This commit is contained in:
tcmofashi
2025-05-01 02:20:49 +08:00
47 changed files with 1432 additions and 1006 deletions

View File

@@ -21,6 +21,7 @@ PROMPT_INITIAL_REPLY = """{persona_text}。现在你在参与一场QQ私聊
【当前对话目标】
{goals_str}
{knowledge_info_str}
【最近行动历史概要】
{action_history_summary}
@@ -33,7 +34,7 @@ PROMPT_INITIAL_REPLY = """{persona_text}。现在你在参与一场QQ私聊
------
可选行动类型以及解释:
fetch_knowledge: 需要调取知识,当需要专业知识或特定信息时选择,对方若提到你不太认识的人名或实体也可以尝试选择
fetch_knowledge: 需要调取知识或记忆,当需要专业知识或特定信息时选择,对方若提到你不太认识的人名或实体也可以尝试选择
listening: 倾听对方发言,当你认为对方话才说到一半,发言明显未结束时选择
direct_reply: 直接回复对方
rethink_goal: 思考一个对话目标,当你觉得目前对话需要目标,或当前目标不再适用,或话题卡住时选择。注意私聊的环境是灵活的,有可能需要经常选择
@@ -53,6 +54,7 @@ PROMPT_FOLLOW_UP = """{persona_text}。现在你在参与一场QQ私聊刚刚
【当前对话目标】
{goals_str}
{knowledge_info_str}
【最近行动历史概要】
{action_history_summary}
@@ -224,6 +226,41 @@ class ActionPlanner:
logger.error(f"[私聊][{self.private_name}]构建对话目标字符串时出错: {e}")
goals_str = "- 构建对话目标时出错。\n"
# --- 知识信息字符串构建开始 ---
knowledge_info_str = "【已获取的相关知识和记忆】\n"
try:
# 检查 conversation_info 是否有 knowledge_list 并且不为空
if hasattr(conversation_info, "knowledge_list") and conversation_info.knowledge_list:
# 最多只显示最近的 5 条知识,防止 Prompt 过长
recent_knowledge = conversation_info.knowledge_list[-5:]
for i, knowledge_item in enumerate(recent_knowledge):
if isinstance(knowledge_item, dict):
query = knowledge_item.get("query", "未知查询")
knowledge = knowledge_item.get("knowledge", "无知识内容")
source = knowledge_item.get("source", "未知来源")
# 只取知识内容的前 2000 个字,避免太长
knowledge_snippet = knowledge[:2000] + "..." if len(knowledge) > 2000 else knowledge
knowledge_info_str += (
f"{i + 1}. 关于 '{query}' 的知识 (来源: {source}):\n {knowledge_snippet}\n"
)
else:
# 处理列表里不是字典的异常情况
knowledge_info_str += f"{i + 1}. 发现一条格式不正确的知识记录。\n"
if not recent_knowledge: # 如果 knowledge_list 存在但为空
knowledge_info_str += "- 暂无相关知识和记忆。\n"
else:
# 如果 conversation_info 没有 knowledge_list 属性,或者列表为空
knowledge_info_str += "- 暂无相关知识记忆。\n"
except AttributeError:
logger.warning(f"[私聊][{self.private_name}]ConversationInfo 对象可能缺少 knowledge_list 属性。")
knowledge_info_str += "- 获取知识列表时出错。\n"
except Exception as e:
logger.error(f"[私聊][{self.private_name}]构建知识信息字符串时出错: {e}")
knowledge_info_str += "- 处理知识列表时出错。\n"
# --- 知识信息字符串构建结束 ---
# 获取聊天历史记录 (chat_history_text)
chat_history_text = ""
try:
@@ -349,6 +386,7 @@ class ActionPlanner:
time_since_last_bot_message_info=time_since_last_bot_message_info,
timeout_context=timeout_context,
chat_history_text=chat_history_text if chat_history_text.strip() else "还没有聊天记录。",
knowledge_info_str=knowledge_info_str,
)
logger.debug(f"[私聊][{self.private_name}]发送到LLM的最终提示词:\n------\n{prompt}\n------")

View File

@@ -525,9 +525,9 @@ class Conversation:
)
action_successful = True
except Exception as fetch_err:
logger.error(f"[私聊][{self.private_name}]获取知识时出错: {fetch_err}")
logger.error(f"[私聊][{self.private_name}]获取知识时出错: {str(fetch_err)}")
conversation_info.done_action[action_index].update(
{"status": "recall", "final_reason": f"获取知识失败: {fetch_err}"}
{"status": "recall", "final_reason": f"获取知识失败: {str(fetch_err)}"}
)
self.conversation_info.last_successful_reply_action = None # 重置状态

View File

@@ -50,21 +50,18 @@ class MessageStorage(ABC):
class MongoDBMessageStorage(MessageStorage):
"""MongoDB消息存储实现"""
def __init__(self):
self.db = db
async def get_messages_after(self, chat_id: str, message_time: float) -> List[Dict[str, Any]]:
query = {"chat_id": chat_id}
# print(f"storage_check_message: {message_time}")
query["time"] = {"$gt": message_time}
return list(self.db.messages.find(query).sort("time", 1))
return list(db.messages.find(query).sort("time", 1))
async def get_messages_before(self, chat_id: str, time_point: float, limit: int = 5) -> List[Dict[str, Any]]:
query = {"chat_id": chat_id, "time": {"$lt": time_point}}
messages = list(self.db.messages.find(query).sort("time", -1).limit(limit))
messages = list(db.messages.find(query).sort("time", -1).limit(limit))
# 将消息按时间正序排列
messages.reverse()
@@ -73,7 +70,7 @@ class MongoDBMessageStorage(MessageStorage):
async def has_new_messages(self, chat_id: str, after_time: float) -> bool:
query = {"chat_id": chat_id, "time": {"$gt": after_time}}
return self.db.messages.find_one(query) is not None
return db.messages.find_one(query) is not None
# # 创建一个内存消息存储实现,用于测试

View File

@@ -68,16 +68,18 @@ class KnowledgeFetcher:
max_depth=3,
fast_retrieval=False,
)
knowledge = ""
knowledge_text = ""
sources_text = "无记忆匹配" # 默认值
if related_memory:
sources = []
for memory in related_memory:
knowledge += memory[1] + "\n"
knowledge_text += memory[1] + "\n"
sources.append(f"记忆片段{memory[0]}")
knowledge = knowledge.strip(), "".join(sources)
knowledge_text = knowledge_text.strip()
sources_text = "".join(sources)
knowledge += "现在有以下**知识**可供参考:\n "
knowledge += self._lpmm_get_knowledge(query)
knowledge += "请记住这些**知识**,并根据**知识**回答问题。\n"
knowledge_text += "\n现在有以下**知识**可供参考:\n "
knowledge_text += self._lpmm_get_knowledge(query)
knowledge_text += "\n请记住这些**知识**,并根据**知识**回答问题。\n"
return "未找到相关知识", "无记忆匹配"
return knowledge_text or "未找到相关知识", sources_text or "无记忆匹配"

View File

@@ -17,6 +17,9 @@ logger = get_module_logger("reply_generator")
PROMPT_DIRECT_REPLY = """{persona_text}。现在你在参与一场QQ私聊请根据以下信息生成一条回复
当前对话目标:{goals_str}
{knowledge_info_str}
最近的聊天记录:
{chat_history_text}
@@ -25,7 +28,7 @@ PROMPT_DIRECT_REPLY = """{persona_text}。现在你在参与一场QQ私聊
1. 符合对话目标,以""的角度发言(不要自己与自己对话!)
2. 符合你的性格特征和身份细节
3. 通俗易懂自然流畅像正常聊天一样简短通常20字以内除非特殊情况
4. 适当利用相关知识,但不要生硬引用
4. 可以适当利用相关知识,但不要生硬引用
5. 自然、得体,结合聊天记录逻辑合理,且没有重复表达同质内容
请注意把握聊天内容,不要回复的太有条理,可以有个性。请分清""和对方说的话,不要把""说的话当做对方说的话,这是你自己说的话。
@@ -39,6 +42,9 @@ PROMPT_DIRECT_REPLY = """{persona_text}。现在你在参与一场QQ私聊
PROMPT_SEND_NEW_MESSAGE = """{persona_text}。现在你在参与一场QQ私聊**刚刚你已经发送了一条或多条消息**,现在请根据以下信息再发一条新消息:
当前对话目标:{goals_str}
{knowledge_info_str}
最近的聊天记录:
{chat_history_text}
@@ -47,7 +53,7 @@ PROMPT_SEND_NEW_MESSAGE = """{persona_text}。现在你在参与一场QQ私聊
1. 符合对话目标,以""的角度发言(不要自己与自己对话!)
2. 符合你的性格特征和身份细节
3. 通俗易懂自然流畅像正常聊天一样简短通常20字以内除非特殊情况
4. 适当利用相关知识,但不要生硬引用
4. 可以适当利用相关知识,但不要生硬引用
5. 跟之前你发的消息自然的衔接,逻辑合理,且没有重复表达同质内容或部分重叠内容
请注意把握聊天内容,不用太有条理,可以有个性。请分清""和对方说的话,不要把""说的话当做对方说的话,这是你自己说的话。
@@ -131,6 +137,38 @@ class ReplyGenerator:
else:
goals_str = "- 目前没有明确对话目标\n" # 简化无目标情况
# --- 新增:构建知识信息字符串 ---
knowledge_info_str = "【供参考的相关知识和记忆】\n" # 稍微改下标题,表明是供参考
try:
# 检查 conversation_info 是否有 knowledge_list 并且不为空
if hasattr(conversation_info, "knowledge_list") and conversation_info.knowledge_list:
# 最多只显示最近的 5 条知识
recent_knowledge = conversation_info.knowledge_list[-5:]
for i, knowledge_item in enumerate(recent_knowledge):
if isinstance(knowledge_item, dict):
query = knowledge_item.get("query", "未知查询")
knowledge = knowledge_item.get("knowledge", "无知识内容")
source = knowledge_item.get("source", "未知来源")
# 只取知识内容的前 2000 个字
knowledge_snippet = knowledge[:2000] + "..." if len(knowledge) > 2000 else knowledge
knowledge_info_str += (
f"{i + 1}. 关于 '{query}' (来源: {source}): {knowledge_snippet}\n" # 格式微调,更简洁
)
else:
knowledge_info_str += f"{i + 1}. 发现一条格式不正确的知识记录。\n"
if not recent_knowledge:
knowledge_info_str += "- 暂无。\n" # 更简洁的提示
else:
knowledge_info_str += "- 暂无。\n"
except AttributeError:
logger.warning(f"[私聊][{self.private_name}]ConversationInfo 对象可能缺少 knowledge_list 属性。")
knowledge_info_str += "- 获取知识列表时出错。\n"
except Exception as e:
logger.error(f"[私聊][{self.private_name}]构建知识信息字符串时出错: {e}")
knowledge_info_str += "- 处理知识列表时出错。\n"
# 获取聊天历史记录 (chat_history_text)
chat_history_text = observation_info.chat_history_str
if observation_info.new_messages_count > 0 and observation_info.unprocessed_messages:
@@ -162,7 +200,10 @@ class ReplyGenerator:
# --- 格式化最终的 Prompt ---
prompt = prompt_template.format(
persona_text=persona_text, goals_str=goals_str, chat_history_text=chat_history_text
persona_text=persona_text,
goals_str=goals_str,
chat_history_text=chat_history_text,
knowledge_info_str=knowledge_info_str,
)
# --- 调用 LLM 生成 ---

View File

@@ -99,15 +99,20 @@ class ChatBot:
template_group_name = None
async def preprocess():
logger.trace("开始预处理消息...")
# 如果在私聊中
if groupinfo is None:
logger.trace("检测到私聊消息")
# 是否在配置信息中开启私聊模式
if global_config.enable_friend_chat:
logger.trace("私聊模式已启用")
# 是否进入PFC
if global_config.enable_pfc_chatting:
logger.trace("进入PFC私聊处理流程")
userinfo = message.message_info.user_info
messageinfo = message.message_info
# 创建聊天流
logger.trace(f"{userinfo.user_id}创建/获取聊天流")
chat = await chat_manager.get_or_create_stream(
platform=messageinfo.platform,
user_info=userinfo,
@@ -118,9 +123,11 @@ class ChatBot:
await self._create_pfc_chat(message)
# 禁止PFC进入普通的心流消息处理逻辑
else:
logger.trace("进入普通心流私聊处理")
await self.heartflow_processor.process_message(message_data)
# 群聊默认进入心流消息处理逻辑
else:
logger.trace(f"检测到群聊消息群ID: {groupinfo.group_id}")
await self.heartflow_processor.process_message(message_data)
if template_group_name:

