@@ -124,60 +124,124 @@ class EmbeddingStore:
|
||||
self.faiss_index = None
|
||||
self.idx2hash = None
|
||||
|
||||
@staticmethod
|
||||
def _get_embedding(s: str) -> list[float]:
|
||||
"""获取字符串的嵌入向量,使用完全同步的方式避免事件循环问题"""
|
||||
# 创建新的事件循环并在完成后立即关闭
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
|
||||
try:
|
||||
# 创建新的LLMRequest实例
|
||||
from src.config.config import model_config
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
|
||||
llm = LLMRequest(model_set=model_config.model_task_config.embedding, request_type="embedding")
|
||||
|
||||
# 使用新的事件循环运行异步方法
|
||||
embedding, _ = loop.run_until_complete(llm.get_embedding(s))
|
||||
|
||||
if embedding and len(embedding) > 0:
|
||||
return embedding
|
||||
else:
|
||||
logger.error(f"获取嵌入失败: {s}")
|
||||
return []
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"获取嵌入时发生异常: {s}, 错误: {e}")
|
||||
return []
|
||||
finally:
|
||||
# 确保事件循环被正确关闭
|
||||
try:
|
||||
loop.close()
|
||||
except Exception:
|
||||
...
|
||||
|
||||
@staticmethod
|
||||
def _get_embeddings_batch_threaded(
|
||||
strs: list[str],
|
||||
main_loop: asyncio.AbstractEventLoop,
|
||||
chunk_size: int = 10,
|
||||
max_workers: int = 10,
|
||||
progress_callback=None,
|
||||
strs: list[str], chunk_size: int = 10, max_workers: int = 10, progress_callback=None
|
||||
) -> list[tuple[str, list[float]]]:
|
||||
"""使用多线程批量获取嵌入向量, 并通过 run_coroutine_threadsafe 在主事件循环中运行异步任务"""
|
||||
"""使用多线程批量获取嵌入向量
|
||||
|
||||
Args:
|
||||
strs: 要获取嵌入的字符串列表
|
||||
chunk_size: 每个线程处理的数据块大小
|
||||
max_workers: 最大线程数
|
||||
progress_callback: 进度回调函数,接收一个参数表示完成的数量
|
||||
|
||||
Returns:
|
||||
包含(原始字符串, 嵌入向量)的元组列表,保持与输入顺序一致
|
||||
"""
|
||||
if not strs:
|
||||
return []
|
||||
|
||||
# 导入必要的模块
|
||||
from src.config.config import model_config
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
|
||||
# 在主线程(即主事件循环所在的线程)中创建LLMRequest实例
|
||||
# 这样可以确保它绑定到正确的事件循环
|
||||
llm = LLMRequest(model_set=model_config.model_task_config.embedding, request_type="embedding")
|
||||
|
||||
# 分块
|
||||
chunks = [(i, strs[i : i + chunk_size]) for i in range(0, len(strs), chunk_size)]
|
||||
chunks = []
|
||||
for i in range(0, len(strs), chunk_size):
|
||||
chunk = strs[i : i + chunk_size]
|
||||
chunks.append((i, chunk)) # 保存起始索引以维持顺序
|
||||
|
||||
# 结果存储,使用字典按索引存储以保证顺序
|
||||
results = {}
|
||||
|
||||
def process_chunk(chunk_data):
|
||||
"""在工作线程中运行的函数"""
|
||||
"""处理单个数据块的函数"""
|
||||
start_idx, chunk_strs = chunk_data
|
||||
chunk_results = []
|
||||
|
||||
for i, s in enumerate(chunk_strs):
|
||||
embedding = []
|
||||
try:
|
||||
# 将异步的 get_embedding 调用提交到主事件循环
|
||||
future = asyncio.run_coroutine_threadsafe(llm.get_embedding(s), main_loop)
|
||||
# 同步等待结果,延长超时时间
|
||||
embedding_result, _ = future.result(timeout=60)
|
||||
# 为每个线程创建独立的LLMRequest实例
|
||||
from src.config.config import model_config
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
|
||||
