diff --git a/README.md b/README.md index 29e25b2b9..5ae9c5f2c 100644 --- a/README.md +++ b/README.md @@ -139,7 +139,7 @@ ## 📌 注意事项 -SengokuCola纯编程外行,面向cursor编程,很多代码史一样多多包涵 +SengokuCola已得到大脑升级 > ⚠️ **警告**:本应用生成内容来自人工智能模型,由 AI 生成,请仔细甄别,请勿用于违反法律的用途,AI生成内容不代表本人观点和立场。 diff --git a/docs/Jonathan R.md b/docs/Jonathan R.md new file mode 100644 index 000000000..660caaeec --- /dev/null +++ b/docs/Jonathan R.md @@ -0,0 +1,20 @@ +Jonathan R. Wolpaw 在 “Memory in neuroscience: rhetoric versus reality.” 一文中提到,从神经科学的感觉运动假设出发,整个神经系统的功能是将经验与适当的行为联系起来,而不是单纯的信息存储。 +Jonathan R,Wolpaw. (2019). Memory in neuroscience: rhetoric versus reality.. Behavioral and cognitive neuroscience reviews(2). + +1. **单一过程理论** + - 单一过程理论认为,识别记忆主要是基于熟悉性这一单一因素的影响。熟悉性是指对刺激的一种自动的、无意识的感知,它可以使我们在没有回忆起具体细节的情况下,判断一个刺激是否曾经出现过。 + - 例如,在一些实验中,研究者发现被试可以在没有回忆起具体学习情境的情况下,对曾经出现过的刺激做出正确的判断,这被认为是熟悉性在起作用1。 +2. **双重过程理论** + - 双重过程理论则认为,识别记忆是基于两个过程:回忆和熟悉性。回忆是指对过去经验的有意识的回忆,它可以使我们回忆起具体的细节和情境;熟悉性则是一种自动的、无意识的感知。 + - 该理论认为,在识别记忆中,回忆和熟悉性共同作用,使我们能够判断一个刺激是否曾经出现过。例如,在 “记得 / 知道” 范式中,被试被要求判断他们对一个刺激的记忆是基于回忆还是熟悉性。研究发现,被试可以区分这两种不同的记忆过程,这为双重过程理论提供了支持1。 + + + +1. **神经元节点与连接**:借鉴神经网络原理,将每个记忆单元视为一个神经元节点。节点之间通过连接相互关联,连接的强度代表记忆之间的关联程度。在形态学联想记忆中,具有相似形态特征的记忆节点连接强度较高。例如,苹果和橘子的记忆节点,由于在形状、都是水果等形态语义特征上相似,它们之间的连接强度大于苹果与汽车记忆节点间的连接强度。 +2. **记忆聚类与层次结构**:依据形态特征的相似性对记忆进行聚类,形成不同的记忆簇。每个记忆簇内部的记忆具有较高的相似性,而不同记忆簇之间的记忆相似性较低。同时,构建记忆的层次结构,高层次的记忆节点代表更抽象、概括的概念,低层次的记忆节点对应具体的实例。比如,“水果” 作为高层次记忆节点,连接着 “苹果”“橘子”“香蕉” 等低层次具体水果的记忆节点。 +3. **网络的动态更新**:随着新记忆的不断加入,记忆网络动态调整。新记忆节点根据其形态特征与现有网络中的节点建立连接,同时影响相关连接的强度。若新记忆与某个记忆簇的特征高度相似,则被纳入该记忆簇;若具有独特特征,则可能引发新的记忆簇的形成。例如,当系统学习到一种新的水果 “番石榴”,它会根据番石榴的形态、语义等特征,在记忆网络中找到与之最相似的区域(如水果记忆簇),并建立相应连接,同时调整周围节点连接强度以适应这一新记忆。 + + + +- **相似性联想**:该理论认为,当两个或多个事物在形态上具有相似性时,它们在记忆中会形成关联。例如,梨和苹果在形状和都是水果这一属性上有相似性,所以当我们看到梨时,很容易通过形态学联想记忆联想到苹果。这种相似性联想有助于我们对新事物进行分类和理解,当遇到一个新的类似水果时,我们可以通过与已有的水果记忆进行相似性匹配,来推测它的一些特征。 +- **时空关联性联想**:除了相似性联想,MAM 还强调时空关联性联想。如果两个事物在时间或空间上经常同时出现,它们也会在记忆中形成关联。比如,每次在公园里看到花的时候,都能听到鸟儿的叫声,那么花和鸟儿叫声的形态特征(花的视觉形态和鸟叫的听觉形态)就会在记忆中形成关联,以后听到鸟叫可能就会联想到公园里的花。 \ No newline at end of file diff --git a/src/plugins/chat/__init__.py b/src/plugins/chat/__init__.py index bd71be019..c730466b3 100644 --- a/src/plugins/chat/__init__.py +++ b/src/plugins/chat/__init__.py @@ -121,9 +121,9 @@ async def build_memory_task(): @scheduler.scheduled_job("interval", seconds=global_config.forget_memory_interval, id="forget_memory") async def forget_memory_task(): """每30秒执行一次记忆构建""" - # print("\033[1;32m[记忆遗忘]\033[0m 开始遗忘记忆...") - # await hippocampus.operation_forget_topic(percentage=0.1) - # print("\033[1;32m[记忆遗忘]\033[0m 记忆遗忘完成") + print("\033[1;32m[记忆遗忘]\033[0m 开始遗忘记忆...") + await hippocampus.operation_forget_topic(percentage=0.1) + print("\033[1;32m[记忆遗忘]\033[0m 记忆遗忘完成") @scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval + 10, id="merge_memory") diff --git a/src/plugins/chat/emoji_manager.py b/src/plugins/chat/emoji_manager.py index 973bcad2d..740e9a677 100644 --- a/src/plugins/chat/emoji_manager.py +++ b/src/plugins/chat/emoji_manager.py @@ -203,7 +203,7 @@ class EmojiManager: try: prompt = f'这是{global_config.BOT_NICKNAME}将要发送的消息内容:\n{text}\n若要为其配上表情包,请你输出这个表情包应该表达怎样的情感,应该给人什么样的感觉,不要太简洁也不要太长,注意不要输出任何对消息内容的分析内容,只输出\"一种什么样的感觉\"中间的形容词部分。' - content, _ = await self.llm_emotion_judge.generate_response_async(prompt) + content, _ = await self.llm_emotion_judge.generate_response_async(prompt,temperature=1.5) logger.info(f"输出描述: {content}") return content diff --git a/src/plugins/knowledege/knowledge_library.py b/src/plugins/knowledege/knowledge_library.py index 481076961..4bf6227bb 100644 --- a/src/plugins/knowledege/knowledge_library.py +++ b/src/plugins/knowledege/knowledge_library.py @@ -79,7 +79,7 @@ class KnowledgeLibrary: content = f.read() # 按1024字符分段 - segments = [content[i:i+600] for i in range(0, len(content), 600)] + segments = [content[i:i+600] for i in range(0, len(content), 300)] # 处理每个分段 for segment in segments: diff --git a/src/plugins/memory_system/memory.py b/src/plugins/memory_system/memory.py index 9b325b36d..0730f9e57 100644 --- a/src/plugins/memory_system/memory.py +++ b/src/plugins/memory_system/memory.py @@ -25,26 +25,46 @@ class Memory_graph: self.db = Database.get_instance() def connect_dot(self, concept1, concept2): - # 如果边已存在,增加 strength + # 避免自连接 + if concept1 == concept2: + return + + current_time = datetime.datetime.now().timestamp() + + # 如果边已存在,增加 strength if self.G.has_edge(concept1, concept2): self.G[concept1][concept2]['strength'] = self.G[concept1][concept2].get('strength', 1) + 1 + # 更新最后修改时间 + self.G[concept1][concept2]['last_modified'] = current_time else: - # 如果是新边,初始化 strength 为 1 - self.G.add_edge(concept1, concept2, strength=1) + # 如果是新边,初始化 strength 为 1 + self.G.add_edge(concept1, concept2, + strength=1, + created_time=current_time, # 添加创建时间 + last_modified=current_time) # 添加最后修改时间 def add_dot(self, concept, memory): + current_time = datetime.datetime.now().timestamp() + if concept in self.G: - # 如果节点已存在,将新记忆添加到现有列表中 if 'memory_items' in self.G.nodes[concept]: if not isinstance(self.G.nodes[concept]['memory_items'], list): - # 