View File

@@ -159,16 +159,16 @@ class MessageManager:
logger.warning("Processor task already running.")
return
self._processor_task = asyncio.create_task(self._start_processor_loop())
logger.info("MessageManager processor task started.")
logger.debug("MessageManager processor task started.")
def stop(self):
"""停止后台处理器任务。"""
self._running = False
if hasattr(self, "_processor_task") and not self._processor_task.done():
self._processor_task.cancel()
logger.info("MessageManager processor task stopping.")
logger.debug("MessageManager processor task stopping.")
else:
logger.info("MessageManager processor task not running or already stopped.")
logger.debug("MessageManager processor task not running or already stopped.")
async def get_container(self, chat_id: str) -> MessageContainer:
"""获取或创建聊天流的消息容器 (异步,使用锁)"""

View File

@@ -732,6 +732,9 @@ def translate_timestamp_to_human_readable(timestamp: float, mode: str = "normal"
return f"{int(diff / 86400)}天前:\n"
else:
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(timestamp)) + ":\n"
elif mode == "lite":
# 只返回时分秒格式,喵~
return time.strftime("%H:%M:%S", time.localtime(timestamp))
return None

View File

@@ -5,6 +5,7 @@ import hashlib
from typing import Optional
from PIL import Image
import io
import numpy as np
from ...common.database import db
@@ -231,14 +232,16 @@ class ImageManager:
return "[图片]"
@staticmethod
def transform_gif(gif_base64: str) -> str:
"""将GIF转换为水平拼接的静态图像
def transform_gif(gif_base64: str, similarity_threshold: float = 1000.0, max_frames: int = 15) -> Optional[str]:
"""将GIF转换为水平拼接的静态图像, 跳过相似的帧
Args:
gif_base64: GIF的base64编码字符串
similarity_threshold: 判定帧相似的阈值 (MSE)越小表示要求差异越大才算不同帧默认1000.0
max_frames: 最大抽取的帧数默认15
Returns:
str: 拼接后的JPG图像的base64编码字符串
Optional[str]: 拼接后的JPG图像的base64编码字符串, 或者在失败时返回None
"""
try:
# 解码base64
@@ -246,41 +249,88 @@ class ImageManager:
gif = Image.open(io.BytesIO(gif_data))
# 收集所有帧
frames = []
all_frames = []
try:
while True:
gif.seek(len(frames))
gif.seek(len(all_frames))
# 确保是RGB格式方便比较
frame = gif.convert("RGB")
frames.append(frame.copy())
all_frames.append(frame.copy())
except EOFError:
pass
pass # 读完啦
if not frames:
raise ValueError("No frames found in GIF")
if not all_frames:
logger.warning("GIF中没有找到任何帧")
return None # 空的GIF直接返回None
# 计算需要抽取的帧的索引
total_frames = len(frames)
if total_frames <= 15:
selected_frames = frames
else:
# 均匀抽取10帧
indices = [int(i * (total_frames - 1) / 14) for i in range(15)]
selected_frames = [frames[i] for i in indices]
# --- 新的帧选择逻辑 ---
selected_frames = []
last_selected_frame_np = None
# 获取单帧的尺寸
for i, current_frame in enumerate(all_frames):
current_frame_np = np.array(current_frame)
# 第一帧总是要选的
if i == 0:
selected_frames.append(current_frame)
last_selected_frame_np = current_frame_np
continue
# 计算和上一张选中帧的差异(均方误差 MSE
if last_selected_frame_np is not None:
mse = np.mean((current_frame_np - last_selected_frame_np) ** 2)
# logger.trace(f"帧 {i} 与上一选中帧的 MSE: {mse}") # 可以取消注释来看差异值
# 如果差异够大,就选它!
if mse > similarity_threshold:
selected_frames.append(current_frame)
last_selected_frame_np = current_frame_np
# 检查是不是选够了
if len(selected_frames) >= max_frames:
# logger.debug(f"已选够 {max_frames} 帧,停止选择。")
break
# 如果差异不大就跳过这一帧啦
# --- 帧选择逻辑结束 ---
# 如果选择后连一帧都没有比如GIF只有一帧且后续处理失败或者原始GIF就没帧也返回None
if not selected_frames:
logger.warning("处理后没有选中任何帧")
return None
# logger.debug(f"总帧数: {len(all_frames)}, 选中帧数: {len(selected_frames)}")
# 获取选中的第一帧的尺寸(假设所有帧尺寸一致)
frame_width, frame_height = selected_frames[0].size
# 计算目标尺寸,保持宽高比
target_height = 200 # 固定高度
# 防止除以零
if frame_height == 0:
logger.error("帧高度为0无法计算缩放尺寸")
return None
target_width = int((target_height / frame_height) * frame_width)
# 宽度也不能是0
if target_width == 0:
logger.warning(f"计算出的目标宽度为0 (原始尺寸 {frame_width}x{frame_height})调整为1")
target_width = 1
# 调整所有帧的大小
# 调整所有选中帧的大小
resized_frames = [
frame.resize((target_width, target_height), Image.Resampling.LANCZOS) for frame in selected_frames
]
# 创建拼接图像
total_width = target_width * len(resized_frames)
# 防止总宽度为0
if total_width == 0 and len(resized_frames) > 0:
logger.warning("计算出的总宽度为0但有选中帧可能目标宽度太小")
# 至少给点宽度吧
total_width = len(resized_frames)
elif total_width == 0:
logger.error("计算出的总宽度为0且无选中帧")
return None
combined_image = Image.new("RGB", (total_width, target_height))
# 水平拼接图像
@@ -289,14 +339,17 @@ class ImageManager:
# 转换为base64
buffer = io.BytesIO()
combined_image.save(buffer, format="JPEG", quality=85)
combined_image.save(buffer, format="JPEG", quality=85) # 保存为JPEG
result_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
return result_base64
except MemoryError:
logger.error("GIF转换失败: 内存不足可能是GIF太大或帧数太多")
return None # 内存不够啦
except Exception as e:
logger.error(f"GIF转换失败: {str(e)}")
return None
logger.error(f"GIF转换失败: {str(e)}", exc_info=True) # 记录详细错误信息
return None # 其他错误也返回None
# 创建全局单例

