fix: 修复神秘formatter
This commit is contained in:
@@ -23,96 +23,65 @@ class ResponseGenerator:
|
||||
def __init__(self):
|
||||
self.model_r1 = LLM_request(model=global_config.llm_reasoning, temperature=0.7)
|
||||
self.model_v3 = LLM_request(model=global_config.llm_normal, temperature=0.7)
|
||||
self.model_r1_distill = LLM_request(
|
||||
model=global_config.llm_reasoning_minor, temperature=0.7
|
||||
)
|
||||
self.model_r1_distill = LLM_request(model=global_config.llm_reasoning_minor, temperature=0.7)
|
||||
self.db = Database.get_instance()
|
||||
self.current_model_type = "r1" # 默认使用 R1
|
||||
self.current_model_type = 'r1' # 默认使用 R1
|
||||
|
||||
async def generate_response(
|
||||
self, message: Message
|
||||
) -> Optional[Union[str, List[str]]]:
|
||||
async def generate_response(self, message: Message) -> Optional[Union[str, List[str]]]:
|
||||
"""根据当前模型类型选择对应的生成函数"""
|
||||
# 从global_config中获取模型概率值并选择模型
|
||||
rand = random.random()
|
||||
if rand < global_config.MODEL_R1_PROBABILITY:
|
||||
self.current_model_type = "r1"
|
||||
self.current_model_type = 'r1'
|
||||
current_model = self.model_r1
|
||||
elif (
|
||||
rand
|
||||
< global_config.MODEL_R1_PROBABILITY + global_config.MODEL_V3_PROBABILITY
|
||||
):
|
||||
self.current_model_type = "v3"
|
||||
elif rand < global_config.MODEL_R1_PROBABILITY + global_config.MODEL_V3_PROBABILITY:
|
||||
self.current_model_type = 'v3'
|
||||
current_model = self.model_v3
|
||||
else:
|
||||
self.current_model_type = "r1_distill"
|
||||
self.current_model_type = 'r1_distill'
|
||||
current_model = self.model_r1_distill
|
||||
|
||||
print(
|
||||
f"+++++++++++++++++{global_config.BOT_NICKNAME}{self.current_model_type}思考中+++++++++++++++++"
|
||||
)
|
||||
|
||||
model_response = await self._generate_response_with_model(
|
||||
message, current_model
|
||||
)
|
||||
|
||||
print(f"+++++++++++++++++{global_config.BOT_NICKNAME}{self.current_model_type}思考中+++++++++++++++++")
|
||||
|
||||
model_response = await self._generate_response_with_model(message, current_model)
|
||||
|
||||
if model_response:
|
||||
print(f"{global_config.BOT_NICKNAME}的回复是:{model_response}")
|
||||
print(f'{global_config.BOT_NICKNAME}的回复是:{model_response}')
|
||||
model_response, emotion = await self._process_response(model_response)
|
||||
if model_response:
|
||||
print(f"为 '{model_response}' 获取到的情感标签为:{emotion}")
|
||||
valuedict = {
|
||||
"happy": 0.5,
|
||||
"angry": -1,
|
||||
"sad": -0.5,
|
||||
"surprised": 0.5,
|
||||
"disgusted": -1.5,
|
||||
"fearful": -0.25,
|
||||
"neutral": 0.25,
|
||||
valuedict={
|
||||
'happy':0.5,'angry':-1,'sad':-0.5,'surprised':0.5,'disgusted':-1.5,'fearful':-0.25,'neutral':0.25
|
||||
}
|
||||
await relationship_manager.update_relationship_value(
|
||||
message.user_id, relationship_value=valuedict[emotion[0]]
|
||||
)
|
||||
await relationship_manager.update_relationship_value(message.user_id, relationship_value=valuedict[emotion[0]])
|
||||
|
||||
return model_response, emotion
|
||||
return None, []
|
||||
|
||||
async def _generate_response_with_model(
|
||||
self, message: Message, model: LLM_request
|
||||
) -> Optional[str]:
|
||||
async def _generate_response_with_model(self, message: Message, model: LLM_request) -> Optional[str]:
|
||||
"""使用指定的模型生成回复"""
|
||||
sender_name = message.user_nickname or f"用户{message.user_id}"
|
||||
if message.user_cardname:
|
||||
sender_name = (
|
||||
f"[({message.user_id}){message.user_nickname}]{message.user_cardname}"
|
||||
)
|
||||
|
||||
sender_name=f"[({message.user_id}){message.user_nickname}]{message.user_cardname}"
|
||||
|
||||
# 获取关系值
|
||||
relationship_value = (
|
||||
relationship_manager.get_relationship(message.user_id).relationship_value
|
||||
if relationship_manager.get_relationship(message.user_id)
|
||||
else 0.0
|
||||
)
|
||||
relationship_value = relationship_manager.get_relationship(message.user_id).relationship_value if relationship_manager.get_relationship(message.user_id) else 0.0
|
||||
if relationship_value != 0.0:
|
||||
print(
|
||||
f"\033[1;32m[关系管理]\033[0m 回复中_当前关系值: {relationship_value}"
|
||||
)
|
||||
|
||||
print(f"\033[1;32m[关系管理]\033[0m 回复中_当前关系值: {relationship_value}")
|
||||
|
||||
# 构建prompt
|
