fix(embedding): 彻底解决事件循环冲突导致的嵌入生成异常

通过以下改动修复嵌入生成过程中的事件循环相关问题:
- 在 EmbeddingStore._get_embedding 中,改为同步创建-使用-销毁的新事件循环模式,彻底避免嵌套事件循环问题
- 调整批量嵌入 _get_embeddings_batch_threaded,确保每个线程使用独立、短生命周期的事件循环
- 新增 force_new 参数,LLM 请求嵌入任务时强制创建新的客户端实例,减少跨循环对象复用
- 在 OpenAI 客户端的 embedding 调用处补充详细日志,方便排查网络连接异常
- get_embedding() 每次都重建 LLMRequest,降低实例在多个事件循环中穿梭的概率

此次改动虽然以同步风格“硬掰”异步接口,但对现有接口零破坏,确保了向量数据库及相关知识检索功能的稳定性。(还有就是把的脚本文件夹移回来了)
This commit is contained in:
minecraft1024a
2025-08-19 20:41:00 +08:00
parent f3b5836eee
commit 3bef6f4bab
16 changed files with 4695 additions and 23 deletions

268
scripts/import_openie.py Normal file
View File

@@ -0,0 +1,268 @@
# try:
# import src.plugins.knowledge.lib.quick_algo
# except ImportError:
# print("未找到quick_algo库无法使用quick_algo算法")
# print("请安装quick_algo库 - 在lib.quick_algo中执行命令python setup.py build_ext --inplace")
import sys
import os
import asyncio
from time import sleep
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from src.chat.knowledge.embedding_store import EmbeddingManager
from src.chat.knowledge.open_ie import OpenIE
from src.chat.knowledge.kg_manager import KGManager
from src.common.logger import get_logger
from src.chat.knowledge.utils.hash import get_sha256
# 添加项目根目录到 sys.path
ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
OPENIE_DIR = os.path.join(ROOT_PATH, "data", "openie")
logger = get_logger("OpenIE导入")
def ensure_openie_dir():
"""确保OpenIE数据目录存在"""
if not os.path.exists(OPENIE_DIR):
os.makedirs(OPENIE_DIR)
logger.info(f"创建OpenIE数据目录{OPENIE_DIR}")
else:
logger.info(f"OpenIE数据目录已存在{OPENIE_DIR}")
def hash_deduplicate(
raw_paragraphs: dict[str, str],
triple_list_data: dict[str, list[list[str]]],
stored_pg_hashes: set,
stored_paragraph_hashes: set,
):
"""Hash去重
Args:
raw_paragraphs: 索引的段落原文
triple_list_data: 索引的三元组列表
stored_pg_hashes: 已存储的段落hash集合
stored_paragraph_hashes: 已存储的段落hash集合
Returns:
new_raw_paragraphs: 去重后的段落
new_triple_list_data: 去重后的三元组
"""
# 保存去重后的段落
new_raw_paragraphs = {}
# 保存去重后的三元组
new_triple_list_data = {}
for _, (raw_paragraph, triple_list) in enumerate(
zip(raw_paragraphs.values(), triple_list_data.values(), strict=False)
):
# 段落hash
paragraph_hash = get_sha256(raw_paragraph)
# 使用与EmbeddingStore中一致的命名空间格式namespace-hash
paragraph_key = f"paragraph-{paragraph_hash}"
if paragraph_key in stored_pg_hashes and paragraph_hash in stored_paragraph_hashes:
continue
new_raw_paragraphs[paragraph_hash] = raw_paragraph
new_triple_list_data[paragraph_hash] = triple_list
return new_raw_paragraphs, new_triple_list_data
def handle_import_openie(openie_data: OpenIE, embed_manager: EmbeddingManager, kg_manager: KGManager) -> bool:
# sourcery skip: extract-method
# 从OpenIE数据中提取段落原文与三元组列表
# 索引的段落原文
raw_paragraphs = openie_data.extract_raw_paragraph_dict()