View File

@@ -34,9 +34,12 @@ MAX_EMOJI_FOR_PROMPT = 20 # 最大允许的表情包描述数量于图片替换
class MaiEmoji:
"""定义一个表情包"""
def __init__(self, filename: str, path: str):
self.path = path # 存储目录路径
self.filename = filename
def __init__(self, full_path: str):
if not full_path:
raise ValueError("full_path cannot be empty")
self.full_path = full_path # 文件的完整路径 (包括文件名)
self.path = os.path.dirname(full_path) # 文件所在的目录路径
self.filename = os.path.basename(full_path) # 文件名
self.embedding = []
self.hash = "" # 初始为空,在创建实例时会计算
self.description = ""
@@ -48,35 +51,58 @@ class MaiEmoji:
self.format = ""
async def initialize_hash_format(self):
"""从文件创建表情包实例
参数:
file_path: 文件的完整路径
返回:
MaiEmoji: 创建的表情包实例如果失败则返回None
"""
"""从文件创建表情包实例, 计算哈希值和格式"""
image_base64 = None
image_bytes = None
try:
file_path = os.path.join(self.path, self.filename)
if not os.path.exists(file_path):
logger.error(f"[错误] 表情包文件不存在: {file_path}")
# 使用 full_path 检查文件是否存在
if not os.path.exists(self.full_path):
logger.error(f"[初始化错误] 表情包文件不存在: {self.full_path}")
self.is_deleted = True
return None
image_base64 = image_path_to_base64(file_path)
# 使用 full_path 读取文件
logger.debug(f"[初始化] 正在读取文件: {self.full_path}")
image_base64 = image_path_to_base64(self.full_path)
if image_base64 is None:
logger.error(f"[错误] 无法读取图片: {file_path}")
logger.error(f"[初始化错误] 无法读取或转换Base64: {self.full_path}")
self.is_deleted = True
return None
logger.debug(f"[初始化] 文件读取成功 (Base64预览: {image_base64[:50]}...)")
# 计算哈希值
logger.debug(f"[初始化] 正在解码Base64并计算哈希: {self.filename}")
image_bytes = base64.b64decode(image_base64)
self.hash = hashlib.md5(image_bytes).hexdigest()
logger.debug(f"[初始化] 哈希计算成功: {self.hash}")
# 获取图片格式
self.format = Image.open(io.BytesIO(image_bytes)).format.lower()
logger.debug(f"[初始化] 正在使用Pillow获取格式: {self.filename}")
try:
with Image.open(io.BytesIO(image_bytes)) as img:
self.format = img.format.lower()
logger.debug(f"[初始化] 格式获取成功: {self.format}")
except Exception as pil_error:
logger.error(f"[初始化错误] Pillow无法处理图片 ({self.filename}): {pil_error}")
logger.error(traceback.format_exc())
self.is_deleted = True
return None
# 如果所有步骤成功,返回 True
return True
except FileNotFoundError:
logger.error(f"[初始化错误] 文件在处理过程中丢失: {self.full_path}")
self.is_deleted = True
return None
except base64.binascii.Error as b64_error:
logger.error(f"[初始化错误] Base64解码失败 ({self.filename}): {b64_error}")
self.is_deleted = True
return None
except Exception as e:
logger.error(f"[错误] 初始化表情包失败: {str(e)}")
logger.error(f"[初始化错误] 初始化表情包时发生未预期错误 ({self.filename}): {str(e)}")
logger.error(traceback.format_exc())
self.is_deleted = True
return None
async def register_to_db(self):
@@ -87,61 +113,72 @@ class MaiEmoji:
"""
try:
# 确保目标目录存在
os.makedirs(EMOJI_REGISTED_DIR, exist_ok=True)
# 源路径是当前实例的完整路径
source_path = os.path.join(self.path, self.filename)
# 目标路径
destination_path = os.path.join(EMOJI_REGISTED_DIR, self.filename)
# 源路径是当前实例的完整路径 self.full_path
source_full_path = self.full_path
# 目标完整路径
destination_full_path = os.path.join(EMOJI_REGISTED_DIR, self.filename)
# 检查源文件是否存在
if not os.path.exists(source_path):
logger.error(f"[错误] 源文件不存在: {source_path}")
if not os.path.exists(source_full_path):
logger.error(f"[错误] 源文件不存在: {source_full_path}")
return False
# --- 文件移动 ---
try:
# 如果目标文件已存在,先删除 (确保移动成功)
if os.path.exists(destination_path):
os.remove(destination_path)
if os.path.exists(destination_full_path):
os.remove(destination_full_path)
os.rename(source_path, destination_path)
logger.info(f"[移动] 文件从 {source_path} 移动到 {destination_path}")
# 更新实例的路径属性为新目录
os.rename(source_full_path, destination_full_path)
logger.debug(f"[移动] 文件从 {source_full_path} 移动到 {destination_full_path}")
# 更新实例的路径属性为新路径
self.full_path = destination_full_path
self.path = EMOJI_REGISTED_DIR
# self.filename 保持不变
except Exception as move_error:
logger.error(f"[错误] 移动文件失败: {str(move_error)}")
return False # 文件移动失败,不继续
# 如果移动失败,尝试将实例状态恢复?暂时不处理,仅返回失败
return False
# --- 数据库操作 ---
try:
# 准备数据库记录 for emoji collection
emoji_record = {
"filename": self.filename,
"path": os.path.join(self.path, self.filename), # 使用更新后的路径
"path": self.path, # 存储目录路径
"full_path": self.full_path, # 存储完整文件路径
"embedding": self.embedding,
"description": self.description,
"emotion": self.emotion, # 添加情感标签字段
"emotion": self.emotion,
"hash": self.hash,
"format": self.format,
"timestamp": int(self.register_time), # 使用实例的注册时间
"timestamp": int(self.register_time),
"usage_count": self.usage_count,
"last_used_time": self.last_used_time,
}
# 使用upsert确保记录存在或被更新
db["emoji"].update_one({"hash": self.hash}, {"$set": emoji_record}, upsert=True)
logger.success(f"[注册] 表情包信息保存到数据库: {self.description}")
logger.success(f"[注册] 表情包信息保存到数据库: {self.filename} ({self.emotion})")
return True
except Exception as db_error:
logger.error(f"[错误] 保存数据库失败: {str(db_error)}")
# 考虑是否需要将文件移回?为了简化,暂时只记录错误
logger.error(f"[错误] 保存数据库失败 ({self.filename}): {str(db_error)}")
# 数据库保存失败,是否需要将文件移回?为了简化,暂时只记录错误
# 可以考虑在这里尝试删除已移动的文件,避免残留
try:
if os.path.exists(self.full_path): # full_path 此时是目标路径
os.remove(self.full_path)
logger.warning(f"[回滚] 已删除移动失败后残留的文件: {self.full_path}")
except Exception as remove_error:
logger.error(f"[错误] 回滚删除文件失败: {remove_error}")
return False
except Exception as e:
logger.error(f"[错误] 注册表情包失败: {str(e)}")
logger.error(f"[错误] 注册表情包失败 ({self.filename}): {str(e)}")
logger.error(traceback.format_exc())
return False
@@ -155,30 +192,36 @@ class MaiEmoji:
"""
try:
# 1. 删除文件
if os.path.exists(os.path.join(self.path, self.filename)):
file_to_delete = self.full_path
if os.path.exists(file_to_delete):
try:
os.remove(os.path.join(self.path, self.filename))
logger.info(f"[删除] 文件: {os.path.join(self.path, self.filename)}")
os.remove(file_to_delete)
logger.debug(f"[删除] 文件: {file_to_delete}")
except Exception as e:
logger.error(f"[错误] 删除文件失败 {os.path.join(self.path, self.filename)}: {str(e)}")
# 继续执行,即使文件删除失败尝试删除数据库记录
logger.error(f"[错误] 删除文件失败 {file_to_delete}: {str(e)}")
# 文件删除失败,但仍然尝试删除数据库记录
# 2. 删除数据库记录
result = db.emoji.delete_one({"hash": self.hash})
deleted_in_db = result.deleted_count > 0
if deleted_in_db:
logger.success(f"[删除] 成功删除表情包记录: {self.description}")
logger.info(f"[删除] 表情包数据库记录 {self.filename} (Hash: {self.hash})")
# 3. 标记对象已被删除
self.is_deleted = True
return True
else:
logger.error(f"[错误] 删除表情包记录失败: {self.hash}")
# 如果数据库记录删除失败,但文件可能已删除,记录一个警告
if not os.path.exists(file_to_delete):
logger.warning(
f"[警告] 表情包文件 {file_to_delete} 已删除,但数据库记录删除失败 (Hash: {self.hash})"
)
else:
logger.error(f"[错误] 删除表情包数据库记录失败: {self.hash}")
return False
except Exception as e:
logger.error(f"[错误] 删除表情包失败: {str(e)}")
logger.error(f"[错误] 删除表情包失败 ({self.filename}): {str(e)}")
return False
@@ -195,7 +238,7 @@ class EmojiManager:
self._scan_task = None
self.vlm = LLMRequest(model=global_config.vlm, temperature=0.3, max_tokens=1000, request_type="emoji")
self.llm_emotion_judge = LLMRequest(
model=global_config.llm_emotion_judge, max_tokens=600, temperature=0.8, request_type="emoji"
model=global_config.llm_normal, max_tokens=600, request_type="emoji"
) # 更高的温度更少的token后续可以根据情绪来调整温度
self.emoji_num = 0
@@ -208,6 +251,7 @@ class EmojiManager:
def _ensure_emoji_dir(self):
"""确保表情存储目录存在"""
os.makedirs(EMOJI_DIR, exist_ok=True)
os.makedirs(EMOJI_REGISTED_DIR, exist_ok=True)
def initialize(self):
"""初始化数据库连接和表情目录"""
@@ -264,59 +308,71 @@ class EmojiManager:
Args:
text_emotion: 输入的情感描述文本
Returns:
Optional[Tuple[str, str]]: (表情包文件路径, 表情包描述)如果没有找到则返回None
Optional[Tuple[str, str]]: (表情包完整文件路径, 表情包描述)如果没有找到则返回None
"""
try:
self._ensure_db()
time_start = time.time()
_time_start = time.time()
# 获取所有表情包
# 获取所有表情包 (从内存缓存中获取)
all_emojis = self.emoji_objects
if not all_emojis:
logger.warning("数据库中没有任何表情包")
logger.warning("内存中没有任何表情包对象")
# 可以考虑再查一次数据库?或者依赖定期任务更新
return None
# 计算每个表情包与输入文本的最大情感相似度
emoji_similarities = []
for emoji in all_emojis:
# 跳过已标记为删除的对象
if emoji.is_deleted:
continue
emotions = emoji.emotion
if not emotions:
continue
# 计算与每个emotion标签的相似度取最大值
max_similarity = 0
best_matching_emotion = "" # 记录最匹配的 emotion 喵~
for emotion in emotions:
# 使用编辑距离计算相似度
distance = self._levenshtein_distance(text_emotion, emotion)
max_len = max(len(text_emotion), len(emotion))
similarity = 1 - (distance / max_len if max_len > 0 else 0)
max_similarity = max(max_similarity, similarity)
if similarity > max_similarity: # 如果找到更相似的喵~
max_similarity = similarity
best_matching_emotion = emotion # 就记下这个 emotion 喵~
emoji_similarities.append((emoji, max_similarity))
if best_matching_emotion: # 确保有匹配的情感才添加喵~
emoji_similarities.append((emoji, max_similarity, best_matching_emotion)) # 把 emotion 也存起来喵~
# 按相似度降序排序
emoji_similarities.sort(key=lambda x: x[1], reverse=True)
# 获取前5个最相似的表情包
top_5_emojis = emoji_similarities[:10] if len(emoji_similarities) > 10 else emoji_similarities
# 获取前10个最相似的表情包
top_emojis = (
emoji_similarities[:10] if len(emoji_similarities) > 10 else emoji_similarities
) # 改个名字,更清晰喵~
if not top_5_emojis:
if not top_emojis:
logger.warning("未找到匹配的表情包")
return None
# 从前5个中随机选择一个
selected_emoji, similarity = random.choice(top_5_emojis)
# 从前个中随机选择一个
selected_emoji, similarity, matched_emotion = random.choice(top_emojis) # 把匹配的 emotion 也拿出来喵~
# 更新使用次数
self.record_usage(selected_emoji.hash)
time_end = time.time()
_time_end = time.time()
logger.info(
f"找到[{text_emotion}]表情包,用时:{time_end - time_start:.2f}秒: {selected_emoji.description} (相似度: {similarity:.4f})"
logger.info( # 使用匹配到的 emotion 记录日志喵~
f"[{text_emotion}]找到表情包: {matched_emotion} ({selected_emoji.filename}), Similarity: {similarity:.4f}"
)
return selected_emoji.path, f"[ {selected_emoji.description} ]"
# 返回完整文件路径和描述
return selected_emoji.full_path, f"[ {selected_emoji.description} ]"
except Exception as e:
logger.error(f"[错误] 获取表情包失败: {str(e)}")
@@ -364,40 +420,50 @@ class EmojiManager:
self.emoji_num = total_count
removed_count = 0
# 使用列表复制进行遍历,因为我们会在遍历过程中修改列表
for emoji in self.emoji_objects[:]:
objects_to_remove = []
for emoji in self.emoji_objects:
try:
# 跳过已经标记为删除的,避免重复处理
if emoji.is_deleted:
objects_to_remove.append(emoji) # 收集起来一次性移除
continue
# 检查文件是否存在
if not os.path.exists(emoji.path):
logger.warning(f"[检查] 表情包文件已被删除: {emoji.path}")
if not os.path.exists(emoji.full_path):
logger.warning(f"[检查] 表情包文件丢失: {emoji.full_path}")
# 执行表情包对象的删除方法
await emoji.delete()
# 从列表中移除该对象
self.emoji_objects.remove(emoji)
await emoji.delete() # delete 方法现在会标记 is_deleted
objects_to_remove.append(emoji) # 标记删除后,也收集起来移除
# 更新计数
self.emoji_num -= 1
removed_count += 1
continue
if emoji.description == None:
logger.warning(f"[检查] 表情包文件已被删除: {emoji.path}")
# 执行表情包对象的删除方法
# 检查描述是否为空 (如果为空也视为无效)
if not emoji.description:
logger.warning(f"[检查] 表情包描述为空,视为无效: {emoji.filename}")
await emoji.delete()
# 从列表中移除该对象
self.emoji_objects.remove(emoji)
# 更新计数
objects_to_remove.append(emoji)
self.emoji_num -= 1
removed_count += 1
continue
except Exception as item_error:
logger.error(f"[错误] 处理表情包记录时出错: {str(item_error)}")
logger.error(f"[错误] 处理表情包记录时出错 ({emoji.filename}): {str(item_error)}")
# 即使出错,也尝试继续检查下一个
continue
# 从 self.emoji_objects 中移除标记的对象
if objects_to_remove:
self.emoji_objects = [e for e in self.emoji_objects if e not in objects_to_remove]
# 清理 EMOJI_REGISTED_DIR 目录中未被追踪的文件
await self.clean_unused_emojis(EMOJI_REGISTED_DIR, self.emoji_objects)
# 输出清理结果
if removed_count > 0:
logger.success(f"[清理] 已清理 {removed_count} 个失效的表情包记录")
logger.info(f"[统计] 清理前: {total_count} | 清理后: {len(self.emoji_objects)}")
logger.success(f"[清理] 已清理 {removed_count} 个失效/文件丢失的表情包记录")
logger.info(f"[统计] 清理前记录数: {total_count} | 清理后有效记录数: {len(self.emoji_objects)}")
else:
logger.info(f"[检查] 已检查 {total_count} 个表情包记录,全部完好")
@@ -460,45 +526,72 @@ class EmojiManager:
await asyncio.sleep(global_config.EMOJI_CHECK_INTERVAL * 60)
async def get_all_emoji_from_db(self):
"""获取所有表情包并初始化为MaiEmoji类对象
参数:
hash: 可选,如果提供则只返回指定哈希值的表情包
返回:
list[MaiEmoji]: 表情包对象列表
"""
"""获取所有表情包并初始化为MaiEmoji类对象,更新 self.emoji_objects"""
try:
self._ensure_db()
logger.info("[数据库] 开始加载所有表情包记录...")
# 获取所有表情包
all_emoji_data = list(db.emoji.find())
# 将数据库记录转换为MaiEmoji对象
emoji_objects = []
load_errors = 0
for emoji_data in all_emoji_data:
emoji = MaiEmoji(
filename=emoji_data.get("filename", ""),
path=emoji_data.get("path", ""),
)
full_path = emoji_data.get("full_path")
if not full_path:
logger.warning(f"[加载错误] 数据库记录缺少 'full_path' 字段: {emoji_data.get('_id')}")
load_errors += 1
continue # 跳过缺少 full_path 的记录
# 设置额外属性
emoji.hash = emoji_data.get("hash", "")
emoji.usage_count = emoji_data.get("usage_count", 0)
emoji.last_used_time = emoji_data.get("last_used_time", emoji_data.get("timestamp", time.time()))
emoji.register_time = emoji_data.get("timestamp", time.time())
emoji.description = emoji_data.get("description", "")
emoji.emotion = emoji_data.get("emotion", []) # 添加情感标签的加载
emoji_objects.append(emoji)
try:
# 使用 full_path 初始化 MaiEmoji 对象
emoji = MaiEmoji(full_path=full_path)
# 存储到EmojiManager中
# 设置从数据库加载的属性
emoji.hash = emoji_data.get("hash", "")