if embedding_result and len(embedding_result) > 0:
|
||||
embedding = embedding_result
|
||||
else:
|
||||
logger.error(f"获取嵌入失败(返回为空): {s}")
|
||||
try:
|
||||
# 创建线程专用的LLM实例
|
||||
llm = LLMRequest(model_set=model_config.model_task_config.embedding, request_type="embedding")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"在线程中获取嵌入时发生异常: {s}, 错误: {type(e).__name__}: {e}")
|
||||
finally:
|
||||
chunk_results.append((start_idx + i, s, embedding))
|
||||
for i, s in enumerate(chunk_strs):
|
||||
try:
|
||||
# 在线程中创建独立的事件循环
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
try:
|
||||
embedding = loop.run_until_complete(llm.get_embedding(s))
|
||||
finally:
|
||||
loop.close()
|
||||
|
||||
if embedding and len(embedding) > 0:
|
||||
chunk_results.append((start_idx + i, s, embedding[0])) # embedding[0] 是实际的向量
|
||||
else:
|
||||
logger.error(f"获取嵌入失败: {s}")
|
||||
chunk_results.append((start_idx + i, s, []))
|
||||
|
||||
# 每完成一个嵌入立即更新进度
|
||||
if progress_callback:
|
||||
progress_callback(1)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"获取嵌入时发生异常: {s}, 错误: {e}")
|
||||
chunk_results.append((start_idx + i, s, []))
|
||||
|
||||
# 即使失败也要更新进度
|
||||
if progress_callback:
|
||||
progress_callback(1)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"创建LLM实例失败: {e}")
|
||||
# 如果创建LLM实例失败,返回空结果
|
||||
for i, s in enumerate(chunk_strs):
|
||||
chunk_results.append((start_idx + i, s, []))
|
||||
# 即使失败也要更新进度
|
||||
if progress_callback:
|
||||
progress_callback(1)
|
||||
|
||||
return chunk_results
|
||||
|
||||
# 使用线程池处理
|
||||
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
||||
# 提交所有任务
|
||||
future_to_chunk = {executor.submit(process_chunk, chunk): chunk for chunk in chunks}
|
||||
|
||||
# 收集结果(进度已在process_chunk中实时更新)
|
||||
for future in as_completed(future_to_chunk):
|
||||
try:
|
||||
chunk_results = future.result()
|
||||
@@ -185,14 +249,22 @@ class EmbeddingStore:
|
||||
results[idx] = (s, embedding)
|
||||
except Exception as e:
|
||||
chunk = future_to_chunk[future]
|
||||
logger.error(f"处理数据块时发生严重异常: {chunk}, 错误: {e}")
|
||||
logger.error(f"处理数据块时发生异常: {chunk}, 错误: {e}")
|
||||
# 为失败的块添加空结果
|
||||
start_idx, chunk_strs = chunk
|
||||
for i, s_item in enumerate(chunk_strs):
|
||||
if (start_idx + i) not in results:
|
||||
results[start_idx + i] = (s_item, [])
|
||||
for i, s in enumerate(chunk_strs):
|
||||
results[start_idx + i] = (s, [])
|
||||
|
||||
# 按原始顺序返回结果
|
||||
return [results.get(i, (strs[i], [])) for i in range(len(strs))]
|
||||
ordered_results = []
|
||||
for i in range(len(strs)):
|
||||
if i in results:
|
||||
ordered_results.append(results[i])
|
||||
else:
|
||||
# 防止遗漏
|
||||
ordered_results.append((strs[i], []))
|
||||
|
||||
return ordered_results
|
||||
|
||||
@staticmethod
|
||||
def get_test_file_path():
|
||||
@@ -202,17 +274,9 @@ class EmbeddingStore:
|
||||
"""保存测试字符串的嵌入到本地(使用多线程优化)"""
|
||||
logger.info("开始保存测试字符串的嵌入向量...")