# 索引的实体列表
entity_list_data = openie_data.extract_entity_dict()
# 索引的三元组列表
triple_list_data = openie_data.extract_triple_dict()
# print(openie_data.docs)
if len(raw_paragraphs) != len(entity_list_data) or len(raw_paragraphs) != len(triple_list_data):
logger.error("OpenIE数据存在异常")
logger.error(f"原始段落数量:{len(raw_paragraphs)}")
logger.error(f"实体列表数量:{len(entity_list_data)}")
logger.error(f"三元组列表数量:{len(triple_list_data)}")
logger.error("OpenIE数据段落数量与实体列表数量或三元组列表数量不一致")
logger.error("请保证你的原始数据分段良好,不要有类似于 “.....” 单独成一段的情况")
logger.error("或者一段中只有符号的情况")
# 新增检查docs中每条数据的完整性
logger.error("系统将于2秒后开始检查数据完整性")
sleep(2)
found_missing = False
missing_idxs = []
for doc in getattr(openie_data, "docs", []):
idx = doc.get("idx", "<无idx>")
passage = doc.get("passage", "<无passage>")
missing = []
# 检查字段是否存在且非空
if "passage" not in doc or not doc.get("passage"):
missing.append("passage")
if "extracted_entities" not in doc or not isinstance(doc.get("extracted_entities"), list):
missing.append("名词列表缺失")
elif len(doc.get("extracted_entities", [])) == 0:
missing.append("名词列表为空")
if "extracted_triples" not in doc or not isinstance(doc.get("extracted_triples"), list):
missing.append("主谓宾三元组缺失")
elif len(doc.get("extracted_triples", [])) == 0:
missing.append("主谓宾三元组为空")
# 输出所有doc的idx
# print(f"检查: idx={idx}")
if missing:
found_missing = True
missing_idxs.append(idx)
logger.error("\n")
logger.error("数据缺失:")
logger.error(f"对应哈希值:{idx}")
logger.error(f"对应文段内容内容:{passage}")
logger.error(f"非法原因:{', '.join(missing)}")
# 确保提示在所有非法数据输出后再输出
if not found_missing:
logger.info("所有数据均完整,没有发现缺失字段。")
return False
# 新增:提示用户是否删除非法文段继续导入
# 将print移到所有logger.error之后确保不会被冲掉
logger.info(f"\n检测到非法文段,共{len(missing_idxs)}条。")
logger.info("\n是否删除所有非法文段后继续导入?(y/n): ", end="")
user_choice = input().strip().lower()
if user_choice != "y":
logger.info("用户选择不删除非法文段,程序终止。")
sys.exit(1)
# 删除非法文段
logger.info("正在删除非法文段并继续导入...")
# 过滤掉非法文段
openie_data.docs = [
doc for doc in getattr(openie_data, "docs", []) if doc.get("idx", "<无idx>") not in missing_idxs
]
# 重新提取数据
raw_paragraphs = openie_data.extract_raw_paragraph_dict()
entity_list_data = openie_data.extract_entity_dict()
triple_list_data = openie_data.extract_triple_dict()
# 再次校验
if len(raw_paragraphs) != len(entity_list_data) or len(raw_paragraphs) != len(triple_list_data):
logger.error("删除非法文段后,数据仍不一致,程序终止。")
sys.exit(1)
# 将索引换为对应段落的hash值
logger.info("正在进行段落去重与重索引")
raw_paragraphs, triple_list_data = hash_deduplicate(
raw_paragraphs,
triple_list_data,
embed_manager.stored_pg_hashes,
kg_manager.stored_paragraph_hashes,
)
if len(raw_paragraphs) != 0:
# 获取嵌入并保存
logger.info(f"段落去重完成,剩余待处理的段落数量:{len(raw_paragraphs)}")
logger.info("开始Embedding")
embed_manager.store_new_data_set(raw_paragraphs, triple_list_data)
