fix: ruff
This commit is contained in:
@@ -8,8 +8,8 @@ from src.plugins.moods.moods import MoodManager
|
||||
logger = get_logger("mai_state")
|
||||
|
||||
|
||||
enable_unlimited_hfc_chat = True
|
||||
# enable_unlimited_hfc_chat = False
|
||||
# enable_unlimited_hfc_chat = True
|
||||
enable_unlimited_hfc_chat = False
|
||||
|
||||
|
||||
class MaiState(enum.Enum):
|
||||
|
||||
@@ -22,6 +22,7 @@ def init_prompt():
|
||||
prompt += "{extra_info}\n"
|
||||
prompt += "{prompt_personality}\n"
|
||||
prompt += "{last_loop_prompt}\n"
|
||||
prompt += "{cycle_info_block}\n"
|
||||
prompt += "现在是{time_now},你正在上网,和qq群里的网友们聊天,以下是正在进行的聊天内容:\n{chat_observe_info}\n"
|
||||
prompt += "\n你现在{mood_info}\n"
|
||||
prompt += (
|
||||
@@ -66,7 +67,7 @@ class SubMind:
|
||||
self.past_mind = []
|
||||
self.structured_info = {}
|
||||
|
||||
async def do_thinking_before_reply(self, last_cycle: CycleInfo = None):
|
||||
async def do_thinking_before_reply(self, history_cycle: list[CycleInfo] = None):
|
||||
"""
|
||||
在回复前进行思考,生成内心想法并收集工具调用结果
|
||||
|
||||
@@ -130,6 +131,7 @@ class SubMind:
|
||||
("进行深入思考", 0.2),
|
||||
]
|
||||
|
||||
last_cycle = history_cycle[-1] if history_cycle else None
|
||||
# 上一次决策信息
|
||||
if last_cycle != None:
|
||||
last_action = last_cycle.action_type
|
||||
@@ -151,6 +153,49 @@ class SubMind:
|
||||
else:
|
||||
last_loop_prompt = ""
|
||||
|
||||
# 准备循环信息块 (分析最近的活动循环)
|
||||
recent_active_cycles = []
|
||||
for cycle in reversed(history_cycle):
|
||||
# 只关心实际执行了动作的循环
|
||||
if cycle.action_taken:
|
||||
recent_active_cycles.append(cycle)
|
||||
# 最多找最近的3个活动循环
|
||||
if len(recent_active_cycles) == 3:
|
||||
break
|
||||
|
||||
cycle_info_block = ""
|
||||
consecutive_text_replies = 0
|
||||
responses_for_prompt = []
|
||||
|
||||
# 检查这最近的活动循环中有多少是连续的文本回复 (从最近的开始看)
|
||||
for cycle in recent_active_cycles:
|
||||
if cycle.action_type == "text_reply":
|
||||
consecutive_text_replies += 1
|
||||
# 获取回复内容,如果不存在则返回'[空回复]'
|
||||
response_text = cycle.response_info.get("response_text", [])
|
||||
# 使用简单的 join 来格式化回复内容列表
|
||||
formatted_response = "[空回复]" if not response_text else " ".join(response_text)
|
||||
responses_for_prompt.append(formatted_response)
|
||||
else:
|
||||
# 一旦遇到非文本回复,连续性中断
|
||||
break
|
||||
|
||||
# 根据连续文本回复的数量构建提示信息
|
||||
# 注意: responses_for_prompt 列表是从最近到最远排序的
|
||||
if consecutive_text_replies >= 3: # 如果最近的三个活动都是文本回复
|
||||
cycle_info_block = f'你已经连续回复了三条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}",第三近: "{responses_for_prompt[2]}")。你回复的有点多了,请注意'
|
||||
elif consecutive_text_replies == 2: # 如果最近的两个活动是文本回复
|
||||
cycle_info_block = f'你已经连续回复了两条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}"),请注意'
|
||||
elif consecutive_text_replies == 1: # 如果最近的一个活动是文本回复
|
||||
cycle_info_block = f'你刚刚已经回复一条消息(内容: "{responses_for_prompt[0]}")'
|
||||
|
||||
# 包装提示块,增加可读性,即使没有连续回复也给个标记
|
||||
if cycle_info_block:
|
||||
cycle_info_block = f"\n【近期回复历史】\n{cycle_info_block}\n"
|
||||
else:
|
||||
# 如果最近的活动循环不是文本回复,或者没有活动循环
|
||||
cycle_info_block = "\n【近期回复历史】\n(最近没有连续文本回复)\n"
|
||||
|
||||
# 加权随机选择思考指导
|
||||
hf_do_next = local_random.choices(
|
||||
[option[0] for option in hf_options], weights=[option[1] for option in hf_options], k=1
|
||||
@@ -167,6 +212,7 @@ class SubMind:
|
||||
mood_info=mood_info,
|
||||
hf_do_next=hf_do_next,
|
||||
last_loop_prompt=last_loop_prompt,
|
||||
cycle_info_block=cycle_info_block,
|
||||
)
|
||||
|
||||
# logger.debug(f"[{self.subheartflow_id}] 心流思考提示词构建完成")
|
||||
|
||||
@@ -705,12 +705,14 @@ class HeartFChatting:
|
||||
await observation.observe()
|
||||
|
||||
# 获取上一个循环的信息
|
||||
last_cycle = self._cycle_history[-1] if self._cycle_history else None
|
||||
# last_cycle = self._cycle_history[-1] if self._cycle_history else None
|
||||
|
||||
with Timer("思考", cycle_timers):
|
||||
# 获取上一个循环的动作
|
||||
# 传递上一个循环的信息给 do_thinking_before_reply
|
||||
current_mind, _past_mind = await self.sub_mind.do_thinking_before_reply(last_cycle=last_cycle)
|
||||
current_mind, _past_mind = await self.sub_mind.do_thinking_before_reply(
|
||||
history_cycle=self._cycle_history
|
||||
)
|
||||
return current_mind
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}[SubMind] 思考失败: {e}")
|
||||
@@ -1037,10 +1039,10 @@ class HeartFChatting:
|
||||
|
||||
# 包装提示块,增加可读性,即使没有连续回复也给个标记
|
||||
if cycle_info_block:
|
||||
cycle_info_block = f'\n【近期回复历史】\n{cycle_info_block}\n'
|
||||
cycle_info_block = f"\n【近期回复历史】\n{cycle_info_block}\n"
|
||||
else:
|
||||
# 如果最近的活动循环不是文本回复,或者没有活动循环
|
||||
cycle_info_block = '\n【近期回复历史】\n(最近没有连续文本回复)\n'
|
||||
cycle_info_block = "\n【近期回复历史】\n(最近没有连续文本回复)\n"
|
||||
|
||||
# 获取提示词模板并填充数据
|
||||
prompt = (await global_prompt_manager.get_prompt_async("planner_prompt")).format(
|
||||
|
||||
@@ -280,7 +280,9 @@ def process_llm_tool_response(
|
||||
# 新增检查:确保响应包含预期的工具调用部分
|
||||
if len(normalized_response) != 3:
|
||||
# 如果长度不为3,说明LLM响应不包含工具调用部分,这在期望工具调用的上下文中是错误的
|
||||
error_msg = f"LLM响应未包含预期的工具调用部分: 元素数量{len(normalized_response)},响应内容:{normalized_response}"
|
||||
error_msg = (
|
||||
f"LLM响应未包含预期的工具调用部分: 元素数量{len(normalized_response)},响应内容:{normalized_response}"
|
||||
)
|
||||
logger.warning(f"{log_prefix}{error_msg}")
|
||||
return False, {}, error_msg
|
||||
|
||||
|
||||
Reference in New Issue
Block a user