TODO:这里可以添加更复杂的逻辑来处理跨天的平均时间
# 为简化,我们直接使用窗口的起止时间
peak_time_windows.append((start_dt.time(), end_dt.time()))
# 更新缓存
self._analysis_cache[chat_id] = (time_module.time(), peak_time_windows)
return peak_time_windows
def is_in_peak_time(self, chat_id: str, now: Optional[datetime] = None) -> bool:
"""
检查当前时间是否处于用户的高峰聊天时段内。
Args:
chat_id (str): 聊天标识符。
now (Optional[datetime]): 要检查的时间,默认为当前时间。
Returns:
bool: 如果处于高峰时段则返回 True否则返回 False。
"""
if now is None:
now = datetime.now()
now_time = now.time()
peak_times = self.get_peak_chat_times(chat_id)
for start_time, end_time in peak_times:
if start_time <= end_time: # 同一天
if start_time <= now_time <= end_time:
return True
else: # 跨天
if now_time >= start_time or now_time <= end_time:
return True
return False
# 创建一个全局单例
chat_frequency_analyzer = ChatFrequencyAnalyzer()