fix(embedding): 彻底解决事件循环冲突导致的嵌入生成异常
通过以下改动修复嵌入生成过程中的事件循环相关问题: - 在 EmbeddingStore._get_embedding 中,改为同步创建-使用-销毁的新事件循环模式,彻底避免嵌套事件循环问题 - 调整批量嵌入 _get_embeddings_batch_threaded,确保每个线程使用独立、短生命周期的事件循环 - 新增 force_new 参数,LLM 请求嵌入任务时强制创建新的客户端实例,减少跨循环对象复用 - 在 OpenAI 客户端的 embedding 调用处补充详细日志,方便排查网络连接异常 - get_embedding() 每次都重建 LLMRequest,降低实例在多个事件循环中穿梭的概率 此次改动虽然以同步风格“硬掰”异步接口,但对现有接口零破坏,确保了向量数据库及相关知识检索功能的稳定性。(还有就是把的脚本文件夹移回来了)
This commit is contained in:
@@ -416,7 +416,10 @@ class LLMRequest:
|
||||
)
|
||||
model_info = model_config.get_model_info(least_used_model_name)
|
||||
api_provider = model_config.get_provider(model_info.api_provider)
|
||||
client = client_registry.get_client_class_instance(api_provider)
|
||||
|
||||
# 对于嵌入任务,强制创建新的客户端实例以避免事件循环问题
|
||||
force_new_client = (self.request_type == "embedding")
|
||||
client = client_registry.get_client_class_instance(api_provider, force_new=force_new_client)
|
||||
logger.debug(f"选择请求模型: {model_info.name}")
|
||||
total_tokens, penalty, usage_penalty = self.model_usage[model_info.name]
|
||||
self.model_usage[model_info.name] = (total_tokens, penalty, usage_penalty + 1) # 增加使用惩罚值防止连续使用
|
||||
|
||||
Reference in New Issue
Block a user