如果当前不是列表,将其转换为列表 self.G.nodes[concept]['memory_items'] = [self.G.nodes[concept]['memory_items']] self.G.nodes[concept]['memory_items'].append(memory) + # 更新最后修改时间 + self.G.nodes[concept]['last_modified'] = current_time else: self.G.nodes[concept]['memory_items'] = [memory] + # 如果节点存在但没有memory_items,说明是第一次添加memory,设置created_time + if 'created_time' not in self.G.nodes[concept]: + self.G.nodes[concept]['created_time'] = current_time + self.G.nodes[concept]['last_modified'] = current_time else: - # 如果是新节点,创建新的记忆列表 - self.G.add_node(concept, memory_items=[memory]) + # 如果是新节点,创建新的记忆列表 + self.G.add_node(concept, + memory_items=[memory], + created_time=current_time, # 添加创建时间 + last_modified=current_time) # 添加最后修改时间 def get_dot(self, concept): # 检查节点是否存在于图中 @@ -191,15 +211,11 @@ class Hippocampus: async def memory_compress(self, messages: list, compress_rate=0.1): """压缩消息记录为记忆 - Args: - messages: 消息记录字典列表,每个字典包含text和time字段 - compress_rate: 压缩率 - Returns: - set: (话题, 记忆) 元组集合 + tuple: (压缩记忆集合, 相似主题字典) """ if not messages: - return set() + return set(), {} # 合并消息文本,同时保留时间信息 input_text = "" @@ -246,12 +262,33 @@ class Hippocampus: # 等待所有任务完成 compressed_memory = set() + similar_topics_dict = {} # 存储每个话题的相似主题列表 for topic, task in tasks: response = await task if response: compressed_memory.add((topic, response[0])) + # 为每个话题查找相似的已存在主题 + existing_topics = list(self.memory_graph.G.nodes()) + similar_topics = [] + + for existing_topic in existing_topics: + topic_words = set(jieba.cut(topic)) + existing_words = set(jieba.cut(existing_topic)) + + all_words = topic_words | existing_words + v1 = [1 if word in topic_words else 0 for word in all_words] + v2 = [1 if word in existing_words else 0 for word in all_words] + + similarity = cosine_similarity(v1, v2) + + if similarity >= 0.6: + similar_topics.append((existing_topic, similarity)) + + similar_topics.sort(key=lambda x: x[1], reverse=True) + similar_topics = similar_topics[:5] + similar_topics_dict[topic] = similar_topics - return compressed_memory + return compressed_memory, similar_topics_dict def calculate_topic_num(self, text, compress_rate): """计算文本的话题数量""" @@ -265,33 +302,40 @@ class Hippocampus: return topic_num async def operation_build_memory(self, chat_size=20): - # 最近消息获取频率 - time_frequency = {'near': 2, 'mid': 4, 'far': 2} - memory_sample = self.get_memory_sample(chat_size, time_frequency) - - for i, input_text in enumerate(memory_sample, 1): - # 加载进度可视化 + time_frequency = {'near': 3, 'mid': 8, 'far': 5} + memory_samples = self.get_memory_sample(chat_size, time_frequency) + + for i, messages in enumerate(memory_samples, 1): all_topics = [] - progress = (i / len(memory_sample)) * 100 + # 加载进度可视化 + progress = (i / len(memory_samples)) * 100 bar_length = 30 - filled_length = int(bar_length * i // len(memory_sample)) + filled_length = int(bar_length * i // len(memory_samples)) bar = '█' * filled_length + '-' * (bar_length - filled_length) - logger.debug(f"进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})") + logger.debug(f"进度: [{bar}] {progress:.1f}% ({i}/{len(memory_samples)})") - # 生成压缩后记忆 ,表现为 (话题,记忆) 的元组 - compressed_memory = set() compress_rate = 0.1 - compressed_memory = await self.memory_compress(input_text, compress_rate) - logger.info(f"压缩后记忆数量: {len(compressed_memory)}") - - # 将记忆加入到图谱中 + compressed_memory, similar_topics_dict = await self.memory_compress(messages, compress_rate) + logger.info(f"压缩后记忆数量: {len(compressed_memory)},似曾相识的话题: {len(similar_topics_dict)}") + for topic, memory in compressed_memory: logger.info(f"添加节点: {topic}") self.memory_graph.add_dot(topic, memory) - all_topics.append(topic) # 收集所有话题 + all_topics.append(topic) + + # 连接相似的已存在主题 + if topic in similar_topics_dict: + similar_topics = similar_topics_dict[topic] + for similar_topic, similarity in similar_topics: + if topic != similar_topic: + strength = int(similarity * 10) + logger.info(f"连接相似节点: {topic} 和 {similar_topic} (强度: {strength})") + self.memory_graph.G.add_edge(topic, similar_topic, strength=strength) + + # 连接同批次的相关话题 for i in range(len(all_topics)): for j in range(i + 1, len(all_topics)): - logger.info(f"连接节点: {all_topics[i]} 和 {all_topics[j]}") + logger.info(f"连接同批次节点: {all_topics[i]} 和 {all_topics[j]}") self.memory_graph.connect_dot(all_topics[i], all_topics[j]) self.sync_memory_to_db() @@ -302,7 +346,7 @@ class Hippocampus: db_nodes = list(self.memory_graph.db.db.graph_data.nodes.find()) memory_nodes = list(self.memory_graph.G.nodes(data=True)) - # 转换数据库节点为字典格式,方便查找 + # 转换数据库节点为字典格式,方便查找 db_nodes_dict = {node['concept']: node for node in db_nodes} # 检查并更新节点 @@ -313,13 +357,19 @@ class Hippocampus: # 计算内存中节点的特征值 memory_hash = self.calculate_node_hash(concept, memory_items) + + # 获取时间信息 + created_time = data.get('created_time', datetime.datetime.now().timestamp()) + last_modified = data.get('last_modified', datetime.datetime.now().timestamp()) if concept not in db_nodes_dict: - # 数据库中缺少的节点,添加 + # 数据库中缺少的节点,添加 node_data = { 'concept': concept, 'memory_items': memory_items, - 'hash': memory_hash + 'hash': memory_hash, + 