# 如果 hash 为空,也跳过?取决于业务逻辑
if not emoji.hash:
logger.warning(f"[加载错误] 数据库记录缺少 'hash' 字段: {full_path}")
load_errors += 1
continue
emoji.description = emoji_data.get("description", "")
emoji.emotion = emoji_data.get("emotion", [])
emoji.usage_count = emoji_data.get("usage_count", 0)
# 优先使用 last_used_time否则用 timestamp最后用当前时间
last_used = emoji_data.get("last_used_time")
timestamp = emoji_data.get("timestamp")
emoji.last_used_time = (
last_used if last_used is not None else (timestamp if timestamp is not None else time.time())
)
emoji.register_time = timestamp if timestamp is not None else time.time()
emoji.format = emoji_data.get("format", "") # 加载格式
# 不需要再手动设置 path 和 filename__init__ 会自动处理
emoji_objects.append(emoji)
except ValueError as ve: # 捕获 __init__ 可能的错误
logger.error(f"[加载错误] 初始化 MaiEmoji 失败 ({full_path}): {ve}")
load_errors += 1
except Exception as e:
logger.error(f"[加载错误] 处理数据库记录时出错 ({full_path}): {str(e)}")
load_errors += 1
# 更新内存中的列表和数量
self.emoji_objects = emoji_objects
self.emoji_num = len(emoji_objects)
logger.success(f"[数据库] 加载完成: 共加载 {self.emoji_num} 个表情包记录。")
if load_errors > 0:
logger.warning(f"[数据库] 加载过程中出现 {load_errors} 个错误。")
except Exception as e:
logger.error(f"[错误] 获取所有表情包对象失败: {str(e)}")
logger.error(f"[错误] 从数据库加载所有表情包对象失败: {str(e)}")
self.emoji_objects = [] # 加载失败则清空列表
self.emoji_num = 0
async def get_emoji_from_db(self, hash=None):
"""获取所有表情包并初始化为MaiEmoji类对象
"""获取指定哈希值的表情包并初始化为MaiEmoji类对象列表 (主要用于调试或特定查找)
参数:
hash: 可选,如果提供则只返回指定哈希值的表情包
@@ -509,50 +602,73 @@ class EmojiManager:
try:
self._ensure_db()
# 准备查询条件
query = {}
if hash:
query = {"hash": hash}
# 获取所有表情包
all_emoji_data = list(db.emoji.find(query))
# 将数据库记录转换为MaiEmoji对象
emoji_objects = []
for emoji_data in all_emoji_data:
emoji = MaiEmoji(
filename=emoji_data.get("filename", ""),
path=emoji_data.get("path", ""),
else:
logger.warning(
"[查询] 未提供 hash将尝试加载所有表情包建议使用 get_all_emoji_from_db 更新管理器状态。"
)
# 设置额外属性
emoji.usage_count = emoji_data.get("usage_count", 0)
emoji.last_used_time = emoji_data.get("last_used_time", emoji_data.get("timestamp", time.time()))
emoji.register_time = emoji_data.get("timestamp", time.time())
emoji.description = emoji_data.get("description", "")
emoji.emotion = emoji_data.get("emotion", []) # 添加情感标签的加载
emoji_data_list = list(db.emoji.find(query))
emoji_objects = []
load_errors = 0
emoji_objects.append(emoji)
for emoji_data in emoji_data_list:
full_path = emoji_data.get("full_path")
if not full_path:
logger.warning(f"[加载错误] 数据库记录缺少 'full_path' 字段: {emoji_data.get('_id')}")
load_errors += 1
continue
# 存储到EmojiManager中
self.emoji_objects = emoji_objects
try:
emoji = MaiEmoji(full_path=full_path)
emoji.hash = emoji_data.get("hash", "")
if not emoji.hash:
logger.warning(f"[加载错误] 数据库记录缺少 'hash' 字段: {full_path}")
load_errors += 1
continue
emoji.description = emoji_data.get("description", "")
emoji.emotion = emoji_data.get("emotion", [])
emoji.usage_count = emoji_data.get("usage_count", 0)
last_used = emoji_data.get("last_used_time")
timestamp = emoji_data.get("timestamp")
emoji.last_used_time = (
last_used if last_used is not None else (timestamp if timestamp is not None else time.time())
)
emoji.register_time = timestamp if timestamp is not None else time.time()
emoji.format = emoji_data.get("format", "")
emoji_objects.append(emoji)
except ValueError as ve:
logger.error(f"[加载错误] 初始化 MaiEmoji 失败 ({full_path}): {ve}")
load_errors += 1
except Exception as e:
logger.error(f"[加载错误] 处理数据库记录时出错 ({full_path}): {str(e)}")
load_errors += 1
if load_errors > 0:
logger.warning(f"[查询] 加载过程中出现 {load_errors} 个错误。")
return emoji_objects
except Exception as e:
logger.error(f"[错误] 获取所有表情包对象失败: {str(e)}")
logger.error(f"[错误] 从数据库获取表情包对象失败: {str(e)}")
return []
async def get_emoji_from_manager(self, hash) -> MaiEmoji:
"""EmojiManager中获取表情包
async def get_emoji_from_manager(self, hash) -> Optional[MaiEmoji]:
"""内存中的 emoji_objects 列表获取表情包
参数:
hash:如果提供则只返回指定哈希值的表情包
hash: 要查找的表情包哈希值
返回:
MaiEmoji 或 None: 如果找到则返回 MaiEmoji 对象,否则返回 None
"""
for emoji in self.emoji_objects:
if emoji.hash == hash:
# 确保对象未被标记为删除且哈希值匹配
if not emoji.is_deleted and emoji.hash == hash:
return emoji
return None
return None # 如果循环结束还没找到,则返回 None
async def delete_emoji(self, emoji_hash: str) -> bool:
"""根据哈希值删除表情包
@@ -656,11 +772,11 @@ class EmojiManager:
# 调用大模型进行决策
decision, _ = await self.llm_emotion_judge.generate_response_async(prompt, temperature=0.8)
logger.info(f"[决策] 大模型决策结果: {decision}")
logger.info(f"[决策] 结果: {decision}")
# 解析决策结果
if "不删除" in decision:
logger.info("[决策] 决定不删除任何表情包")
logger.info("[决策] 不删除任何表情包")
return False
# 尝试从决策中提取表情包编号
@@ -673,7 +789,7 @@ class EmojiManager:
emoji_to_delete = selected_emojis[emoji_index]
# 删除选定的表情包
logger.info(f"[决策] 决定删除表情包: {emoji_to_delete.description}")
logger.info(f"[决策] 删除表情包: {emoji_to_delete.description}")
delete_success = await self.delete_emoji(emoji_to_delete.hash)
if delete_success:
@@ -682,7 +798,7 @@ class EmojiManager:
if register_success:
self.emoji_objects.append(new_emoji)
self.emoji_num += 1
logger.success(f"[成功] 注册表情包: {new_emoji.description}")
logger.success(f"[成功] 注册: {new_emoji.filename}")
return True
else:
logger.error(f"[错误] 注册表情包到数据库失败: {new_emoji.filename}")
@@ -719,10 +835,10 @@ class EmojiManager:
# 调用AI获取描述
if image_format == "gif" or image_format == "GIF":
image_base64 = image_manager.transform_gif(image_base64)
prompt = "这是一个动态图表情包,每一张图代表了动态图的某一帧,黑色背景代表透明,详细描述一下表情包表达的情感和内容,请关注其幽默和讽刺意味"
prompt = "这是一个动态图表情包,每一张图代表了动态图的某一帧,黑色背景代表透明,描述一下表情包表达的情感和内容,描述细节,从互联网梗,meme的角度去分析"
description, _ = await self.vlm.generate_response_for_image(prompt, image_base64, "jpg")
else:
prompt = "这是一个表情包,请详细描述一下表情包所表达的情感和内容,请关注其幽默和讽刺意味"
prompt = "这是一个表情包,请详细描述一下表情包所表达的情感和内容,描述细节,从互联网梗,meme的角度去分析"
description, _ = await self.vlm.generate_response_for_image(prompt, image_base64, image_format)
# 审核表情包
@@ -741,17 +857,22 @@ class EmojiManager:
# 分析情感含义
emotion_prompt = f"""
基于这个表情包的描述:'{description}'请列出1-2个可能的情感标签每个标签用一个词组表示格式如下
幽默的讽刺
悲伤的无奈
愤怒的抗议
愤怒的讽刺
直接输出词组,词组检用逗号分隔。"""
请你识别这个表情包的含义和适用场景给我简短的描述每个描述不要超过15个字
这是一个基于这个表情包的描述:'{description}'
你可以关注其幽默和讽刺意味,动用贴吧,微博,小红书的知识,必须从互联网梗,meme的角度去分析
请直接输出描述,不要出现任何其他内容,如果有多个描述,可以用逗号分隔
"""
emotions_text, _ = await self.llm_emotion_judge.generate_response_async(emotion_prompt, temperature=0.7)
# 处理情感列表
emotions = [e.strip() for e in emotions_text.split(",") if e.strip()]
# 根据情感标签数量随机选择喵~超过5个选3个超过2个选2个
if len(emotions) > 5:
emotions = random.sample(emotions, 3)
elif len(emotions) > 2:
emotions = random.sample(emotions, 2)
return f"[表情包:{description}]", emotions
except Exception as e:
@@ -767,100 +888,176 @@ class EmojiManager:
Returns:
bool: 注册是否成功
"""
file_full_path = os.path.join(EMOJI_DIR, filename)
if not os.path.exists(file_full_path):
logger.error(f"[注册失败] 文件不存在: {file_full_path}")
return False
try:
# 使用MaiEmoji类创建表情包实例
new_emoji = MaiEmoji(filename, EMOJI_DIR)
await new_emoji.initialize_hash_format()
emoji_base64 = image_path_to_base64(os.path.join(EMOJI_DIR, filename))
description, emotions = await self.build_emoji_description(emoji_base64)
if description == "" or description == None:
# 1. 创建 MaiEmoji 实例并初始化哈希和格式
new_emoji = MaiEmoji(full_path=file_full_path)
init_result = await new_emoji.initialize_hash_format()
if init_result is None or new_emoji.is_deleted: # 初始化失败或文件读取错误
logger.error(f"[注册失败] 初始化哈希和格式失败: {filename}")
# 是否需要删除源文件?看业务需求,暂时不删
return False
new_emoji.description = description
new_emoji.emotion = emotions
# 检查是否已经注册过
# 对比内存中是否存在相同哈希值的表情包
# 2. 检查哈希是否已存在 (在内存中检查)
if await self.get_emoji_from_manager(new_emoji.hash):
logger.warning(f"[警告] 表情包已存在: {filename}")
logger.warning(f"[注册跳过] 表情包已存在 (Hash: {new_emoji.hash}): {filename}")
# 删除重复的源文件
try:
os.remove(file_full_path)
logger.info(f"[清理] 删除重复的待注册文件: {filename}")
except Exception as e:
logger.error(f"[错误] 删除重复文件失败: {str(e)}")
return False # 返回 False 表示未注册新表情
# 3. 构建描述和情感
try:
emoji_base64 = image_path_to_base64(file_full_path)
if emoji_base64 is None: # 再次检查读取
logger.error(f"[注册失败] 无法读取图片以生成描述: {filename}")
return False
description, emotions = await self.build_emoji_description(emoji_base64)
if not description: # 检查描述是否成功生成或审核通过
logger.warning(f"[注册失败] 未能生成有效描述或审核未通过: {filename}")
# 删除未能生成描述的文件
try:
os.remove(file_full_path)
logger.info(f"[清理] 删除描述生成失败的文件: {filename}")
except Exception as e:
logger.error(f"[错误] 删除描述生成失败文件时出错: {str(e)}")
return False
new_emoji.description = description
new_emoji.emotion = emotions
except Exception as build_desc_error:
logger.error(f"[注册失败] 生成描述/情感时出错 ({filename}): {build_desc_error}")
# 同样考虑删除文件
try:
os.remove(file_full_path)
logger.info(f"[清理] 删除描述生成异常的文件: {filename}")
except Exception as e:
logger.error(f"[错误] 删除描述生成异常文件时出错: {str(e)}")
return False
# 4. 检查容量并决定是否替换或直接注册
if self.emoji_num >= self.emoji_num_max:
logger.warning(f"表情包数量已达到上限({self.emoji_num}/{self.emoji_num_max})")
logger.warning(f"表情包数量已达到上限({self.emoji_num}/{self.emoji_num_max}),尝试替换...")
replaced = await self.replace_a_emoji(new_emoji)
if not replaced:
logger.error("[错误] 替换表情包失败,无法完成注册")
logger.error("[注册失败] 替换表情包失败,无法完成注册")
# 替换失败,删除新表情包文件
try:
os.remove(file_full_path) # new_emoji 的 full_path 此时还是源路径
logger.info(f"[清理] 删除替换失败的新表情文件: {filename}")
except Exception as e:
logger.error(f"[错误] 删除替换失败文件时出错: {str(e)}")
return False
# 替换成功时replace_a_emoji 内部已处理 new_emoji 的注册和添加到列表
return True
else:
# 修复:等待异步注册完成
register_success = await new_emoji.register_to_db()
# 直接注册
register_success = await new_emoji.register_to_db() # 此方法会移动文件并更新 DB
if register_success:
# 注册成功后,添加到内存列表
self.emoji_objects.append(new_emoji)
self.emoji_num += 1
logger.success(f"[成功] 注册表情包: {filename}")
logger.success(f"[成功] 注册表情包: {filename} (当前: {self.emoji_num}/{self.emoji_num_max})")
return True
else:
logger.error(f"[错误] 注册表情包到数据库失败: {filename}")
logger.error(f"[注册失败] 保存表情包到数据库/移动文件失败: {filename}")
# register_to_db 失败时,内部会尝试清理移动后的文件,源文件可能还在
# 是否需要删除源文件?
if os.path.exists(file_full_path):
try:
os.remove(file_full_path)
logger.info(f"[清理] 删除注册失败的源文件: {filename}")
except Exception as e:
logger.error(f"[错误] 删除注册失败源文件时出错: {str(e)}")
return False
except Exception as e:
logger.error(f"[错误] 注册表情包失败: {str(e)}")
logger.error(f"[错误] 注册表情包时发生未预期错误 ({filename}): {str(e)}")
logger.error(traceback.format_exc())
# 尝试删除源文件以避免循环处理
if os.path.exists(file_full_path):
try:
os.remove(file_full_path)
logger.info(f"[清理] 删除处理异常的源文件: {filename}")
except Exception as remove_error:
logger.error(f"[错误] 删除异常处理文件时出错: {remove_error}")
return False
async def clear_temp_emoji(self):
"""每天清理临时表情包
"""清理临时表情包
清理/data/emoji和/data/image目录下的所有文件
当目录中文件数超过50时会全部删除
当目录中文件数超过100时会全部删除
"""
logger.info("[清理] 开始清理临时表情包...")
logger.info("[清理] 开始清理缓存...")
# 清理emoji目录
emoji_dir = os.path.join(BASE_DIR, "emoji")
if os.path.exists(emoji_dir):
files = os.listdir(emoji_dir)
# 如果文件数超过50就全部删除
if len(files) > 50:
if len(files) > 100:
for filename in files:
file_path = os.path.join(emoji_dir, filename)
if os.path.isfile(file_path):
os.remove(file_path)
logger.debug(f"[清理] 删除表情包文件: {filename}")
logger.debug(f"[清理] 删除: {filename}")
# 清理image目录
image_dir = os.path.join(BASE_DIR, "image")
if os.path.exists(image_dir):
files = os.listdir(image_dir)
# 如果文件数超过50就全部删除
if len(files) > 50:
if len(files) > 100:
for filename in files:
file_path = os.path.join(image_dir, filename)
if os.path.isfile(file_path):
os.remove(file_path)
logger.debug(f"[清理] 删除图片文件: {filename}")
logger.debug(f"[清理] 删除图片: {filename}")
logger.success("[清理] 临时文件清理完成")
logger.success("[清理] 完成")
async def clean_unused_emojis(self, emoji_dir, emoji_objects):
"""清理未使用的表情包文件
遍历指定文件夹中的所有文件删除未在emoji_objects列表中的文件
"""
# 获取所有表情包路径
emoji_paths = {emoji.path for emoji in emoji_objects}
"""清理指定目录中未被 emoji_objects 追踪的表情包文件"""
if not os.path.exists(emoji_dir):
logger.warning(f"[清理] 目标目录不存在,跳过清理: {emoji_dir}")
return
# 遍历文件夹中的所有文件
for file_name in os.listdir(emoji_dir):
file_path = os.path.join(emoji_dir, file_name)
try:
# 获取内存中所有有效表情包的完整路径集合
tracked_full_paths = {emoji.full_path for emoji in emoji_objects if not emoji.is_deleted}
cleaned_count = 0
# 检查文件是否在表情包路径列表中
if file_path not in emoji_paths:
try:
# 删除未在表情包列表中的文件
os.remove(file_path)
logger.info(f"[清理] 删除未使用的表情包文件: {file_path}")
except Exception as e:
logger.error(f"[错误] 删除文件时出错: {str(e)}")
# 遍历指定目录中的所有文件
for file_name in os.listdir(emoji_dir):
file_full_path = os.path.join(emoji_dir, file_name)
# 确保处理的是文件而不是子目录
if not os.path.isfile(file_full_path):
continue
# 如果文件不在被追踪的集合中,则删除
if file_full_path not in tracked_full_paths:
try:
os.remove(file_full_path)
logger.info(f"[清理] 删除未追踪的表情包文件: {file_full_path}")
cleaned_count += 1
except Exception as e:
logger.error(f"[错误] 删除文件时出错 ({file_full_path}): {str(e)}")
if cleaned_count > 0:
logger.success(f"[清理] 在目录 {emoji_dir} 中清理了 {cleaned_count} 个破损表情包。")
else:
logger.info(f"[清理] 目录 {emoji_dir} 中没有需要清理的。")
except Exception as e:
logger.error(f"[错误] 清理未使用表情包文件时出错 ({emoji_dir}): {str(e)}")
# 创建全局单例