|
||||
|
||||
# 获取当前正在运行的事件循环
|
||||
try:
|
||||
main_loop = asyncio.get_running_loop()
|
||||
except RuntimeError:
|
||||
logger.error("无法获取正在运行的事件循环。请确保在异步上下文中调用此方法。")
|
||||
return
|
||||
|
||||
# 使用多线程批量获取测试字符串的嵌入
|
||||
embedding_results = self._get_embeddings_batch_threaded(
|
||||
EMBEDDING_TEST_STRINGS,
|
||||
main_loop,
|
||||
chunk_size=min(self.chunk_size, len(EMBEDDING_TEST_STRINGS)),
|
||||
max_workers=min(self.max_workers, len(EMBEDDING_TEST_STRINGS)),
|
||||
)
|
||||
@@ -224,6 +288,8 @@ class EmbeddingStore:
|
||||
test_vectors[str(idx)] = embedding
|
||||
else:
|
||||
logger.error(f"获取测试字符串嵌入失败: {s}")
|
||||
# 使用原始单线程方法作为后备
|
||||
test_vectors[str(idx)] = self._get_embedding(s)
|
||||
|
||||
with open(self.get_test_file_path(), "w", encoding="utf-8") as f:
|
||||
f.write(orjson.dumps(test_vectors, option=orjson.OPT_INDENT_2).decode("utf-8"))
|
||||
@@ -255,17 +321,9 @@ class EmbeddingStore:
|
||||
|
||||
logger.info("开始检验嵌入模型一致性...")
|
||||
|
||||
# 获取当前正在运行的事件循环
|
||||
try:
|
||||
main_loop = asyncio.get_running_loop()
|
||||
except RuntimeError:
|
||||
logger.error("无法获取正在运行的事件循环。请确保在异步上下文中调用此方法。")
|
||||
return False
|
||||
|
||||
# 使用多线程批量获取当前模型的嵌入
|
||||
embedding_results = self._get_embeddings_batch_threaded(
|
||||
EMBEDDING_TEST_STRINGS,
|
||||
main_loop,
|
||||
chunk_size=min(self.chunk_size, len(EMBEDDING_TEST_STRINGS)),
|
||||
max_workers=min(self.max_workers, len(EMBEDDING_TEST_STRINGS)),
|
||||
)
|
||||
@@ -325,20 +383,11 @@ class EmbeddingStore:
|
||||
progress.update(task, advance=already_processed)
|
||||
|
||||
if new_strs:
|
||||
try:
|
||||
main_loop = asyncio.get_running_loop()
|
||||
except RuntimeError:
|
||||
logger.error("无法获取正在运行的事件循环。请确保在异步上下文中调用此方法。")
|
||||
# 更新进度条以反映未处理的项目
|
||||
progress.update(task, advance=len(new_strs))
|
||||
return
|
||||
|
||||
# 使用实例配置的参数,智能调整分块和线程数
|
||||
optimal_chunk_size = max(
|
||||
MIN_CHUNK_SIZE,
|
||||
min(
|
||||
self.chunk_size,
|
||||
len(new_strs) // self.max_workers if self.max_workers > 0 else self.chunk_size,
|
||||
self.chunk_size, len(new_strs) // self.max_workers if self.max_workers > 0 else self.chunk_size
|
||||
),
|
||||
)
|
||||
optimal_max_workers = min(
|
||||
@@ -355,13 +404,12 @@ class EmbeddingStore:
|
||||
# 批量获取嵌入,并实时更新进度
|
||||
embedding_results = self._get_embeddings_batch_threaded(
|
||||
new_strs,
|
||||
main_loop,
|
||||
chunk_size=optimal_chunk_size,
|
||||
max_workers=optimal_max_workers,
|
||||
progress_callback=update_progress,
|
||||
)
|
||||
|
||||
# 存入结果
|
||||
# 存入结果(不再需要在这里更新进度,因为已经在回调中更新了)
|
||||
for s, embedding in embedding_results:
|
||||
item_hash = self.namespace + "-" + get_sha256(s)
|
||||
if embedding: # 只有成功获取到嵌入才存入
|
||||
|
||||
Reference in New Issue
Block a user