'created_time': created_time, + 'last_modified': last_modified } self.memory_graph.db.db.graph_data.nodes.insert_one(node_data) else: @@ -327,25 +377,21 @@ class Hippocampus: db_node = db_nodes_dict[concept] db_hash = db_node.get('hash', None) - # 如果特征值不同,则更新节点 + # 如果特征值不同,则更新节点 if db_hash != memory_hash: self.memory_graph.db.db.graph_data.nodes.update_one( {'concept': concept}, {'$set': { 'memory_items': memory_items, - 'hash': memory_hash + 'hash': memory_hash, + 'created_time': created_time, + 'last_modified': last_modified }} ) - # 检查并删除数据库中多余的节点 - memory_concepts = set(node[0] for node in memory_nodes) - for db_node in db_nodes: - if db_node['concept'] not in memory_concepts: - self.memory_graph.db.db.graph_data.nodes.delete_one({'concept': db_node['concept']}) - # 处理边的信息 db_edges = list(self.memory_graph.db.db.graph_data.edges.find()) - memory_edges = list(self.memory_graph.G.edges()) + memory_edges = list(self.memory_graph.G.edges(data=True)) # 创建边的哈希值字典 db_edge_dict = {} @@ -357,10 +403,14 @@ class Hippocampus: } # 检查并更新边 - for source, target in memory_edges: + for source, target, data in memory_edges: edge_hash = self.calculate_edge_hash(source, target) edge_key = (source, target) - strength = self.memory_graph.G[source][target].get('strength', 1) + strength = data.get('strength', 1) + + # 获取边的时间信息 + created_time = data.get('created_time', datetime.datetime.now().timestamp()) + last_modified = data.get('last_modified', datetime.datetime.now().timestamp()) if edge_key not in db_edge_dict: # 添加新边 @@ -368,7 +418,9 @@ class Hippocampus: 'source': source, 'target': target, 'strength': strength, - 'hash': edge_hash + 'hash': edge_hash, + 'created_time': created_time, + 'last_modified': last_modified } self.memory_graph.db.db.graph_data.edges.insert_one(edge_data) else: @@ -378,20 +430,12 @@ class Hippocampus: {'source': source, 'target': target}, {'$set': { 'hash': edge_hash, - 'strength': strength + 'strength': strength, + 'created_time': created_time, + 'last_modified': last_modified }} ) - # 删除多余的边 - memory_edge_set = set(memory_edges) - for edge_key in db_edge_dict: - if edge_key not in memory_edge_set: - source, target = edge_key - self.memory_graph.db.db.graph_data.edges.delete_one({ - 'source': source, - 'target': target - }) - def sync_memory_from_db(self): """从数据库同步数据到内存中的图结构""" # 清空当前图 @@ -405,61 +449,107 @@ class Hippocampus: # 确保memory_items是列表 if not isinstance(memory_items, list): memory_items = [memory_items] if memory_items else [] + + # 获取时间信息 + created_time = node.get('created_time', datetime.datetime.now().timestamp()) + last_modified = node.get('last_modified', datetime.datetime.now().timestamp()) + # 添加节点到图中 - self.memory_graph.G.add_node(concept, memory_items=memory_items) + self.memory_graph.G.add_node(concept, + memory_items=memory_items, + created_time=created_time, + last_modified=last_modified) # 从数据库加载所有边 edges = self.memory_graph.db.db.graph_data.edges.find() for edge in edges: source = edge['source'] target = edge['target'] - strength = edge.get('strength', 1) # 获取 strength,默认为 1 + strength = edge.get('strength', 1) # 获取 strength,默认为 1 + + # 获取时间信息 + created_time = edge.get('created_time', datetime.datetime.now().timestamp()) + last_modified = edge.get('last_modified', datetime.datetime.now().timestamp()) + # 只有当源节点和目标节点都存在时才添加边 if source in self.memory_graph.G and target in self.memory_graph.G: - self.memory_graph.G.add_edge(source, target, strength=strength) + self.memory_graph.G.add_edge(source, target, + strength=strength, + created_time=created_time, + last_modified=last_modified) async def operation_forget_topic(self, percentage=0.1): - """随机选择图中一定比例的节点进行检查,根据条件决定是否遗忘""" - # 获取所有节点 + """随机选择图中一定比例的节点和边进行检查,根据时间条件决定是否遗忘""" all_nodes = list(self.memory_graph.G.nodes()) - # 计算要检查的节点数量 - check_count = max(1, int(len(all_nodes) * percentage)) - # 随机选择节点 - nodes_to_check = random.sample(all_nodes, check_count) - - forgotten_nodes = [] + all_edges = list(self.memory_graph.G.edges()) + + check_nodes_count = max(1, int(len(all_nodes) * percentage)) + check_edges_count = max(1, int(len(all_edges) * percentage)) + + nodes_to_check = random.sample(all_nodes, check_nodes_count) + edges_to_check = random.sample(all_edges, check_edges_count) + + edge_changes = {'weakened': 0, 'removed': 0} + node_changes = {'reduced': 0, 'removed': 0} + + current_time = datetime.datetime.now().timestamp() + + # 检查并遗忘连接 + logger.info("开始检查连接...") + for source, target in edges_to_check: + edge_data = self.memory_graph.G[source][target] + last_modified = edge_data.get('last_modified') + # print(source,target) + # print(f"float(last_modified):{float(last_modified)}" ) + # print(f"current_time:{current_time}") + # print(f"current_time - last_modified:{current_time - last_modified}") + if current_time - last_modified > 3600*24: # test + current_strength = edge_data.get('strength', 1) + new_strength = current_strength - 1 + + if new_strength <= 0: + self.memory_graph.G.remove_edge(source, target) + edge_changes['removed'] += 1 + logger.info(f"\033[1;31m[连接移除]\033[0m {source} - {target}") + else: + edge_data['strength'] = new_strength + edge_data['last_modified'] = current_time + edge_changes['weakened'] += 1 + logger.info(f"\033[1;34m[连接减弱]\033[0m {source} - {target} (强度: {current_strength} -> {new_strength})") + + # 检查并遗忘话题 + logger.info("开始检查节点...") for node in nodes_to_check: - # 获取节点的连接数 - connections = self.memory_graph.G.degree(node) - - # 获取节点的内容条数 - memory_items = self.memory_graph.G.nodes[node].get('memory_items', []) - if not isinstance(memory_items, list): - memory_items = [memory_items] if memory_items else [] - content_count = len(memory_items) - - # 检查连接强度 - weak_connections = True - if connections > 1: # 只有当连接数大于1时才检查强度 - for neighbor in self.memory_graph.G.neighbors(node): - strength = self.memory_graph.G[node][neighbor].get('strength', 1) - if strength > 2: - weak_connections = False - break - - # 如果满足遗忘条件 - if (connections <= 1 and weak_connections) or content_count <= 2: - removed_item = self.memory_graph.forget_topic(node) - if removed_item: - forgotten_nodes.append((node, removed_item)) - logger.debug(f"遗忘节点 {node} 的记忆: {removed_item}") - - # 同步到数据库 - if forgotten_nodes: + node_data = self.memory_graph.G.nodes[node] + last_modified = node_data.get('last_modified', current_time) + + if current_time - last_modified > 3600*24: # test + memory_items = node_data.get('memory_items', []) + if not isinstance(memory_items, list): + memory_items = [memory_items] if memory_items else [] + + if memory_items: + current_count = len(memory_items) + removed_item = random.choice(memory_items) + memory_items.remove(removed_item) + + if memory_items: + self.memory_graph.G.nodes[node]['memory_items'] = memory_items + self.memory_graph.G.nodes[node]['last_modified'] = current_time + node_changes['reduced'] += 1 + logger.info(f"\033[1;33m[记忆减少]\033[0m {node} (记忆数量: {current_count} -> {len(memory_items)})") + else: + self.memory_graph.G.remove_node(node) + node_changes['removed'] += 1 + logger.info(f"\033[1;31m[节点移除]\033[0m {node}") + + if any(count > 0 for count in edge_changes.values()) or any(count > 0 for count in node_changes.values()): self.sync_memory_to_db() - logger.debug(f"完成遗忘操作,共遗忘 {len(forgotten_nodes)} 个节点的记忆") + logger.info("\n遗忘操作统计:") + logger.info(f"连接变化: {edge_changes['weakened']} 个减弱, {edge_changes['removed']} 个移除") + logger.info(f"节点变化: {node_changes['reduced']} 个减少记忆, {node_changes['removed']} 个移除") else: - logger.debug("本次检查没有节点满足遗忘条件") + logger.info("\n本次检查没有节点或连接满足遗忘条件") async def merge_memory(self, topic): """ @@ -486,7 +576,7 @@ class Hippocampus: logger.debug(f"选择的记忆:\n{merged_text}") # 使用memory_compress生成新的压缩记忆 - compressed_memories = await self.memory_compress(selected_memories, 0.1) + compressed_memories, _ = await self.memory_compress(selected_memories, 0.1) # 从原记忆列表中移除被选中的记忆 for memory in selected_memories: diff --git a/src/plugins/memory_system/memory_test1.py b/src/plugins/memory_system/memory_test1.py new file mode 100644 index 000000000..bbd734ec2 --- /dev/null +++ b/src/plugins/memory_system/memory_test1.py @@ -0,0 +1,1208 @@ +# -*- coding: utf-8 -*- +import datetime +import math +import os +import random +import sys +import time +from collections import Counter +from pathlib import Path + +import matplotlib.pyplot as plt +import networkx as nx +import pymongo +from dotenv import load_dotenv +from loguru import logger +import jieba + +''' +该理论认为,当两个或多个事物在形态上具有相似性时, +它们在记忆中会形成关联。 +例如,梨和苹果在形状和都是水果这一属性上有相似性, +所以当我们看到梨时,很容易通过形态学联想记忆联想到苹果。 +这种相似性联想有助于我们对新事物进行分类和理解, +当遇到一个新的类似水果时, +我们可以通过与已有的水果记忆进行相似性匹配, +来推测它的一些特征。 + + + +时空关联性联想: +除了相似性联想,MAM 还强调时空关联性联想。 +如果两个事物在时间或空间上经常同时出现,它们也会在记忆中形成关联。 +比如,每次在公园里看到花的时候,都能听到鸟儿的叫声, +那么花和鸟儿叫声的形态特征(花的视觉形态和鸟叫的听觉形态)就会在记忆中形成关联, +以后听到鸟叫可能就会联想到公园里的花。 + +''' + +# from chat.config import global_config +sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径 +from src.common.database import Database +from src.plugins.memory_system.offline_llm import LLMModel + +# 获取当前文件的目录 +current_dir = Path(__file__).resolve().parent +# 获取项目根目录(上三层目录) +project_root = current_dir.parent.parent.parent +# env.dev文件路径 +env_path = project_root / ".env.dev" + +# 加载环境变量 +if env_path.exists(): + logger.info(f"从 {env_path} 加载环境变量") + load_dotenv(env_path) +else: + logger.warning(f"未找到环境变量文件: {env_path}") + logger.info("将使用默认配置") + +class Database: + _instance = None + db = None + + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls() + return cls._instance + + def __init__(self): + if not Database.db: + Database.initialize( + host=os.getenv("MONGODB_HOST"), + port=int(os.getenv("MONGODB_PORT")), + db_name=os.getenv("DATABASE_NAME"), + username=os.getenv("MONGODB_USERNAME"), + password=os.getenv("MONGODB_PASSWORD"), + auth_source=os.getenv("MONGODB_AUTH_SOURCE") + ) + + @classmethod + def initialize(cls, host, port, db_name, username=None, password=None, auth_source="admin"): + try: + if username and password: + uri = f"mongodb://{username}:{password}@{host}:{port}/{db_name}?authSource={auth_source}" + else: + uri = f"mongodb://{host}:{port}" + + client = pymongo.MongoClient(uri) + cls.db = client[db_name] + # 