View File

@@ -2,6 +2,7 @@ import asyncio
import time
import traceback
import random # <--- 添加导入
import json # <--- 确保导入 json
from typing import List, Optional, Dict, Any, Deque, Callable, Coroutine
from collections import deque
from src.plugins.chat.message import MessageRecv, BaseMessageInfo, MessageThinking, MessageSending
@@ -14,9 +15,7 @@ from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
from src.plugins.chat.utils_image import image_path_to_base64 # Local import needed after move
from src.plugins.utils.timer_calculator import Timer # <--- Import Timer
from src.do_tool.tool_use import ToolUser
from src.plugins.emoji_system.emoji_manager import emoji_manager
from src.plugins.utils.json_utils import process_llm_tool_calls, extract_tool_call_arguments
from src.heart_flow.sub_mind import SubMind
from src.heart_flow.observation import Observation
from src.plugins.heartFC_chat.heartflow_prompt_builder import global_prompt_manager, prompt_builder
@@ -30,12 +29,14 @@ from src.plugins.moods.moods import MoodManager
from src.individuality.individuality import Individuality
INITIAL_DURATION = 60.0
WAITING_TIME_THRESHOLD = 300 # 等待新消息时间阈值,单位秒
EMOJI_SEND_PRO = 0.3 # 设置一个概率,比如 30% 才真的发
logger = get_logger("interest") # Logger Name Changed
CONSECUTIVE_NO_REPLY_THRESHOLD = 3 # 连续不回复的阈值
logger = get_logger("hfc") # Logger Name Changed
# 默认动作定义
@@ -117,35 +118,6 @@ class ActionManager:
"""重置为默认动作集"""
self._available_actions = DEFAULT_ACTIONS.copy()
def get_planner_tool_definition(self) -> List[Dict[str, Any]]:
"""获取当前动作集对应的规划器工具定义"""
return [
{
"type": "function",
"function": {
"name": "decide_reply_action",
"description": "根据当前聊天内容和上下文,决定机器人是否应该回复以及如何回复。",
"parameters": {
"type": "object",
"properties": {
"action": {
"type": "string",
"enum": list(self._available_actions.keys()),
"description": "决定采取的行动:"
+ ", ".join([f"'{k}'({v})" for k, v in self._available_actions.items()]),
},
"reasoning": {"type": "string", "description": "做出此决定的简要理由。"},
"emoji_query": {
"type": "string",
"description": "如果行动是'emoji_reply',指定表情的主题或概念。如果行动是'text_reply'且希望在文本后追加表情,也在此指定表情主题。",
},
},
"required": ["action", "reasoning"],
},
},
}
]
# 在文件开头添加自定义异常类
class HeartFCError(Exception):
@@ -179,8 +151,6 @@ class HeartFChatting:
其生命周期现在由其关联的 SubHeartflow 的 FOCUSED 状态控制。
"""
CONSECUTIVE_NO_REPLY_THRESHOLD = 3 # 连续不回复的阈值
def __init__(
self,
chat_id: str,
@@ -222,7 +192,6 @@ class HeartFChatting:
max_tokens=256,
request_type="response_heartflow",
)
self.tool_user = ToolUser()
self.heart_fc_sender = HeartFCSender()
# LLM规划器配置
@@ -261,7 +230,7 @@ class HeartFChatting:
self.log_prefix = f"[{chat_manager.get_stream_name(self.stream_id) or self.stream_id}]"
self._initialized = True
logger.info(f"麦麦感觉到了,可以开始认真水群{self.log_prefix} ")
logger.debug(f"{self.log_prefix}麦麦感觉到了,可以开始认真水群 ")
return True
async def start(self):
@@ -292,7 +261,7 @@ class HeartFChatting:
pass # 忽略取消或超时错误
self._loop_task = None # 清理旧任务引用
logger.info(f"{self.log_prefix} 启动认真水群(HFC)主循环...")
logger.debug(f"{self.log_prefix} 启动认真水群(HFC)主循环...")
# 创建新的循环任务
self._loop_task = asyncio.create_task(self._hfc_loop())
# 添加完成回调
@@ -470,6 +439,16 @@ class HeartFChatting:
# execute:执行
# 在此处添加日志记录
if action == "text_reply":
action_str = "回复"
elif action == "emoji_reply":
action_str = "回复表情"
else:
action_str = "不回复"
logger.info(f"{self.log_prefix} 麦麦决定'{action_str}', 原因'{reasoning}'")
return await self._handle_action(
action, reasoning, planner_result.get("emoji_query", ""), cycle_timers, planner_start_db_time
)
@@ -644,14 +623,14 @@ class HeartFChatting:
self._lian_xu_bu_hui_fu_ci_shu += 1
self._lian_xu_deng_dai_shi_jian += dang_qian_deng_dai # 累加等待时间
logger.debug(
f"{self.log_prefix} 连续不回复计数增加: {self._lian_xu_bu_hui_fu_ci_shu}/{self.CONSECUTIVE_NO_REPLY_THRESHOLD}, "
f"{self.log_prefix} 连续不回复计数增加: {self._lian_xu_bu_hui_fu_ci_shu}/{CONSECUTIVE_NO_REPLY_THRESHOLD}, "
f"本次等待: {dang_qian_deng_dai:.2f}秒, 累计等待: {self._lian_xu_deng_dai_shi_jian:.2f}"
)
# 检查是否同时达到次数和时间阈值
time_threshold = 0.66 * WAITING_TIME_THRESHOLD * self.CONSECUTIVE_NO_REPLY_THRESHOLD
time_threshold = 0.66 * WAITING_TIME_THRESHOLD * CONSECUTIVE_NO_REPLY_THRESHOLD
if (
self._lian_xu_bu_hui_fu_ci_shu >= self.CONSECUTIVE_NO_REPLY_THRESHOLD
self._lian_xu_bu_hui_fu_ci_shu >= CONSECUTIVE_NO_REPLY_THRESHOLD
and self._lian_xu_deng_dai_shi_jian >= time_threshold
):
logger.info(
@@ -661,7 +640,7 @@ class HeartFChatting:
)
# 调用回调。注意:这里不重置计数器和时间,依赖回调函数成功改变状态来隐式重置上下文。
await self.on_consecutive_no_reply_callback()
elif self._lian_xu_bu_hui_fu_ci_shu >= self.CONSECUTIVE_NO_REPLY_THRESHOLD:
elif self._lian_xu_bu_hui_fu_ci_shu >= CONSECUTIVE_NO_REPLY_THRESHOLD:
# 仅次数达到阈值,但时间未达到
logger.debug(
f"{self.log_prefix} 连续不回复次数达到阈值 ({self._lian_xu_bu_hui_fu_ci_shu}次) "
@@ -784,41 +763,36 @@ class HeartFChatting:
async def _planner(self, current_mind: str, cycle_timers: dict, is_re_planned: bool = False) -> Dict[str, Any]:
"""
规划器 (Planner): 使用LLM根据上下文决定是否和如何回复。
重构为让LLM返回结构化JSON文本然后在代码中解析。
参数:
current_mind: 子思维的当前思考结果
cycle_timers: 计时器字典
is_re_planned: 是否为重新规划
is_re_planned: 是否为重新规划 (此重构中暂时简化,不处理 is_re_planned 的特殊逻辑)
"""
logger.info(f"{self.log_prefix}[Planner] 开始{'重新' if is_re_planned else ''}执行规划器")
logger.info(f"{self.log_prefix}开始想要做什么")
# --- 新增:检查历史动作并调整可用动作 ---
lian_xu_wen_ben_hui_fu = 0 # 连续文本回复次数
actions_to_remove_temporarily = []
probability_roll = random.random() # 在循环外掷骰子一次,用于概率判断
# 反向遍历最近的循环历史
# --- 检查历史动作并决定临时移除动作 (逻辑保持不变) ---
lian_xu_wen_ben_hui_fu = 0
probability_roll = random.random()
for cycle in reversed(self._cycle_history):
# 只关心实际执行了动作的循环
if cycle.action_taken:
if cycle.action_type == "text_reply":
lian_xu_wen_ben_hui_fu += 1
else:
break # 遇到非文本回复,中断计数
# 检查最近的3个循环即可避免检查过多历史 (如果历史很长)
break
if len(self._cycle_history) > 0 and cycle.cycle_id <= self._cycle_history[0].cycle_id + (
len(self._cycle_history) - 4
):
break
logger.debug(f"{self.log_prefix}[Planner] 检测到连续文本回复次数: {lian_xu_wen_ben_hui_fu}")
# 根据连续次数决定临时移除哪些动作
if lian_xu_wen_ben_hui_fu >= 3:
logger.info(f"{self.log_prefix}[Planner] 连续回复 >= 3 次,强制移除 text_reply 和 emoji_reply")
actions_to_remove_temporarily.extend(["text_reply", "emoji_reply"])
elif lian_xu_wen_ben_hui_fu == 2:
if probability_roll < 0.8: # 80% 概率
if probability_roll < 0.8:
logger.info(f"{self.log_prefix}[Planner] 连续回复 2 次80% 概率移除 text_reply 和 emoji_reply (触发)")
actions_to_remove_temporarily.extend(["text_reply", "emoji_reply"])
else:
@@ -826,168 +800,179 @@ class HeartFChatting:
f"{self.log_prefix}[Planner] 连续回复 2 次80% 概率移除 text_reply 和 emoji_reply (未触发)"
)
elif lian_xu_wen_ben_hui_fu == 1:
if probability_roll < 0.4: # 40% 概率
if probability_roll < 0.4:
logger.info(f"{self.log_prefix}[Planner] 连续回复 1 次40% 概率移除 text_reply (触发)")
actions_to_remove_temporarily.append("text_reply")
else:
logger.info(f"{self.log_prefix}[Planner] 连续回复 1 次40% 概率移除 text_reply (未触发)")
# 如果 lian_xu_wen_ben_hui_fu == 0则不移除任何动作
# --- 结束:检查历史动作 ---
# --- 结束检查历史动作 ---
# 获取观察信息
observation = self.observations[0]
if is_re_planned:
await observation.observe()
# if is_re_planned: # 暂时简化,不处理重新规划
# await observation.observe()
observed_messages = observation.talking_message
observed_messages_str = observation.talking_message_str_truncate
# --- 使用 LLM 进行决策 --- #
reasoning = "默认决策或获取决策失败"
llm_error = False # LLM错误标志
arguments = None # 初始化参数变量
emoji_query = "" # <--- 在这里初始化 emoji_query
# --- 使用 LLM 进行决策 (JSON 输出模式) --- #
action = "no_reply" # 默认动作
reasoning = "规划器初始化默认"
emoji_query = ""
llm_error = False # LLM 请求或解析错误标志
# 获取我们将传递给 prompt 构建器和用于验证的当前可用动作
current_available_actions = self.action_manager.get_available_actions()
try:
# --- 新增:应用临时动作移除 ---
# --- 应用临时动作移除 ---
if actions_to_remove_temporarily:
self.action_manager.temporarily_remove_actions(actions_to_remove_temporarily)
# 更新 current_available_actions 以反映移除后的状态
current_available_actions = self.action_manager.get_available_actions()
logger.debug(
f"{self.log_prefix}[Planner] 临时移除的动作: {actions_to_remove_temporarily}, 当前可用: {list(self.action_manager.get_available_actions().keys())}"
f"{self.log_prefix}[Planner] 临时移除的动作: {actions_to_remove_temporarily}, 当前可用: {list(current_available_actions.keys())}"
)
# --- 构建提示词 ---
replan_prompt_str = ""
if is_re_planned:
replan_prompt_str = await self._build_replan_prompt(
self._current_cycle.action_type, self._current_cycle.reasoning
)
# --- 构建提示词 (调用修改后的 _build_planner_prompt) ---
# replan_prompt_str = "" # 暂时简化
# if is_re_planned:
# replan_prompt_str = await self._build_replan_prompt(
# self._current_cycle.action_type, self._current_cycle.reasoning
# )
prompt = await self._build_planner_prompt(
observed_messages_str, current_mind, self.sub_mind.structured_info, replan_prompt_str
observed_messages_str,
current_mind,
self.sub_mind.structured_info,
"", # replan_prompt_str,
current_available_actions, # <--- 传入当前可用动作
)
# --- 调用 LLM ---
# --- 调用 LLM (普通文本生成) ---
llm_content = None
try:
planner_tools = self.action_manager.get_planner_tool_definition()
logger.debug(f"{self.log_prefix}[Planner] 本次使用的工具定义: {planner_tools}") # 记录本次使用的工具
_response_text, _reasoning_content, tool_calls = await self.planner_llm.generate_response_tool_async(
prompt=prompt,
tools=planner_tools,
)
logger.debug(f"{self.log_prefix}[Planner] 原始人 LLM响应: {_response_text}")
# 假设 LLMRequest 有 generate_response 方法返回 (content, reasoning, model_name)
# 我们只需要 content
# !! 注意:这里假设 self.planner_llmgenerate_response 方法
# !! 如果你的 LLMRequest 类使用的是其他方法名,请相应修改
llm_content, _, _ = await self.planner_llm.generate_response(prompt=prompt)
logger.debug(f"{self.log_prefix}[Planner] LLM 原始 JSON 响应 (预期): {llm_content}")
except Exception as req_e:
logger.error(f"{self.log_prefix}[Planner] LLM请求执行失败: {req_e}")
action = "error"
reasoning = f"LLM请求失败: {req_e}"
logger.error(f"{self.log_prefix}[Planner] LLM 请求执行失败: {req_e}")