||||
prompt, prompt_check = prompt_builder._build_prompt(
|
||||
message_txt=message.processed_plain_text,
|
||||
sender_name=sender_name,
|
||||
relationship_value=relationship_value,
|
||||
group_id=message.group_id,
|
||||
group_id=message.group_id
|
||||
)
|
||||
|
||||
# 读空气模块
|
||||
if global_config.enable_kuuki_read:
|
||||
content_check, reasoning_content_check = (
|
||||
await self.model_v3.generate_response(prompt_check)
|
||||
)
|
||||
content_check, reasoning_content_check = await self.model_v3.generate_response(prompt_check)
|
||||
print(f"\033[1;32m[读空气]\033[0m 读空气结果为{content_check}")
|
||||
if "yes" not in content_check.lower() and random.random() < 0.3:
|
||||
if 'yes' not in content_check.lower() and random.random() < 0.3:
|
||||
self._save_to_db(
|
||||
message=message,
|
||||
sender_name=sender_name,
|
||||
@@ -121,13 +90,13 @@ class ResponseGenerator:
|
||||
content="",
|
||||
content_check=content_check,
|
||||
reasoning_content="",
|
||||
reasoning_content_check=reasoning_content_check,
|
||||
reasoning_content_check=reasoning_content_check
|
||||
)
|
||||
return None
|
||||
|
||||
# 生成回复
|
||||
content, reasoning_content = await model.generate_response(prompt)
|
||||
|
||||
|
||||
# 保存到数据库
|
||||
self._save_to_db(
|
||||
message=message,
|
||||
@@ -137,65 +106,52 @@ class ResponseGenerator:
|
||||
content=content,
|
||||
content_check=content_check if global_config.enable_kuuki_read else "",
|
||||
reasoning_content=reasoning_content,
|
||||
reasoning_content_check=(
|
||||
reasoning_content_check if global_config.enable_kuuki_read else ""
|
||||
),
|
||||
reasoning_content_check=reasoning_content_check if global_config.enable_kuuki_read else ""
|
||||
)
|
||||
|
||||
|
||||
return content
|
||||
|
||||
def _save_to_db(
|
||||
self,
|
||||
message: Message,
|
||||
sender_name: str,
|
||||
prompt: str,
|
||||
prompt_check: str,
|
||||
content: str,
|
||||
content_check: str,
|
||||
reasoning_content: str,
|
||||
reasoning_content_check: str,
|
||||
):
|
||||
def _save_to_db(self, message: Message, sender_name: str, prompt: str, prompt_check: str,
|
||||
content: str, content_check: str, reasoning_content: str, reasoning_content_check: str):
|
||||
"""保存对话记录到数据库"""
|
||||
self.db.db.reasoning_logs.insert_one(
|
||||
{
|
||||
"time": time.time(),
|
||||
"group_id": message.group_id,
|
||||
"user": sender_name,
|
||||
"message": message.processed_plain_text,
|
||||
"model": self.current_model_type,
|
||||
"reasoning_check": reasoning_content_check,
|
||||
"response_check": content_check,
|
||||
"reasoning": reasoning_content,
|
||||
"response": content,
|
||||
"prompt": prompt,
|
||||
"prompt_check": prompt_check,
|
||||
}
|
||||
)
|
||||
self.db.db.reasoning_logs.insert_one({
|
||||
'time': time.time(),
|
||||
'group_id': message.group_id,
|
||||
'user': sender_name,
|
||||
'message': message.processed_plain_text,
|
||||
'model': self.current_model_type,
|
||||
'reasoning_check': reasoning_content_check,
|
||||
'response_check': content_check,
|
||||
'reasoning': reasoning_content,
|
||||
'response': content,
|
||||
'prompt': prompt,
|
||||
'prompt_check': prompt_check
|
||||
})
|
||||
|
||||
async def _get_emotion_tags(self, content: str) -> List[str]:
|
||||
"""提取情感标签"""
|
||||
try:
|
||||
prompt = f"""请从以下内容中,从"happy,angry,sad,surprised,disgusted,fearful,neutral"中选出最匹配的1个情感标签并输出
|
||||
prompt = f'''请从以下内容中,从"happy,angry,sad,surprised,disgusted,fearful,neutral"中选出最匹配的1个情感标签并输出
|
||||
只输出标签就好,不要输出其他内容:
|
||||
内容:{content}
|
||||
输出:
|
||||
"""
|
||||
|
||||
'''
|
||||
|
||||
content, _ = await self.model_v3.generate_response(prompt)
|
||||
return [content.strip()] if content else ["neutral"]
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"获取情感标签时出错: {e}")
|
||||
return ["neutral"]
|
||||
|
||||
|
||||
async def _process_response(self, content: str) -> Tuple[List[str], List[str]]:
|
||||
"""处理响应内容,返回处理后的内容和情感标签"""
|
||||
if not content:
|
||||
return None, []
|
||||
|
||||
|
||||
emotion_tags = await self._get_emotion_tags(content)
|
||||
processed_response = process_llm_response(content)
|
||||
|
||||
|
||||
return processed_response, emotion_tags
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user