temp: 保存

This commit is contained in:
tcmofashi
2025-03-03 21:11:39 +08:00
parent 5736d97c1f
commit 37c5dd1310
4 changed files with 413 additions and 96 deletions

View File

@@ -23,65 +23,96 @@ class ResponseGenerator:
def __init__(self):
self.model_r1 = LLM_request(model=global_config.llm_reasoning, temperature=0.7)
self.model_v3 = LLM_request(model=global_config.llm_normal, temperature=0.7)
self.model_r1_distill = LLM_request(model=global_config.llm_reasoning_minor, temperature=0.7)
self.model_r1_distill = LLM_request(
model=global_config.llm_reasoning_minor, temperature=0.7
)
self.db = Database.get_instance()
self.current_model_type = 'r1' # 默认使用 R1
self.current_model_type = "r1" # 默认使用 R1
async def generate_response(self, message: Message) -> Optional[Union[str, List[str]]]:
async def generate_response(
self, message: Message
) -> Optional[Union[str, List[str]]]:
"""根据当前模型类型选择对应的生成函数"""
# 从global_config中获取模型概率值并选择模型
rand = random.random()
if rand < global_config.MODEL_R1_PROBABILITY:
self.current_model_type = 'r1'
self.current_model_type = "r1"
current_model = self.model_r1
elif rand < global_config.MODEL_R1_PROBABILITY + global_config.MODEL_V3_PROBABILITY:
self.current_model_type = 'v3'
elif (
rand
< global_config.MODEL_R1_PROBABILITY + global_config.MODEL_V3_PROBABILITY
):
self.current_model_type = "v3"
current_model = self.model_v3
else:
self.current_model_type = 'r1_distill'
self.current_model_type = "r1_distill"
current_model = self.model_r1_distill
print(f"+++++++++++++++++{global_config.BOT_NICKNAME}{self.current_model_type}思考中+++++++++++++++++")
model_response = await self._generate_response_with_model(message, current_model)
print(
f"+++++++++++++++++{global_config.BOT_NICKNAME}{self.current_model_type}思考中+++++++++++++++++"
)
model_response = await self._generate_response_with_model(
message, current_model
)
if model_response:
print(f'{global_config.BOT_NICKNAME}的回复是:{model_response}')
print(f"{global_config.BOT_NICKNAME}的回复是:{model_response}")
model_response, emotion = await self._process_response(model_response)
if model_response:
print(f"'{model_response}' 获取到的情感标签为:{emotion}")
valuedict={
'happy':0.5,'angry':-1,'sad':-0.5,'surprised':0.5,'disgusted':-1.5,'fearful':-0.25,'neutral':0.25
valuedict = {
"happy": 0.5,
"angry": -1,
"sad": -0.5,
"surprised": 0.5,
"disgusted": -1.5,
"fearful": -0.25,
"neutral": 0.25,
}
await relationship_manager.update_relationship_value(message.user_id, relationship_value=valuedict[emotion[0]])
await relationship_manager.update_relationship_value(
message.user_id, relationship_value=valuedict[emotion[0]]
)
return model_response, emotion
return None, []
async def _generate_response_with_model(self, message: Message, model: LLM_request) -> Optional[str]:
async def _generate_response_with_model(
self, message: Message, model: LLM_request
) -> Optional[str]:
"""使用指定的模型生成回复"""
sender_name = message.user_nickname or f"用户{message.user_id}"
if message.user_cardname:
sender_name=f"[({message.user_id}){message.user_nickname}]{message.user_cardname}"
sender_name = (
f"[({message.user_id}){message.user_nickname}]{message.user_cardname}"
)
# 获取关系值
relationship_value = relationship_manager.get_relationship(message.user_id).relationship_value if relationship_manager.get_relationship(message.user_id) else 0.0
relationship_value = (
relationship_manager.get_relationship(message.user_id).relationship_value
if relationship_manager.get_relationship(message.user_id)
else 0.0
)
if relationship_value != 0.0:
print(f"\033[1;32m[关系管理]\033[0m 回复中_当前关系值: {relationship_value}")
print(
f"\033[1;32m[关系管理]\033[0m 回复中_当前关系值: {relationship_value}"
)
# 构建prompt
prompt, prompt_check = prompt_builder._build_prompt(
message_txt=message.processed_plain_text,
sender_name=sender_name,
relationship_value=relationship_value,
group_id=message.group_id
group_id=message.group_id,
)
# 读空气模块
if global_config.enable_kuuki_read:
content_check, reasoning_content_check = await self.model_v3.generate_response(prompt_check)
content_check, reasoning_content_check = (
await self.model_v3.generate_response(prompt_check)
)
print(f"\033[1;32m[读空气]\033[0m 读空气结果为{content_check}")