reasoning = f"LLM 请求失败: {req_e}"
llm_error = True
# 直接返回错误结果
return {
"action": action,
"reasoning": reasoning,
"emoji_query": "",
"current_mind": current_mind,
"observed_messages": observed_messages,
"llm_error": llm_error,
}
# 直接使用默认动作返回错误结果
action = "no_reply" # 明确设置为默认值
emoji_query = "" # 明确设置为空
# 不再立即返回,而是继续执行 finally 块以恢复动作
# return { ... }
# 默认错误状态
action = "error"
reasoning = "处理工具调用时出错"
llm_error = True
# --- 解析 LLM 返回的 JSON (仅当 LLM 请求未出错时进行) ---
if not llm_error and llm_content:
try:
# 尝试去除可能的 markdown 代码块标记
cleaned_content = (
llm_content.strip().removeprefix("```json").removeprefix("```").removesuffix("```").strip()
)
if not cleaned_content:
raise json.JSONDecodeError("Cleaned content is empty", cleaned_content, 0)
parsed_json = json.loads(cleaned_content)
# 1. 验证工具调用
success, valid_tool_calls, error_msg = process_llm_tool_calls(
tool_calls, log_prefix=f"{self.log_prefix}[Planner] "
)
# 提取决策,提供默认值
extracted_action = parsed_json.get("action", "no_reply")
extracted_reasoning = parsed_json.get("reasoning", "LLM未提供理由")
extracted_emoji_query = parsed_json.get("emoji_query", "")
if success and valid_tool_calls:
# 2. 提取第一个调用并获取参数
first_tool_call = valid_tool_calls[0]
tool_name = first_tool_call.get("function", {}).get("name")
arguments = extract_tool_call_arguments(first_tool_call, None)
# 3. 检查名称和参数
expected_tool_name = "decide_reply_action"
if tool_name == expected_tool_name and arguments is not None:
# 4. 成功,提取决策
extracted_action = arguments.get("action", "no_reply")
# 验证动作
if extracted_action not in self.action_manager.get_available_actions():
# 如果LLM返回了一个此时不该用的动作因为被临时移除了
# 或者完全无效的动作
# 验证动作是否在当前可用列表中
# !! 使用调用 prompt 时实际可用的动作列表进行验证
if extracted_action not in current_available_actions:
logger.warning(
f"{self.log_prefix}[Planner] LLM返回了当前不可用或无效的动作: {extracted_action},将强制使用 'no_reply'"
f"{self.log_prefix}[Planner] LLM 返回了当前不可用或无效的动作: '{extracted_action}' (可用: {list(current_available_actions.keys())}),将强制使用 'no_reply'"
)
action = "no_reply"
reasoning = f"LLM返回了当前不可用的动作: {extracted_action}"
reasoning = f"LLM 返回了当前不可用的动作 '{extracted_action}' (可用: {list(current_available_actions.keys())})。原始理由: {extracted_reasoning}"
emoji_query = ""
llm_error = False # 视为逻辑修正而非 LLM 错误
# --- 检查 'no_reply' 是否也恰好被移除了 (极端情况) ---
if "no_reply" not in self.action_manager.get_available_actions():
# 检查 no_reply 是否也恰好被移除了 (极端情况)
if "no_reply" not in current_available_actions:
logger.error(
f"{self.log_prefix}[Planner] 严重错误:'no_reply' 动作也不可用!无法执行任何动作。"
)
action = "error" # 回退到错误状态
reasoning = "无法执行任何有效动作,包括 no_reply"
llm_error = True
llm_error = True # 标记为严重错误
else:
llm_error = False # 视为逻辑修正而非 LLM 错误
else:
# 动作有效且可用,使用提取的值
# 动作有效且可用
action = extracted_action
reasoning = arguments.get("reasoning", "未提供理由")
emoji_query = arguments.get("emoji_query", "")
llm_error = False # 成功处理
# 记录决策结果
reasoning = extracted_reasoning
emoji_query = extracted_emoji_query
llm_error = False # 解析成功
logger.debug(
f"{self.log_prefix}[要做什么]\nPrompt:\n{prompt}\n\n决策结果: {action}, 理由: {reasoning}, 表情查询: '{emoji_query}'"
f"{self.log_prefix}[要做什么]\nPrompt:\n{prompt}\n\n决策结果 (来自JSON): {action}, 理由: {reasoning}, 表情查询: '{emoji_query}'"
)
elif tool_name != expected_tool_name:
reasoning = f"LLM返回了非预期的工具: {tool_name}"
logger.warning(f"{self.log_prefix}[Planner] {reasoning}")
else: # arguments is None
reasoning = f"无法提取工具 {tool_name} 的参数"
logger.warning(f"{self.log_prefix}[Planner] {reasoning}")
elif not success:
reasoning = f"验证工具调用失败: {error_msg}"
logger.warning(f"{self.log_prefix}[Planner] {reasoning}")
else: # not valid_tool_calls
# 如果没有有效的工具调用,我们需要检查 'no_reply' 是否是当前唯一可用的动作
available_actions = list(self.action_manager.get_available_actions().keys())
if available_actions == ["no_reply"]:
logger.info(
f"{self.log_prefix}[Planner] LLM未返回工具调用但当前唯一可用动作是 'no_reply',将执行 'no_reply'"
)
action = "no_reply"
reasoning = "LLM未返回工具调用且当前仅 'no_reply' 可用"
emoji_query = ""
llm_error = False # 视为逻辑选择而非错误
else:
reasoning = "LLM未返回有效的工具调用"
logger.warning(f"{self.log_prefix}[Planner] {reasoning}")
# llm_error 保持为 True
# 如果 llm_error 仍然是 True说明在处理过程中有错误发生
except Exception as llm_e:
logger.error(f"{self.log_prefix}[Planner] Planner LLM处理过程中发生意外错误: {llm_e}")
except json.JSONDecodeError as json_e:
logger.warning(
f"{self.log_prefix}[Planner] 解析LLM响应JSON失败: {json_e}. LLM原始输出: '{llm_content}'"
)
reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_reply'."
action = "no_reply" # 解析失败则默认不回复
emoji_query = ""
llm_error = True # 标记解析错误
except Exception as parse_e:
logger.error(f"{self.log_prefix}[Planner] 处理LLM响应时发生意外错误: {parse_e}")
reasoning = f"处理LLM响应时发生意外错误: {parse_e}. 将使用默认动作 'no_reply'."
action = "no_reply"
emoji_query = ""
llm_error = True
elif not llm_error and not llm_content:
# LLM 请求成功但返回空内容
logger.warning(f"{self.log_prefix}[Planner] LLM 返回了空内容。")
reasoning = "LLM 返回了空内容,使用默认动作 'no_reply'."
action = "no_reply"
emoji_query = ""
llm_error = True # 标记为空响应错误
# 如果 llm_error 在此阶段为 True意味着请求成功但解析失败或返回空
# 如果 llm_error 在请求阶段就为 True则跳过了此解析块
except Exception as outer_e:
logger.error(f"{self.log_prefix}[Planner] Planner 处理过程中发生意外错误: {outer_e}")
logger.error(traceback.format_exc())
action = "error"
reasoning = f"Planner内部处理错误: {llm_e}"
action = "error" # 发生未知错误,标记为 error 动作
reasoning = f"Planner 内部处理错误: {outer_e}"
emoji_query = ""
llm_error = True
# --- 新增:确保动作恢复 ---
finally:
if actions_to_remove_temporarily: # 只有当确实移除了动作时才需要恢复
# --- 确保动作恢复 ---
# 检查 self._original_actions_backup 是否有值来判断是否需要恢复
if self.action_manager._original_actions_backup is not None:
self.action_manager.restore_actions()
logger.debug(
f"{self.log_prefix}[Planner] 恢复了原始动作集, 当前可用: {list(self.action_manager.get_available_actions().keys())}"
)
# --- 结束确保动作恢复 ---
# --- 结束 LLM 决策 --- #
# --- 结束确保动作恢复 ---
# --- 概率性忽略文本回复附带的表情 (逻辑保持不变) ---
if action == "text_reply" and emoji_query:
logger.debug(f"{self.log_prefix}[Planner] 大模型建议文字回复带表情: '{emoji_query}'")
if random.random() > EMOJI_SEND_PRO:
logger.info(
f"{self.log_prefix}但是麦麦这次不想加表情 ({1 - EMOJI_SEND_PRO:.0%}),忽略表情 '{emoji_query}'"
)
emoji_query = "" # 清空表情请求
else:
logger.info(f"{self.log_prefix}好吧,加上表情 '{emoji_query}'")
# --- 结束概率性忽略 ---
# 返回结果字典
return {
"action": action,
"reasoning": reasoning,
"emoji_query": emoji_query,
"current_mind": current_mind,
"observed_messages": observed_messages,
"llm_error": llm_error,
"llm_error": llm_error, # 返回错误状态
}
async def _get_anchor_message(self) -> Optional[MessageRecv]:
@@ -1016,9 +1001,7 @@ class HeartFChatting:
}
anchor_message = MessageRecv(placeholder_msg_dict)
anchor_message.update_chat_stream(self.chat_stream)
logger.info(
f"{self.log_prefix} Created placeholder anchor message: ID={anchor_message.message_info.message_id}"
)
logger.debug(f"{self.log_prefix} 创建占位符锚点消息: ID={anchor_message.message_info.message_id}")
return anchor_message
except Exception as e:
@@ -1131,8 +1114,9 @@ class HeartFChatting:
current_mind: Optional[str],
structured_info: Dict[str, Any],
replan_prompt: str,
current_available_actions: Dict[str, str],
) -> str:
"""构建 Planner LLM 的提示词"""
"""构建 Planner LLM 的提示词 (获取模板并填充数据)"""
try:
# 准备结构化信息块
structured_info_block = ""
@@ -1148,12 +1132,13 @@ class HeartFChatting:
else:
chat_content_block = "当前没有观察到新的聊天内容。\n"
# 准备当前思维块
# 准备当前思维块 (修改以匹配模板)
current_mind_block = ""
if current_mind:
current_mind_block = f"{current_mind}"
# 模板中占位符是 {current_mind_block},它期望包含"你的内心想法:"的前缀
current_mind_block = f"你的内心想法:\n{current_mind}"
else:
current_mind_block = "[没有特别的想法]"
current_mind_block = "你的内心想法:\n[没有特别的想法]"
# 准备循环信息块 (分析最近的活动循环)
recent_active_cycles = []
@@ -1193,23 +1178,40 @@ class HeartFChatting:
# 包装提示块,增加可读性,即使没有连续回复也给个标记
if cycle_info_block:
# 模板中占位符是 {cycle_info_block},它期望包含"【近期回复历史】"的前缀
cycle_info_block = f"\n【近期回复历史】\n{cycle_info_block}\n"
else:
# 如果最近的活动循环不是文本回复,或者没有活动循环
cycle_info_block = "\n【近期回复历史】\n(最近没有连续文本回复)\n"
individuality = Individuality.get_instance()
# 模板中占位符是 {prompt_personality}
prompt_personality = individuality.get_prompt(x_person=2, level=2)
# 获取提示词模板并填充数据
prompt = (await global_prompt_manager.get_prompt_async("planner_prompt")).format(
# --- 构建可用动作描述 (用于填充模板中的 {action_options_text}) ---
action_options_text = "当前你可以选择的行动有:\n"
action_keys = list(current_available_actions.keys())
for name in action_keys:
desc = current_available_actions[name]
action_options_text += f"- '{name}': {desc}\n"
# --- 选择一个示例动作键 (用于填充模板中的 {example_action}) ---
example_action_key = action_keys[0] if action_keys else "no_reply"
# --- 获取提示词模板 ---
planner_prompt_template = await global_prompt_manager.get_prompt_async("planner_prompt")
# --- 填充模板 ---
prompt = planner_prompt_template.format(
bot_name=global_config.BOT_NICKNAME,
prompt_personality=prompt_personality,
structured_info_block=structured_info_block,
chat_content_block=chat_content_block,
current_mind_block=current_mind_block,
replan=replan_prompt,
replan="", # 暂时留空 replan 信息
cycle_info_block=cycle_info_block,
action_options_text=action_options_text, # 传入可用动作描述
example_action=example_action_key, # 传入示例动作键
)
return prompt
@@ -1217,7 +1219,7 @@ class HeartFChatting:
except Exception as e:
logger.error(f"{self.log_prefix}[Planner] 构建提示词时出错: {e}")
logger.error(traceback.format_exc())
return ""
return "[构建 Planner Prompt 时出错]" # 返回错误提示,避免空字符串
# --- 回复器 (Replier) 的定义 --- #
async def _replier_work(
@@ -1258,7 +1260,7 @@ class HeartFChatting:
try:
with Timer("LLM生成", {}): # 内部计时器,可选保留
content, reasoning_content, model_name = await self.model_normal.generate_response(prompt)
logger.info(f"{self.log_prefix}[Replier-{thinking_id}]\\nPrompt:\\n{prompt}\\n生成回复: {content}\\n")
# logger.info(f"{self.log_prefix}[Replier-{thinking_id}]\\nPrompt:\\n{prompt}\\n生成回复: {content}\\n")
# 捕捉 LLM 输出信息
info_catcher.catch_after_llm_generated(
prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=model_name