# Embedding-Faiss重索引
logger.info("正在重新构建向量索引")
embed_manager.rebuild_faiss_index()
logger.info("向量索引构建完成")
embed_manager.save_to_file()
logger.info("Embedding完成")
# 构建新段落的RAG
logger.info("开始构建RAG")
kg_manager.build_kg(triple_list_data, embed_manager)
kg_manager.save_to_file()
logger.info("RAG构建完成")
else:
logger.info("无新段落需要处理")
return True
async def main_async(): # sourcery skip: dict-comprehension
# 新增确认提示
print("=== 重要操作确认 ===")
print("OpenIE导入时会大量发送请求可能会撞到请求速度上限请注意选用的模型")
print("同之前样例在本地模型下在70分钟内我们发送了约8万条请求在网络允许下速度会更快")
print("推荐使用硅基流动的Pro/BAAI/bge-m3")
print("每百万Token费用为0.7元")
print("知识导入时,会消耗大量系统资源,建议在较好配置电脑上运行")
print("同上样例导入时10700K几乎跑满14900HX占用80%峰值内存占用约3G")
confirm = input("确认继续执行?(y/n): ").strip().lower()
if confirm != "y":
logger.info("用户取消操作")
print("操作已取消")
sys.exit(1)
print("\n" + "=" * 40 + "\n")
ensure_openie_dir() # 确保OpenIE目录存在
logger.info("----开始导入openie数据----\n")
logger.info("创建LLM客户端")
# 初始化Embedding库
embed_manager = EmbeddingManager()
logger.info("正在从文件加载Embedding库")
try:
embed_manager.load_from_file()
except Exception as e:
logger.error(f"从文件加载Embedding库时发生错误{e}")
if "嵌入模型与本地存储不一致" in str(e):
logger.error("检测到嵌入模型与本地存储不一致,已终止导入。请检查模型设置或清空嵌入库后重试。")
logger.error("请保证你的嵌入模型从未更改,并且在导入时使用相同的模型")
# print("检测到嵌入模型与本地存储不一致,已终止导入。请检查模型设置或清空嵌入库后重试。")
sys.exit(1)
if "不存在" in str(e):
logger.error("如果你是第一次导入知识,请忽略此错误")
logger.info("Embedding库加载完成")
# 初始化KG
kg_manager = KGManager()
logger.info("正在从文件加载KG")
try:
kg_manager.load_from_file()
except Exception as e:
logger.error(f"从文件加载KG时发生错误{e}")
logger.error("如果你是第一次导入知识,请忽略此错误")
logger.info("KG加载完成")
logger.info(f"KG节点数量{len(kg_manager.graph.get_node_list())}")
logger.info(f"KG边数量{len(kg_manager.graph.get_edge_list())}")
# 数据比对Embedding库与KG的段落hash集合
for pg_hash in kg_manager.stored_paragraph_hashes:
# 使用与EmbeddingStore中一致的命名空间格式namespace-hash
key = f"paragraph-{pg_hash}"
if key not in embed_manager.stored_pg_hashes:
logger.warning(f"KG中存在Embedding库中不存在的段落{key}")
logger.info("正在导入OpenIE数据文件")
try:
openie_data = OpenIE.load()
except Exception as e:
logger.error(f"导入OpenIE数据文件时发生错误{e}")
return False
if handle_import_openie(openie_data, embed_manager, kg_manager) is False:
logger.error("处理OpenIE数据时发生错误")
return False
return None
def main():
"""主函数 - 设置新的事件循环并运行异步主函数"""
# 检查是否有现有的事件循环
try:
loop = asyncio.get_running_loop()
if loop.is_closed():
# 如果事件循环已关闭,创建新的
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
except RuntimeError:
# 没有运行的事件循环,创建新的
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
# 在新的事件循环中运行异步主函数
loop.run_until_complete(main_async())
finally:
# 确保事件循环被正确关闭
if not loop.is_closed():
loop.close()
if __name__ == "__main__":
# logger.info(f"111111111111111111111111{ROOT_PATH}")
main()