if 'yes' not in content_check.lower() and random.random() < 0.3:
if "yes" not in content_check.lower() and random.random() < 0.3:
self._save_to_db(
message=message,
sender_name=sender_name,
@@ -90,13 +121,13 @@ class ResponseGenerator:
content="",
content_check=content_check,
reasoning_content="",
reasoning_content_check=reasoning_content_check
reasoning_content_check=reasoning_content_check,
)
return None
# 生成回复
content, reasoning_content = await model.generate_response(prompt)
# 保存到数据库
self._save_to_db(
message=message,
@@ -106,50 +137,101 @@ class ResponseGenerator:
content=content,
content_check=content_check if global_config.enable_kuuki_read else "",
reasoning_content=reasoning_content,
reasoning_content_check=reasoning_content_check if global_config.enable_kuuki_read else ""
reasoning_content_check=(
reasoning_content_check if global_config.enable_kuuki_read else ""
),
)
return content
def _save_to_db(self, message: Message, sender_name: str, prompt: str, prompt_check: str,
content: str, content_check: str, reasoning_content: str, reasoning_content_check: str):
def _save_to_db(
self,
message: Message,
sender_name: str,
prompt: str,
prompt_check: str,
content: str,
content_check: str,
reasoning_content: str,
reasoning_content_check: str,
):
"""保存对话记录到数据库"""
self.db.db.reasoning_logs.insert_one({
'time': time.time(),
'group_id': message.group_id,
'user': sender_name,
'message': message.processed_plain_text,
'model': self.current_model_type,
'reasoning_check': reasoning_content_check,
'response_check': content_check,
'reasoning': reasoning_content,
'response': content,
'prompt': prompt,
'prompt_check': prompt_check
})
self.db.db.reasoning_logs.insert_one(
{
"time": time.time(),
"group_id": message.group_id,
"user": sender_name,
"message": message.processed_plain_text,
"model": self.current_model_type,
"reasoning_check": reasoning_content_check,
"response_check": content_check,
"reasoning": reasoning_content,
"response": content,
"prompt": prompt,
"prompt_check": prompt_check,
}
)
async def _get_emotion_tags(self, content: str) -> List[str]:
"""提取情感标签"""
try:
prompt = f'''请从以下内容中,从"happy,angry,sad,surprised,disgusted,fearful,neutral"中选出最匹配的1个情感标签并输出
prompt = f"""请从以下内容中,从"happy,angry,sad,surprised,disgusted,fearful,neutral"中选出最匹配的1个情感标签并输出
只输出标签就好,不要输出其他内容:
内容:{content}
输出:
'''
"""
content, _ = await self.model_v3.generate_response(prompt)
return [content.strip()] if content else ["neutral"]
except Exception as e:
print(f"获取情感标签时出错: {e}")
return ["neutral"]
async def _process_response(self, content: str) -> Tuple[List[str], List[str]]:
"""处理响应内容,返回处理后的内容和情感标签"""
if not content:
return None, []
emotion_tags = await self._get_emotion_tags(content)
processed_response = process_llm_response(content)
return processed_response, emotion_tags
return processed_response, emotion_tags
class InitiativeMessageGenerate:
def __init__(self):
self.db = Database.get_instance()
self.model_r1 = LLM_request(model=global_config.llm_reasoning, temperature=0.7)
self.model_v3 = LLM_request(model=global_config.llm_normal, temperature=0.7)
self.model_r1_distill = LLM_request(
model=global_config.llm_reasoning_minor, temperature=0.7
)
def gen_response(self, message: Message):
topic_select_prompt, dots_for_select, prompt_template = (
prompt_builder._build_initiative_prompt_select(message.group_id)
)
content_select, reasoning = self.model_v3.generate_response(topic_select_prompt)
print(f"[DEBUG] {content_select} {reasoning}")
topics_list = [dot[0] for dot in dots_for_select]
if content_select:
if content_select in topics_list:
select_dot = dots_for_select[topics_list.index(content_select)]
else:
return None
else:
return None
prompt_check, memory = prompt_builder._build_initiative_prompt_check(
select_dot[1], prompt_template
)
content_check, reasoning_check = self.model_v3.generate_response(prompt_check)
print(f"[DEBUG] {content_check} {reasoning_check}")
if "yes" not in content_check.lower():
return None
prompt = prompt_builder._build_initiative_prompt(
select_dot, prompt_template, memory
)
content, reasoning = self.model_r1.generate_response(prompt)
print(f"[DEBUG] {content} {reasoning}")
return content