View File

@@ -47,17 +47,15 @@ def init_prompt():
"info_from_tools",
)
# Planner提示词 - 优化版
# Planner提示词 - 修改为要求 JSON 输出
Prompt(
"""你的名字是{bot_name},{prompt_personality},你现在正在一个群聊中。需要基于以下信息决定如何参与对话:
{structured_info_block}
{chat_content_block}
你的内心想法:
{current_mind_block}
{replan}
{cycle_info_block}
请综合分析聊天内容和你看到的新消息,参考内心想法,使用'decide_reply_action'工具做出决策。决策时请注意:
请综合分析聊天内容和你看到的新消息,参考内心想法,并根据以下原则和可用动作做出决策。
【回复原则】
1. 不回复(no_reply)适用:
@@ -69,7 +67,7 @@ def init_prompt():
2. 文字回复(text_reply)适用:
- 有实质性内容需要表达
- 有人提到你,但你还没有回应他
- 可以追加emoji_query表达情绪(格式:情绪描述,如"俏皮的调侃")
- 可以追加emoji_query表达情绪(emoji_query填写表情包的适用场合也就是当前场合)
- 不要追加太多表情
3. 纯表情回复(emoji_reply)适用:
@@ -81,14 +79,34 @@ def init_prompt():
- 避免重复或评价自己的发言
- 不要和自己聊天
必须遵守
- 遵守回复原则
- 必须调用工具并包含action和reasoning
- 你可以选择文字回复(text_reply),纯表情回复(emoji_reply),不回复(no_reply)
- 并不是所有选择都可用
- 选择text_reply或emoji_reply时必须提供emoji_query
- 保持回复自然,符合日常聊天习惯""",
"planner_prompt",
决策任务
{action_options_text}
你必须从上面列出的可用行动中选择一个,并说明原因。
你的决策必须以严格的 JSON 格式输出,且仅包含 JSON 内容,不要有任何其他文字或解释。
JSON 结构如下,包含三个字段 "action", "reasoning", "emoji_query":
{{
"action": "string", // 必须是上面提供的可用行动之一 (例如: '{example_action}')
"reasoning": "string", // 做出此决定的详细理由和思考过程,说明你如何应用了回复原则
"emoji_query": "string" // 可选。如果行动是 'emoji_reply',必须提供表情主题(填写表情包的适用场合);如果行动是 'text_reply' 且你想附带表情,也在此提供表情主题,否则留空字符串 ""。遵循回复原则,不要滥用。
}}
例如:
{{
"action": "text_reply",
"reasoning": "用户提到了我,且问题比较具体,适合用文本回复。考虑到内容,可以带上一个微笑表情。",
"emoji_query": "微笑"
}}
{{
"action": "no_reply",
"reasoning": "我已经连续回复了两次,而且这个话题我不太感兴趣,根据回复原则,选择不回复,等待其他人发言。",
"emoji_query": ""
}}
请输出你的决策 JSON
""", # 使用三引号避免内部引号问题
"planner_prompt", # 保持名称不变,替换内容
)
Prompt(
@@ -177,7 +195,7 @@ class PromptBuilder:
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_stream.stream_id,
timestamp=time.time(),
limit=global_config.MAX_CONTEXT_SIZE,
limit=global_config.observation_context_size,
)
chat_talking_prompt = await build_readable_messages(
@@ -246,6 +264,8 @@ class PromptBuilder:
sender_name=sender_name,
)
logger.debug(f"focus_chat_prompt: \n{prompt}")
return prompt
async def _build_prompt_normal(self, chat_stream, message_txt: str, sender_name: str = "某人") -> tuple[str, str]:
@@ -259,15 +279,15 @@ class PromptBuilder:
who_chat_in_group += get_recent_group_speaker(
chat_stream.stream_id,
(chat_stream.user_info.platform, chat_stream.user_info.user_id),
limit=global_config.MAX_CONTEXT_SIZE,
limit=global_config.observation_context_size,
)
relation_prompt = ""
for person in who_chat_in_group:
relation_prompt += await relationship_manager.build_relationship_info(person)
print(f"relation_prompt: {relation_prompt}")
# print(f"relation_prompt: {relation_prompt}")
print(f"relat11111111ion_prompt: {relation_prompt}")
# print(f"relat11111111ion_prompt: {relation_prompt}")
# 心情
mood_manager = MoodManager.get_instance()
@@ -318,7 +338,7 @@ class PromptBuilder:
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_stream.stream_id,
timestamp=time.time(),
limit=global_config.MAX_CONTEXT_SIZE,
limit=global_config.observation_context_size,
)
chat_talking_prompt = await build_readable_messages(

View File

@@ -44,6 +44,8 @@ class NormalChat:
# 存储此实例的兴趣监控任务
self.start_time = time.time()
self.last_speak_time = 0
self._chat_task: Optional[asyncio.Task] = None
logger.info(f"[{self.stream_name}] NormalChat 实例初始化完成。")
@@ -119,6 +121,8 @@ class NormalChat:
await message_manager.add_message(message_set)
self.last_speak_time = time.time()
return first_bot_msg
# 改为实例方法
@@ -354,7 +358,9 @@ class NormalChat:
processed_count = 0
# --- 修改迭代前创建要处理的ID列表副本防止迭代时修改 ---
messages_to_process_initially = list(messages_to_reply) # 创建副本
# --- 修改结束 ---
# --- 新增:限制最多处理两条消息 ---
messages_to_process_initially = messages_to_process_initially[:2]
# --- 新增结束 ---
for item in messages_to_process_initially: # 使用副本迭代
msg_id, (message, interest_value, is_mentioned) = item
# --- 修改:在处理前尝试 pop防止竞争 ---
@@ -439,7 +445,7 @@ class NormalChat:
logger.error(f"[{self.stream_name}] 任务异常: {exc}")
logger.error(traceback.format_exc())
except asyncio.CancelledError:
logger.info(f"[{self.stream_name}] 任务已取消")
logger.debug(f"[{self.stream_name}] 任务已取消")
except Exception as e:
logger.error(f"[{self.stream_name}] 回调处理错误: {e}")
finally:
@@ -452,12 +458,12 @@ class NormalChat:
"""停止当前实例的兴趣监控任务。"""
if self._chat_task and not self._chat_task.done():
task = self._chat_task
logger.info(f"[{self.stream_name}] 尝试取消聊天任务。")
logger.debug(f"[{self.stream_name}] 尝试取消normal聊天任务。")
task.cancel()
try:
await task # 等待任务响应取消
except asyncio.CancelledError:
logger.info(f"[{self.stream_name}] 聊天任务已成功取消")
logger.info(f"[{self.stream_name}] 结束一般聊天模式")
except Exception as e:
# 回调函数 _handle_task_completion 会处理异常日志
logger.warning(f"[{self.stream_name}] 等待监控任务取消时捕获到异常 (可能已在回调中记录): {e}")

View File

@@ -29,7 +29,7 @@ class NormalChatGenerator:
)
self.model_sum = LLMRequest(
model=global_config.llm_summary_by_topic, temperature=0.7, max_tokens=3000, request_type="relation"
model=global_config.llm_summary, temperature=0.7, max_tokens=3000, request_type="relation"
)
self.current_model_type = "r1" # 默认使用 R1
self.current_model_name = "unknown model"
@@ -82,12 +82,14 @@ class NormalChatGenerator:
sender_name=sender_name,
chat_stream=message.chat_stream,
)
logger.info(f"构建prompt时间: {t_build_prompt.human_readable}")
logger.debug(f"构建prompt时间: {t_build_prompt.human_readable}")
try:
content, reasoning_content, self.current_model_name = await model.generate_response(prompt)
logger.info(f"prompt:{prompt}\n生成回复:{content}")
logger.debug(f"prompt:{prompt}\n生成回复:{content}")
logger.info(f"{message.processed_plain_text} 的回复:{content}")
info_catcher.catch_after_llm_generated(
prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=self.current_model_name

View File

@@ -11,6 +11,9 @@ from .lpmmconfig import global_config
from .utils.dyn_topk import dyn_select_top_k
MAX_KNOWLEDGE_LENGTH = 10000 # 最大知识长度
class QAManager:
def __init__(
self,
@@ -112,8 +115,10 @@ class QAManager:
for res in query_res
]
found_knowledge = "\n".join(
[f"{i + 1}条知识:{k[1]}\n 该条知识对于问题的相关性:{k[0]}" for i, k in enumerate(knowledge)]
[f"{i + 1}条知识:{k[0]}\n 该条知识对于问题的相关性:{k[1]}" for i, k in enumerate(knowledge)]
)
if len(found_knowledge) > MAX_KNOWLEDGE_LENGTH:
found_knowledge = found_knowledge[:MAX_KNOWLEDGE_LENGTH] + "\n"
return found_knowledge
else:
logger.info("LPMM知识库并未初始化使用旧版数据库进行检索")

