迁移:69a855d(feat:保存关键词到message数据库)
This commit is contained in:
@@ -324,14 +324,14 @@ class Hippocampus:
|
||||
# 使用LLM提取关键词 - 根据详细文本长度分布优化topic_num计算
|
||||
text_length = len(text)
|
||||
topic_num: int | list[int] = 0
|
||||
if text_length <= 5:
|
||||
if text_length <= 6:
|
||||
words = jieba.cut(text)
|
||||
keywords = [word for word in words if len(word) > 1]
|
||||
keywords = list(set(keywords))[:3] # 限制最多3个关键词
|
||||
if keywords:
|
||||
logger.debug(f"提取关键词: {keywords}")
|
||||
return keywords
|
||||
elif text_length <= 10:
|
||||
elif text_length <= 12:
|
||||
topic_num = [1, 3] # 6-10字符: 1个关键词 (27.18%的文本)
|
||||
elif text_length <= 20:
|
||||
topic_num = [2, 4] # 11-20字符: 2个关键词 (22.76%的文本)
|
||||
@@ -777,7 +777,7 @@ class Hippocampus:
|
||||
total_nodes = len(self.memory_graph.G.nodes())
|
||||
# activated_nodes = len(activate_map)
|
||||
activation_ratio = total_activation / total_nodes if total_nodes > 0 else 0
|
||||
activation_ratio = activation_ratio * 60
|
||||
activation_ratio = activation_ratio * 50
|
||||
logger.debug(f"总激活值: {total_activation:.2f}, 总节点数: {total_nodes}, 激活: {activation_ratio}")
|
||||
|
||||
return activation_ratio, keywords
|
||||
|
||||
Reference in New Issue
Block a user