大修LLMReq

This commit is contained in:
UnCLAS-Prommer
2025-07-30 09:45:13 +08:00
parent 94db64c118
commit 3c40ceda4c
15 changed files with 2290 additions and 1995 deletions

View File

@@ -1,5 +1,5 @@
[inner]
version = "0.2.1"
version = "1.0.0"
# 配置文件版本号迭代规则同bot_config.toml
#
@@ -42,53 +42,31 @@ version = "0.2.1"
# - 未配置新字段时会自动回退到基于模型名称的推断
[request_conf] # 请求配置(此配置项数值均为默认值,如想修改,请取消对应条目的注释)
#max_retry = 2 # 最大重试次数单个模型API调用失败最多重试的次数
#timeout = 10 # API调用的超时时长超过这个时长本次请求将被视为“请求超时”单位
#retry_interval = 10 # 重试间隔如果API调用失败重试的间隔时间单位
#default_temperature = 0.7 # 默认的温度如果bot_config.toml中没有设置temperature参数默认使用这个值
#default_max_tokens = 1024 # 默认的最大输出token数如果bot_config.toml中没有设置max_tokens参数默认使用这个值
max_retry = 2 # 最大重试次数单个模型API调用失败最多重试的次数
timeout = 10 # API调用的超时时长超过这个时长本次请求将被视为“请求超时”单位
retry_interval = 10 # 重试间隔如果API调用失败重试的间隔时间单位
default_temperature = 0.7 # 默认的温度如果bot_config.toml中没有设置temperature参数默认使用这个值
default_max_tokens = 1024 # 默认的最大输出token数如果bot_config.toml中没有设置max_tokens参数默认使用这个值
[[api_providers]] # API服务提供商可以配置多个
name = "DeepSeek" # API服务商名称可随意命名在models的api-provider中需使用这个命名
base_url = "https://api.deepseek.cn/v1" # API服务商的BaseURL
# 支持多个API Key实现自动切换和负载均衡
api_keys = [ # API Key列表多个key支持错误自动切换和负载均衡
"sk-your-first-key-here",
"sk-your-second-key-here",
"sk-your-third-key-here"
]
# 向后兼容如果只有一个key也可以使用单个key字段
#key = "******" # API Key 可选默认为None
api_key = "sk-your-first-key-here"
client_type = "openai" # 请求客户端(可选,默认值为"openai"使用gimini等Google系模型时请配置为"gemini"
[[api_providers]] # 特殊Google的Gimini使用特殊API与OpenAI格式不兼容需要配置client为"gemini"
name = "Google"
base_url = "https://api.google.com/v1"
# Google API同样支持多key配置
api_keys = [
"your-google-api-key-1",
"your-google-api-key-2"
]
api_key = "your-google-api-key-1"
client_type = "gemini"
[[api_providers]]
name = "SiliconFlow"
base_url = "https://api.siliconflow.cn/v1"
# 单个key的示例向后兼容
key = "******"
#
#[[api_providers]]
#name = "LocalHost"
#base_url = "https://localhost:8888"
#key = "lm-studio"
[[models]] # 模型(可以配置多个)
# 模型标识符API服务商提供的模型标识符
model_identifier = "deepseek-chat"
# 模型名称可随意命名在bot_config.toml中需使用这个命名
#可选若无该字段则将自动使用model_identifier填充
name = "deepseek-v3"
# API服务商名称对应在api_providers中配置的服务商名称
api_provider = "DeepSeek"
@@ -111,20 +89,15 @@ price_out = 8.0
model_identifier = "deepseek-reasoner"
name = "deepseek-r1"
api_provider = "DeepSeek"
# 推理模型的配置示例
task_type = "llm_reasoning"
capabilities = ["text", "tool_calling", "reasoning"]
# 保留向后兼容的model_flags字段已废弃建议使用capabilities
model_flags = [ "text", "tool_calling", "reasoning",]
price_in = 4.0
price_out = 16.0
has_thinking = true # 有无思考参数
enable_thinking = true # 是否启用思考
[[models]]
model_identifier = "Pro/deepseek-ai/DeepSeek-V3"
name = "siliconflow-deepseek-v3"
api_provider = "SiliconFlow"
task_type = "llm_normal"
capabilities = ["text", "tool_calling"]
price_in = 2.0
price_out = 8.0
@@ -132,8 +105,6 @@ price_out = 8.0
model_identifier = "Pro/deepseek-ai/DeepSeek-R1"
name = "siliconflow-deepseek-r1"
api_provider = "SiliconFlow"
task_type = "llm_reasoning"
capabilities = ["text", "tool_calling", "reasoning"]
price_in = 4.0
price_out = 16.0
@@ -141,8 +112,6 @@ price_out = 16.0
model_identifier = "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
name = "deepseek-r1-distill-qwen-32b"
api_provider = "SiliconFlow"
task_type = "llm_reasoning"
capabilities = ["text", "tool_calling", "reasoning"]
price_in = 4.0
price_out = 16.0
@@ -150,8 +119,6 @@ price_out = 16.0
model_identifier = "Qwen/Qwen3-8B"
name = "qwen3-8b"
api_provider = "SiliconFlow"
task_type = "llm_normal"
capabilities = ["text"]
price_in = 0
price_out = 0
@@ -159,8 +126,6 @@ price_out = 0
model_identifier = "Qwen/Qwen3-14B"
name = "qwen3-14b"
api_provider = "SiliconFlow"
task_type = "llm_normal"
capabilities = ["text", "tool_calling"]
price_in = 0.5
price_out = 2.0
@@ -168,8 +133,6 @@ price_out = 2.0
model_identifier = "Qwen/Qwen3-30B-A3B"
name = "qwen3-30b"
api_provider = "SiliconFlow"
task_type = "llm_normal"
capabilities = ["text", "tool_calling"]
price_in = 0.7
price_out = 2.8
@@ -177,11 +140,6 @@ price_out = 2.8
model_identifier = "Qwen/Qwen2.5-VL-72B-Instruct"
name = "qwen2.5-vl-72b"
api_provider = "SiliconFlow"
# 视觉模型的配置示例
task_type = "vision"
capabilities = ["vision", "text"]
# 保留向后兼容的model_flags字段已废弃建议使用capabilities
model_flags = [ "vision", "text",]
price_in = 4.13
price_out = 4.13
@@ -189,11 +147,6 @@ price_out = 4.13
model_identifier = "FunAudioLLM/SenseVoiceSmall"
name = "sensevoice-small"
api_provider = "SiliconFlow"
# 语音模型的配置示例
task_type = "speech"
capabilities = ["speech"]
# 保留向后兼容的model_flags字段已废弃建议使用capabilities
model_flags = [ "audio",]
price_in = 0
price_out = 0
@@ -210,11 +163,73 @@ price_in = 0
price_out = 0
[task_model_usage]
llm_reasoning = {model="deepseek-r1", temperature=0.8, max_tokens=1024, max_retry=0}
llm_normal = {model="deepseek-r1", max_tokens=1024, max_retry=0}
embedding = "siliconflow-bge-m3"
#schedule = [
# "deepseek-v3",
# "deepseek-r1",
#]
[model.utils] # 在麦麦的一些组件中使用的模型,例如表情包模块,取名模块,关系模块,是麦麦必须的模型
model_list = ["siliconflow-deepseek-v3","qwen3-8b"]
temperature = 0.2 # 模型温度新V3建议0.1-0.3
max_tokens = 800 # 最大输出token数
[model.utils_small] # 在麦麦的一些组件中使用的小模型,消耗量较大,建议使用速度较快的小模型
model_name = "qwen3-8b" # 对应 model_config.toml 中的模型名称
temperature = 0.7
max_tokens = 800
[model.replyer_1] # 首要回复模型,还用于表达器和表达方式学习
model_name = "siliconflow-deepseek-v3" # 对应 model_config.toml 中的模型名称
temperature = 0.2 # 模型温度新V3建议0.1-0.3
max_tokens = 800
[model.replyer_2] # 次要回复模型
model_name = "siliconflow-deepseek-r1" # 对应 model_config.toml 中的模型名称
temperature = 0.7 # 模型温度
max_tokens = 800
[model.planner] #决策:负责决定麦麦该做什么的模型
model_name = "siliconflow-deepseek-v3" # 对应 model_config.toml 中的模型名称
temperature = 0.3
max_tokens = 800
[model.emotion] #负责麦麦的情绪变化
model_name = "siliconflow-deepseek-v3" # 对应 model_config.toml 中的模型名称
temperature = 0.3
max_tokens = 800
[model.memory] # 记忆模型
model_name = "qwen3-30b" # 对应 model_config.toml 中的模型名称
temperature = 0.7
max_tokens = 800
enable_thinking = false # 是否启用思考
[model.vlm] # 图像识别模型
model_name = "qwen2.5-vl-72b" # 对应 model_config.toml 中的模型名称
max_tokens = 800
[model.voice] # 语音识别模型
model_name = "sensevoice-small" # 对应 model_config.toml 中的模型名称
[model.tool_use] #工具调用模型,需要使用支持工具调用的模型
model_name = "qwen3-14b" # 对应 model_config.toml 中的模型名称
temperature = 0.7
max_tokens = 800
enable_thinking = false # 是否启用思考qwen3 only
#嵌入模型
[model.embedding]
model_name = "bge-m3" # 对应 model_config.toml 中的模型名称
#------------LPMM知识库模型------------
[model.lpmm_entity_extract] # 实体提取模型
model_name = "siliconflow-deepseek-v3" # 对应 model_config.toml 中的模型名称
temperature = 0.2
max_tokens = 800
[model.lpmm_rdf_build] # RDF构建模型
model_name = "siliconflow-deepseek-v3" # 对应 model_config.toml 中的模型名称
temperature = 0.2
max_tokens = 800
[model.lpmm_qa] # 问答模型
model_name = "deepseek-r1-distill-qwen-32b" # 对应 model_config.toml 中的模型名称
temperature = 0.7
max_tokens = 800
enable_thinking = false # 是否启用思考