View File

@@ -189,7 +189,7 @@ class Hippocampus:
def __init__(self):
self.memory_graph = MemoryGraph()
self.llm_topic_judge = None
self.llm_summary_by_topic = None
self.llm_summary = None
self.entorhinal_cortex = None
self.parahippocampal_gyrus = None
self.config = None
@@ -203,7 +203,7 @@ class Hippocampus:
# 从数据库加载记忆图
self.entorhinal_cortex.sync_memory_from_db()
self.llm_topic_judge = LLMRequest(self.config.llm_topic_judge, request_type="memory")
self.llm_summary_by_topic = LLMRequest(self.config.llm_summary_by_topic, request_type="memory")
self.llm_summary = LLMRequest(self.config.llm_summary, request_type="memory")
def get_all_node_names(self) -> list:
"""获取记忆图中所有节点的名字列表"""
@@ -1169,7 +1169,7 @@ class ParahippocampalGyrus:
# 调用修改后的 topic_what不再需要 time_info
topic_what_prompt = self.hippocampus.topic_what(input_text, topic)
try:
task = self.hippocampus.llm_summary_by_topic.generate_response_async(topic_what_prompt)
task = self.hippocampus.llm_summary.generate_response_async(topic_what_prompt)
tasks.append((topic.strip(), task))
except Exception as e:
logger.error(f"生成话题 '{topic}' 的摘要时发生错误: {e}")

View File

@@ -24,7 +24,7 @@ class MemoryConfig:
consolidate_memory_interval: int # 记忆整合间隔
llm_topic_judge: str # 话题判断模型
llm_summary_by_topic: str # 话题总结模型
llm_summary: str # 话题总结模型
@classmethod
def from_global_config(cls, global_config):
@@ -44,7 +44,5 @@ class MemoryConfig:
consolidate_memory_percentage=getattr(global_config, "consolidate_memory_percentage", 0.01),
consolidate_memory_interval=getattr(global_config, "consolidate_memory_interval", 1000),
llm_topic_judge=getattr(global_config, "llm_topic_judge", "default_judge_model"), # 添加默认模型名
llm_summary_by_topic=getattr(
global_config, "llm_summary_by_topic", "default_summary_model"
), # 添加默认模型名
llm_summary=getattr(global_config, "llm_summary", "default_summary_model"), # 添加默认模型名
)

View File

@@ -632,7 +632,7 @@ class LLMRequest:
**params_copy,
}
if "max_tokens" not in payload and "max_completion_tokens" not in payload:
payload["max_tokens"] = global_config.max_response_length
payload["max_tokens"] = global_config.model_max_output_length
# 如果 payload 中依然存在 max_tokens 且需要转换,在这里进行再次检查
if self.model_name.lower() in self.MODELS_NEEDING_TRANSFORMATION and "max_tokens" in payload:
payload["max_completion_tokens"] = payload.pop("max_tokens")

View File

@@ -282,10 +282,10 @@ class RelationshipManager:
if is_id:
person_id = person
else:
print(f"person: {person}")
# print(f"person: {person}")
person_id = person_info_manager.get_person_id(person[0], person[1])
person_name = await person_info_manager.get_value(person_id, "person_name")
print(f"person_name: {person_name}")
# print(f"person_name: {person_name}")
relationship_value = await person_info_manager.get_value(person_id, "relationship_value")
level_num = self.calculate_level_num(relationship_value)

View File

@@ -8,13 +8,12 @@ from typing import List
class InfoCatcher:
def __init__(self):
self.chat_history = [] # 聊天历史,长度为三倍使用的上下文
self.context_length = global_config.MAX_CONTEXT_SIZE
self.chat_history_in_thinking = [] # 思考期间的聊天内容
self.chat_history_after_response = [] # 回复后的聊天内容,长度为一倍上下文
self.chat_history = [] # 聊天历史,长度为三倍使用的上下文喵~
self.context_length = global_config.observation_context_size
self.chat_history_in_thinking = [] # 思考期间的聊天内容喵~
self.chat_history_after_response = [] # 回复后的聊天内容,长度为一倍上下文喵~
self.chat_id = ""
self.response_mode = global_config.response_mode
self.trigger_response_text = ""
self.response_text = ""
@@ -36,10 +35,10 @@ class InfoCatcher:
"model": "",
}
# 使用字典来存储 reasoning 模式的数据
# 使用字典来存储 reasoning 模式的数据喵~
self.reasoning_data = {"thinking_log": "", "prompt": "", "response": "", "model": ""}
# 耗时
# 耗时喵~
self.timing_results = {
"interested_rate_time": 0,
"sub_heartflow_observe_time": 0,
@@ -73,15 +72,25 @@ class InfoCatcher:
self.heartflow_data["sub_heartflow_now"] = current_mind
def catch_after_llm_generated(self, prompt: str, response: str, reasoning_content: str = "", model_name: str = ""):
if self.response_mode == "heart_flow":
self.heartflow_data["prompt"] = prompt
self.heartflow_data["response"] = response
self.heartflow_data["model"] = model_name
elif self.response_mode == "reasoning":
self.reasoning_data["thinking_log"] = reasoning_content
self.reasoning_data["prompt"] = prompt
self.reasoning_data["response"] = response
self.reasoning_data["model"] = model_name
# if self.response_mode == "heart_flow": # 条件判断不需要了喵~
# self.heartflow_data["prompt"] = prompt
# self.heartflow_data["response"] = response
# self.heartflow_data["model"] = model_name
# elif self.response_mode == "reasoning": # 条件判断不需要了喵~
# self.reasoning_data["thinking_log"] = reasoning_content
# self.reasoning_data["prompt"] = prompt
# self.reasoning_data["response"] = response
# self.reasoning_data["model"] = model_name
# 直接记录信息喵~
self.reasoning_data["thinking_log"] = reasoning_content
self.reasoning_data["prompt"] = prompt
self.reasoning_data["response"] = response
self.reasoning_data["model"] = model_name
# 如果 heartflow 数据也需要通用字段,可以取消下面的注释喵~
# self.heartflow_data["prompt"] = prompt
# self.heartflow_data["response"] = response
# self.heartflow_data["model"] = model_name
self.response_text = response
@@ -172,13 +181,13 @@ class InfoCatcher:
}
def done_catch(self):
"""将收集到的信息存储到数据库的 thinking_log 集合中"""
"""将收集到的信息存储到数据库的 thinking_log 集合中喵~"""
try:
# 将消息对象转换为可序列化的字典
# 将消息对象转换为可序列化的字典喵~
thinking_log_data = {
"chat_id": self.chat_id,
"response_mode": self.response_mode,
# "response_mode": self.response_mode, # 这个也删掉喵~
"trigger_text": self.trigger_response_text,
"response_text": self.response_text,
"trigger_info": {
@@ -195,18 +204,20 @@ class InfoCatcher:
"chat_history_after_response": self.message_list_to_dict(self.chat_history_after_response),
}
# 根据不同的响应模式添加相应的数据
if self.response_mode == "heart_flow":
thinking_log_data["mode_specific_data"] = self.heartflow_data
elif self.response_mode == "reasoning":
thinking_log_data["mode_specific_data"] = self.reasoning_data
# 根据不同的响应模式添加相应的数据喵~ # 现在直接都加上去好了喵~
# if self.response_mode == "heart_flow":
# thinking_log_data["mode_specific_data"] = self.heartflow_data
# elif self.response_mode == "reasoning":
# thinking_log_data["mode_specific_data"] = self.reasoning_data
thinking_log_data["heartflow_data"] = self.heartflow_data
thinking_log_data["reasoning_data"] = self.reasoning_data
# 将数据插入到 thinking_log 集合中
# 将数据插入到 thinking_log 集合中喵~
db.thinking_log.insert_one(thinking_log_data)
return True
except Exception as e:
print(f"存储思考日志时出错: {str(e)}")
print(f"存储思考日志时出错: {str(e)} 喵~")
print(traceback.format_exc())
return False

View File

@@ -1,6 +1,7 @@
import json
import logging
from typing import Any, Dict, TypeVar, List, Union, Tuple
import ast
# 定义类型变量用于泛型类型提示
T = TypeVar("T")
@@ -12,6 +13,7 @@ logger = logging.getLogger("json_utils")
def safe_json_loads(json_str: str, default_value: T = None) -> Union[Any, T]:
"""
安全地解析JSON字符串出错时返回默认值
现在尝试处理单引号和标准JSON
参数:
json_str: 要解析的JSON字符串
@@ -20,16 +22,34 @@ def safe_json_loads(json_str: str, default_value: T = None) -> Union[Any, T]:
返回:
解析后的Python对象或在解析失败时返回default_value
"""
if not json_str:
if not json_str or not isinstance(json_str, str):
logger.warning(f"safe_json_loads 接收到非字符串输入: {type(json_str)}, 值: {json_str}")
return default_value
try:
# 尝试标准的 JSON 解析
return json.loads(json_str)
except json.JSONDecodeError as e:
logger.error(f"JSON解析失败: {e}, JSON字符串: {json_str[:100]}...")
return default_value
except json.JSONDecodeError:
# 如果标准解析失败,尝试将单引号替换为双引号再解析
# (注意:这种替换可能不安全,如果字符串内容本身包含引号)
# 更安全的方式是用 ast.literal_eval
try:
# logger.debug(f"标准JSON解析失败尝试用 ast.literal_eval 解析: {json_str[:100]}...")
result = ast.literal_eval(json_str)
# 确保结果是字典(因为我们通常期望参数是字典)
if isinstance(result, dict):
return result
else:
logger.warning(f"ast.literal_eval 解析成功但结果不是字典: {type(result)}, 内容: {result}")
return default_value
except (ValueError, SyntaxError, MemoryError, RecursionError) as ast_e:
logger.error(f"使用 ast.literal_eval 解析失败: {ast_e}, 字符串: {json_str[:100]}...")
return default_value
except Exception as e:
logger.error(f"使用 ast.literal_eval 解析时发生意外错误: {e}, 字符串: {json_str[:100]}...")
return default_value
except Exception as e:
logger.error(f"JSON解析过程中发生意外错误: {e}")
logger.error(f"JSON解析过程中发生意外错误: {e}, 字符串: {json_str[:100]}...")
return default_value
@@ -177,25 +197,27 @@ def process_llm_tool_calls(
if "name" not in func_details or not isinstance(func_details.get("name"), str):
logger.warning(f"{log_prefix}工具调用[{i}]的'function'字段缺少'name'或类型不正确: {func_details}")
continue
if "arguments" not in func_details or not isinstance(
func_details.get("arguments"), str
): # 参数是字符串形式的JSON
logger.warning(f"{log_prefix}工具调用[{i}]的'function'字段缺少'arguments'或类型不正确: {func_details}")
# 验证参数 'arguments'
args_value = func_details.get("arguments")
# 1. 检查 arguments 是否存在且是字符串
if args_value is None or not isinstance(args_value, str):
logger.warning(f"{log_prefix}工具调用[{i}]的'function'字段缺少'arguments'字符串: {func_details}")
continue
# 可选尝试解析参数JSON确保其有效
args_str = func_details["arguments"]
try:
json.loads(args_str) # 尝试解析,但不存储结果
except json.JSONDecodeError as e:
# 2. 尝试安全地解析 arguments 字符串
parsed_args = safe_json_loads(args_value, None)
# 3. 检查解析结果是否为字典
if parsed_args is None or not isinstance(parsed_args, dict):
logger.warning(
f"{log_prefix}工具调用[{i}]的'arguments'不是有效的JSON字符串: {e}, 内容: {args_str[:100]}..."
f"{log_prefix}工具调用[{i}]的'arguments'无法解析为有效的JSON字典, "
f"原始字符串: {args_value[:100]}..., 解析结果类型: {type(parsed_args).__name__}"
)
continue
except Exception as e:
logger.warning(f"{log_prefix}解析工具调用[{i}]的'arguments'时发生意外错误: {e}, 内容: {args_str[:100]}...")
continue
# 如果检查通过,将原始的 tool_call 加入有效列表
valid_tool_calls.append(tool_call)
if not valid_tool_calls and tool_calls: # 如果原始列表不为空,但验证后为空

View File

@@ -64,6 +64,9 @@ class ClassicalWillingManager(BaseWillingManager):
self.chat_reply_willing[chat_id] = max(0, current_willing - 1.8)
async def after_generate_reply_handle(self, message_id):
if message_id not in self.ongoing_messages:
return
chat_id = self.ongoing_messages[message_id].chat_id
current_willing = self.chat_reply_willing.get(chat_id, 0)
if current_willing < 1:

View File

@@ -77,7 +77,7 @@ class BaseWillingManager(ABC):
if not issubclass(manager_class, cls):
raise TypeError(f"Manager class {manager_class.__name__} is not a subclass of {cls.__name__}")
else:
logger.info(f"成功载入willing模式:{manager_type}")
logger.info(f"普通回复模式:{manager_type}")
return manager_class()
except (ImportError, AttributeError, TypeError) as e:
module = importlib.import_module(".mode_classical", __package__)
@@ -110,7 +110,7 @@ class BaseWillingManager(ABC):
def delete(self, message_id: str):
del_message = self.ongoing_messages.pop(message_id, None)
if not del_message:
logger.debug(f"删除异常,当前消息{message_id}不存在")
logger.debug(f"尝试删除不存在的消息 ID: {message_id},可能已被其他流程处理,喵~")
@abstractmethod
async def async_task_starter(self) -> None: