feat(embedding): 优化嵌入处理,支持 NumPy 数组格式并减少内存分配
This commit is contained in:
@@ -6,18 +6,24 @@
|
||||
from dataclasses import dataclass, field
|
||||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
|
||||
from src.config.config import model_config
|
||||
from . import BaseDataModel
|
||||
|
||||
|
||||
@dataclass
|
||||
class BotInterestTag(BaseDataModel):
|
||||
"""机器人兴趣标签"""
|
||||
"""机器人兴趣标签
|
||||
|
||||
embedding 字段支持 NumPy 数组格式,减少对象分配
|
||||
"""
|
||||
|
||||
tag_name: str
|
||||
weight: float = 1.0 # 权重,表示对这个兴趣的喜好程度 (0.0-1.0)
|
||||
expanded: str | None = None # 标签的扩展描述,用于更精准的语义匹配
|
||||
embedding: list[float] | None = None # 标签的embedding向量
|
||||
embedding: np.ndarray | list[float] | None = None # 标签的embedding向量(支持 NumPy 数组)
|
||||
created_at: datetime = field(default_factory=datetime.now)
|
||||
updated_at: datetime = field(default_factory=datetime.now)
|
||||
is_active: bool = True
|
||||
|
||||
Reference in New Issue
Block a user