测试连接 + client.server_info() + logger.success("MongoDB连接成功!") + + except Exception as e: + logger.error(f"初始化MongoDB失败: {str(e)}") + raise + +def calculate_information_content(text): + """计算文本的信息量(熵)""" + char_count = Counter(text) + total_chars = len(text) + + entropy = 0 + for count in char_count.values(): + probability = count / total_chars + entropy -= probability * math.log2(probability) + + return entropy + +def get_cloest_chat_from_db(db, length: int, timestamp: str): + """从数据库中获取最接近指定时间戳的聊天记录,并记录读取次数 + + Returns: + list: 消息记录字典列表,每个字典包含消息内容和时间信息 + """ + chat_records = [] + closest_record = db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)]) + + if closest_record and closest_record.get('memorized', 0) < 4: + closest_time = closest_record['time'] + group_id = closest_record['group_id'] + # 获取该时间戳之后的length条消息,且groupid相同 + records = list(db.db.messages.find( + {"time": {"$gt": closest_time}, "group_id": group_id} + ).sort('time', 1).limit(length)) + + # 更新每条消息的memorized属性 + for record in records: + current_memorized = record.get('memorized', 0) + if current_memorized > 3: + print("消息已读取3次,跳过") + return '' + + # 更新memorized值 + db.db.messages.update_one( + {"_id": record["_id"]}, + {"$set": {"memorized": current_memorized + 1}} + ) + + # 添加到记录列表中 + chat_records.append({ + 'text': record["detailed_plain_text"], + 'time': record["time"], + 'group_id': record["group_id"] + }) + + return chat_records + +class Memory_cortex: + def __init__(self, memory_graph: 'Memory_graph'): + self.memory_graph = memory_graph + + def sync_memory_from_db(self): + """ + 从数据库同步数据到内存中的图结构 + 将清空当前内存中的图,并从数据库重新加载所有节点和边 + """ + # 清空当前图 + self.memory_graph.G.clear() + + # 获取当前时间作为默认时间 + default_time = datetime.datetime.now().timestamp() + + # 从数据库加载所有节点 + nodes = self.memory_graph.db.db.graph_data.nodes.find() + for node in nodes: + concept = node['concept'] + memory_items = node.get('memory_items', []) + # 确保memory_items是列表 + if not isinstance(memory_items, list): + memory_items = [memory_items] if memory_items else [] + + # 获取时间属性,如果不存在则使用默认时间 + created_time = node.get('created_time') + last_modified = node.get('last_modified') + + # 如果时间属性不存在,则更新数据库 + if created_time is None or last_modified is None: + created_time = default_time + last_modified = default_time + # 更新数据库中的节点 + self.memory_graph.db.db.graph_data.nodes.update_one( + {'concept': concept}, + {'$set': { + 'created_time': created_time, + 'last_modified': last_modified + }} + ) + logger.info(f"为节点 {concept} 添加默认时间属性") + + # 添加节点到图中,包含时间属性 + self.memory_graph.G.add_node(concept, + memory_items=memory_items, + created_time=created_time, + last_modified=last_modified) + + # 从数据库加载所有边 + edges = self.memory_graph.db.db.graph_data.edges.find() + for edge in edges: + source = edge['source'] + target = edge['target'] + + # 只有当源节点和目标节点都存在时才添加边 + if source in self.memory_graph.G and target in self.memory_graph.G: + # 获取时间属性,如果不存在则使用默认时间 + created_time = edge.get('created_time') + last_modified = edge.get('last_modified') + + # 如果时间属性不存在,则更新数据库 + if created_time is None or last_modified is None: + created_time = default_time + last_modified = default_time + # 更新数据库中的边 + self.memory_graph.db.db.graph_data.edges.update_one( + {'source': source, 'target': target}, + {'$set': { + 'created_time': created_time, + 'last_modified': last_modified + }} + ) + logger.info(f"为边 {source} - {target} 添加默认时间属性") + + self.memory_graph.G.add_edge(source, target, + strength=edge.get('strength', 1), + created_time=created_time, + last_modified=last_modified) + + logger.success("从数据库同步记忆图谱完成") + + def calculate_node_hash(self, concept, memory_items): + """ + 计算节点的特征值 + """ + if not isinstance(memory_items, list): + memory_items = [memory_items] if memory_items else [] + # 将记忆项排序以确保相同内容生成相同的哈希值 + sorted_items = sorted(memory_items) + # 组合概念和记忆项生成特征值 + content = f"{concept}:{'|'.join(sorted_items)}" + return hash(content) + + def calculate_edge_hash(self, source, target): + """ + 计算边的特征值 + """ + # 对源节点和目标节点排序以确保相同的边生成相同的哈希值 + nodes = sorted([source, target]) + return hash(f"{nodes[0]}:{nodes[1]}") + + def sync_memory_to_db(self): + """ + 检查并同步内存中的图结构与数据库 + 使用特征值(哈希值)快速判断是否需要更新 + """ + current_time = datetime.datetime.now().timestamp() + + # 获取数据库中所有节点和内存中所有节点 + db_nodes = list(self.memory_graph.db.db.graph_data.nodes.find()) + memory_nodes = list(self.memory_graph.G.nodes(data=True)) + + # 转换数据库节点为字典格式,方便查找 + db_nodes_dict = {node['concept']: node for node in db_nodes} + + # 检查并更新节点 + for concept, data in memory_nodes: + memory_items = data.get('memory_items', []) + if not isinstance(memory_items, list): + memory_items = [memory_items] if memory_items else [] + + # 计算内存中节点的特征值 + memory_hash = self.calculate_node_hash(concept, memory_items) + + if concept not in db_nodes_dict: + # 数据库中缺少的节点,添加 + node_data = { + 'concept': concept, + 'memory_items': memory_items, + 'hash': memory_hash, + 'created_time': data.get('created_time', current_time), + 'last_modified': data.get('last_modified', current_time) + } + self.memory_graph.db.db.graph_data.nodes.insert_one(node_data) + else: + # 获取数据库中节点的特征值 + db_node = db_nodes_dict[concept] + db_hash = db_node.get('hash', None) + + # 如果特征值不同,则更新节点 + if db_hash != memory_hash: + self.memory_graph.db.db.graph_data.nodes.update_one( + {'concept': concept}, + {'$set': { + 'memory_items': memory_items, + 'hash': memory_hash, + 'last_modified': current_time + }} + ) + + # 检查并删除数据库中多余的节点 + memory_concepts = set(node[0] for node in memory_nodes) + for db_node in db_nodes: + if db_node['concept'] not in memory_concepts: + self.memory_graph.db.db.graph_data.nodes.delete_one({'concept': db_node['concept']}) + + # 处理边的信息 + db_edges = list(self.memory_graph.db.db.graph_data.edges.find()) + memory_edges = list(self.memory_graph.G.edges(data=True)) + + # 创建边的哈希值字典 + db_edge_dict = {} + for edge in db_edges: + edge_hash = self.calculate_edge_hash(edge['source'], edge['target']) + db_edge_dict[(edge['source'], edge['target'])] = { + 'hash': edge_hash, + 'strength': edge.get('strength', 1) + } + + # 检查并更新边 + for source, target, data in memory_edges: + edge_hash = self.calculate_edge_hash(source, target) + edge_key = (source, target) + strength = data.get('strength', 1) + + if edge_key not in db_edge_dict: + # 添加新边 + edge_data = { + 'source': source, + 'target': target, + 'strength': strength, + 'hash': edge_hash, + 'created_time': data.get('created_time', current_time), + 'last_modified': data.get('last_modified', current_time) + } + self.memory_graph.db.db.graph_data.edges.insert_one(edge_data) + else: + # 检查边的特征值是否变化 + if db_edge_dict[edge_key]['hash'] != edge_hash: + self.memory_graph.db.db.graph_data.edges.update_one( + {'source': source, 'target': target}, + {'$set': { + 'hash': edge_hash, + 'strength': strength, + 'last_modified': current_time + }} + ) + + # 删除多余的边 + memory_edge_set = set((source, target) for source, target, _ in memory_edges) + for edge_key in db_edge_dict: + if edge_key not in memory_edge_set: + source, target = edge_key + self.memory_graph.db.db.graph_data.edges.delete_one({ + 'source': source, + 'target': target + }) + + logger.success("完成记忆图谱与数据库的差异同步") + + def remove_node_from_db(self, topic): + """ + 从数据库中删除指定节点及其相关的边 + + Args: + topic: 要删除的节点概念 + """ + # 删除节点 + self.memory_graph.db.db.graph_data.nodes.delete_one({'concept': topic}) + # 删除所有涉及该节点的边 + self.memory_graph.db.db.graph_data.edges.delete_many({ + '$or': [ + {'source': topic}, + {'target': topic} + ] + }) + +class Memory_graph: + def __init__(self): + self.G = nx.Graph() # 使用 networkx 的图结构 + self.db = Database.get_instance() + + def connect_dot(self, concept1, concept2): + # 避免自连接 + if concept1 == concept2: + return + + current_time = datetime.datetime.now().timestamp() + + # 如果边已存在,增加 strength + if self.G.has_edge(concept1, concept2): + self.G[concept1][concept2]['strength'] = self.G[concept1][concept2].get('strength', 1) + 1 + # 更新最后修改时间 + self.G[concept1][concept2]['last_modified'] = current_time + else: + # 如果是新边,初始化 strength 为 1 + self.G.add_edge(concept1, concept2, + strength=1, + created_time=current_time, + last_modified=current_time) + + def add_dot(self, concept, memory): + current_time = datetime.datetime.now().timestamp() + + if concept in self.G: + # 如果节点已存在,将新记忆添加到现有列表中 + if 'memory_items' in self.G.nodes[concept]: + if not isinstance(self.G.nodes[concept]['memory_items'], list): + # 如果当前不是列表,将其转换为列表 + self.G.nodes[concept]['memory_items'] = [self.G.nodes[concept]['memory_items']] + self.G.nodes[concept]['memory_items'].append(memory) + # 更新最后修改时间 + self.G.nodes[concept]['last_modified'] = current_time + else: + self.G.nodes[concept]['memory_items'] = [memory] + self.G.nodes[concept]['last_modified'] = current_time + else: + # 如果是新节点,创建新的记忆列表 + self.G.add_node(concept, + memory_items=[memory], + created_time=current_time, + last_modified=current_time) + + def get_dot(self, concept): + # 检查节点是否存在于图中 + if concept in self.G: + # 从图中获取节点数据 + node_data = self.G.nodes[concept] + return concept, node_data + return None + + def get_related_item(self, topic, depth=1): + if topic not in self.G: + return [], [] + + first_layer_items = [] + second_layer_items = [] + + # 获取相邻节点 + neighbors = list(self.G.neighbors(topic)) + + # 获取当前节点的记忆项 + node_data = self.get_dot(topic) + if node_data: + concept, data = node_data + if 'memory_items' in data: + memory_items = data['memory_items'] + if isinstance(memory_items, list): + first_layer_items.extend(memory_items) + else: + first_layer_items.append(memory_items) + + # 只在depth=2时获取第二层记忆 + if depth >= 2: + # 获取相邻节点的记忆项 + for neighbor in neighbors: + node_data = self.get_dot(neighbor) + if node_data: + concept, data = node_data + if 'memory_items' in data: + memory_items = data['memory_items'] + if isinstance(memory_items, list): + second_layer_items.extend(memory_items) + else: + second_layer_items.append(memory_items) + + return first_layer_items, second_layer_items + + @property + def dots(self): + # 返回所有节点对应的 Memory_dot 对象 + return [self.get_dot(node) for node in self.G.nodes()] + +# 海马体 +class Hippocampus: + def __init__(self, memory_graph: Memory_graph): + self.memory_graph = memory_graph + self.memory_cortex = Memory_cortex(memory_graph) + self.llm_model = LLMModel() + self.llm_model_small = LLMModel(model_name="deepseek-ai/DeepSeek-V2.5") + self.llm_model_get_topic = LLMModel(model_name="Pro/Qwen/Qwen2.5-7B-Instruct") + self.llm_model_summary = LLMModel(model_name="Qwen/Qwen2.5-32B-Instruct") + + def get_memory_sample(self, chat_size=20, time_frequency:dict={'near':2,'mid':4,'far':3}): + """获取记忆样本 + + Returns: + list: 消息记录列表,每个元素是一个消息记录字典列表 + """ + current_timestamp = datetime.datetime.now().timestamp() + chat_samples = [] + + # 短期:1h 中期:4h 长期:24h + for _ in range(time_frequency.get('near')): + random_time = current_timestamp - random.randint(1, 3600*4) + messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time) + if messages: + chat_samples.append(messages) + + for _ in range(time_frequency.get('mid')): + random_time = current_timestamp - random.randint(3600*4, 3600*24) + messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time) + if messages: + chat_samples.append(messages) + + for _ in range(time_frequency.get('far')): + random_time = current_timestamp - random.randint(3600*24, 3600*24*7) + messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time) + if messages: + chat_samples.append(messages) + + return chat_samples + + def calculate_topic_num(self,text, compress_rate): + """计算文本的话题数量""" + information_content = calculate_information_content(text) + topic_by_length = text.count('\n')*compress_rate + topic_by_information_content = max(1, min(5, int((information_content-3) * 2))) + topic_num = int((topic_by_length + topic_by_information_content)/2) + print(f"topic_by_length: {topic_by_length}, topic_by_information_content: {topic_by_information_content}, topic_num: {topic_num}") + return topic_num + + async def memory_compress(self, messages: list, compress_rate=0.1): + """压缩消息记录为记忆 + + Args: + messages: 消息记录字典列表,每个字典包含text和time字段 + compress_rate: 压缩率 + + Returns: + tuple: (压缩记忆集合, 相似主题字典) + - 压缩记忆集合: set of (话题, 记忆) 元组 + - 相似主题字典: dict of {话题: [(相似主题, 相似度), ...]} + """ + if not messages: + return set(), {} + + # 合并消息文本,同时保留时间信息 + input_text = "" + time_info = "" + # 计算最早和最晚时间 + earliest_time = min(msg['time'] for msg in messages) + latest_time = max(msg['time'] for msg in messages) + + earliest_dt = datetime.datetime.fromtimestamp(earliest_time) + latest_dt = datetime.datetime.fromtimestamp(latest_time) + + # 如果是同一年 + if earliest_dt.year == latest_dt.year: + earliest_str = earliest_dt.strftime("%m-%d %H:%M:%S") + latest_str = latest_dt.strftime("%m-%d %H:%M:%S") + time_info += f"是在{earliest_dt.year}年,{earliest_str} 到 {latest_str} 的对话:\n" + else: + earliest_str = earliest_dt.strftime("%Y-%m-%d %H:%M:%S") + latest_str = latest_dt.strftime("%Y-%m-%d %H:%M:%S") + time_info += f"是从 {earliest_str} 到 {latest_str} 的对话:\n" + + for msg in messages: + input_text += f"{msg['text']}\n" + + print(input_text) + + topic_num = self.calculate_topic_num(input_text, compress_rate) + topics_response = self.llm_model_get_topic.generate_response(self.find_topic_llm(input_text, topic_num)) + + # 过滤topics + filter_keywords = ['表情包', '图片', '回复', '聊天记录'] + topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()] + filtered_topics = [topic for topic in topics if not any(keyword in topic for keyword in filter_keywords)] + + print(f"过滤后话题: {filtered_topics}") + + # 为每个话题查找相似的已存在主题 + print("\n检查相似主题:") + similar_topics_dict = {} # 存储每个话题的相似主题列表 + + for topic in filtered_topics: + # 获取所有现有节点 + existing_topics = list(self.memory_graph.G.nodes()) + similar_topics = [] + + # 对每个现有节点计算相似度 + for existing_topic in existing_topics: + # 使用jieba分词并计算余弦相似度 + topic_words = set(jieba.cut(topic)) + existing_words = set(jieba.cut(existing_topic)) + + # 计算词向量 + all_words = topic_words | existing_words + v1 = [1 if word in topic_words else 0 for word in all_words] + v2 = [1 if word in existing_words else 0 for word in all_words] + + # 计算余弦相似度 + similarity = cosine_similarity(v1, v2) + + # 如果相似度超过阈值,添加到结果中 + if similarity >= 0.6: # 设置相似度阈值 + similar_topics.append((existing_topic, similarity)) + + # 按相似度降序排序 + similar_topics.sort(key=lambda x: x[1], reverse=True) + # 只保留前5个最相似的主题 + similar_topics = similar_topics[:5] + + # 存储到字典中 + similar_topics_dict[topic] = similar_topics + + # 输出结果 + if similar_topics: + print(f"\n主题「{topic}」的相似主题:") + for similar_topic, score in similar_topics: + print(f"- {similar_topic} (相似度: {score:.3f})") + else: + print(f"\n主题「{topic}」没有找到相似主题") + + # 创建所有话题的请求任务 + tasks = [] + for topic in filtered_topics: + topic_what_prompt = self.topic_what(input_text, topic , time_info) + # 创建异步任务 + task = self.llm_model_small.generate_response_async(topic_what_prompt) + tasks.append((topic.strip(), task)) + + # 等待所有任务完成 + compressed_memory = set() + for topic, task in tasks: + response = await task + if response: + compressed_memory.add((topic, response[0])) + + return compressed_memory, similar_topics_dict + + async def operation_build_memory(self, chat_size=12): + # 最近消息获取频率 + time_frequency = {'near': 3, 'mid': 8, 'far': 5} + memory_samples = self.get_memory_sample(chat_size, time_frequency) + + all_topics = [] # 用于存储所有话题 + + for i, messages in enumerate(memory_samples, 1): + # 加载进度可视化 + all_topics = [] + progress = (i / len(memory_samples)) * 100 + bar_length = 30 + filled_length = int(bar_length * i // len(memory_samples)) + bar = '█' * filled_length + '-' * (bar_length - filled_length) + print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_samples)})") + + # 生成压缩后记忆 + compress_rate = 0.1 + compressed_memory, similar_topics_dict = await self.memory_compress(messages, compress_rate) + print(f"\033[1;33m压缩后记忆数量\033[0m: {len(compressed_memory)},似曾相识的话题: {len(similar_topics_dict)}") + + # 将记忆加入到图谱中 + for topic, memory in compressed_memory: + print(f"\033[1;32m添加节点\033[0m: {topic}") + self.memory_graph.add_dot(topic, memory) + all_topics.append(topic) + + # 连接相似的已存在主题 + if topic in similar_topics_dict: + similar_topics = similar_topics_dict[topic] + for similar_topic, similarity in similar_topics: + # 避免自连接 + if topic != similar_topic: + # 根据相似度设置连接强度 + strength = int(similarity * 10) # 将0.3-1.0的相似度映射到3-10的强度 + print(f"\033[1;36m连接相似节点\033[0m: {topic} 和 {similar_topic} (强度: {strength})") + # 使用相似度作为初始连接强度 + self.memory_graph.G.add_edge(topic, similar_topic, strength=strength) + + # 连接同批次的相关话题 + for i in range(len(all_topics)): + for j in range(i + 1, len(all_topics)): + print(f"\033[1;32m连接同批次节点\033[0m: {all_topics[i]} 和 {all_topics[j]}") + self.memory_graph.connect_dot(all_topics[i], all_topics[j]) + + self.memory_cortex.sync_memory_to_db() + + def forget_connection(self, source, target): + """ + 检查并可能遗忘一个连接 + + Args: + source: 连接的源节点 + target: 连接的目标节点 + + Returns: + tuple: (是否有变化, 变化类型, 变化详情) + 变化类型: 0-无变化, 1-强度减少, 2-连接移除 + """ + current_time = datetime.datetime.now().timestamp() + # 获取边的属性 + edge_data = self.memory_graph.G[source][target] + last_modified = edge_data.get('last_modified', current_time) + + # 如果连接超过7天未更新 + if current_time - last_modified > 6000: # test + # 获取当前强度 + current_strength = edge_data.get('strength', 1) + # 减少连接强度 + new_strength = current_strength - 1 + edge_data['strength'] = new_strength + edge_data['last_modified'] = current_time + + # 如果强度降为0,移除连接 + if new_strength <= 0: + self.memory_graph.G.remove_edge(source, target) + return True, 2, f"移除连接: {source} - {target} (强度降至0)" + else: + return True, 1, f"减弱连接: {source} - {target} (强度: {current_strength} -> {new_strength})" + + return False, 0, "" + + def forget_topic(self, topic): + """ + 检查并可能遗忘一个话题的记忆 + + Args: + topic: 要检查的话题 + + Returns: + tuple: (是否有变化, 变化类型, 变化详情) + 变化类型: 0-无变化, 1-记忆减少, 2-节点移除 + """ + current_time = datetime.datetime.now().timestamp() + # 获取节点的最后修改时间 + node_data = self.memory_graph.G.nodes[topic] + last_modified = node_data.get('last_modified', current_time) + + # 如果话题超过7天未更新 + if current_time - last_modified > 3000: # test + memory_items = node_data.get('memory_items', []) + if not isinstance(memory_items, list): + memory_items = [memory_items] if memory_items else [] + + if memory_items: + # 获取当前记忆数量 + current_count = len(memory_items) + # 随机选择一条记忆删除 + removed_item = random.choice(memory_items) + memory_items.remove(removed_item) + + if memory_items: + # 更新节点的记忆项和最后修改时间 + self.memory_graph.G.nodes[topic]['memory_items'] = memory_items + self.memory_graph.G.nodes[topic]['last_modified'] = current_time + return True, 1, f"减少记忆: {topic} (记忆数量: {current_count} -> {len(memory_items)})\n被移除的记忆: {removed_item}" + else: + # 如果没有记忆了,删除节点及其所有连接 + self.memory_graph.G.remove_node(topic) + return True, 2, f"移除节点: {topic} (无剩余记忆)\n最后一条记忆: {removed_item}" + + return False, 0, "" + + async def operation_forget_topic(self, percentage=0.1): + """ + 随机选择图中一定比例的节点和边进行检查,根据时间条件决定是否遗忘 + + Args: + percentage: 要检查的节点和边的比例,默认为0.1(10%) + """ + # 获取所有节点和边 + all_nodes = list(self.memory_graph.G.nodes()) + all_edges = list(self.memory_graph.G.edges()) + + # 计算要检查的数量 + check_nodes_count = max(1, int(len(all_nodes) * percentage)) + check_edges_count = max(1, int(len(all_edges) * percentage)) + + # 随机选择要检查的节点和边 + nodes_to_check = random.sample(all_nodes, check_nodes_count) + edges_to_check = random.sample(all_edges, check_edges_count) + + # 用于统计不同类型的变化 + edge_changes = {'weakened': 0, 'removed': 0} + node_changes = {'reduced': 0, 'removed': 0} + + # 检查并遗忘连接 + print("\n开始检查连接...") + for source, target in edges_to_check: + changed, change_type, details = self.forget_connection(source, target) + if changed: + if change_type == 1: + edge_changes['weakened'] += 1 + logger.info(f"\033[1;34m[连接减弱]\033[0m {details}") + elif change_type == 2: + edge_changes['removed'] += 1 + logger.info(f"\033[1;31m[连接移除]\033[0m {details}") + + # 检查并遗忘话题 + print("\n开始检查节点...") + for node in nodes_to_check: + changed, change_type, details = self.forget_topic(node) + if changed: + if change_type == 1: + node_changes['reduced'] += 1 + logger.info(f"\033[1;33m[记忆减少]\033[0m {details}") + elif change_type == 2: + node_changes['removed'] += 1 + logger.info(f"\033[1;31m[节点移除]\033[0m {details}") + + # 同步到数据库 + if any(count > 0 for count in edge_changes.values()) or any(count > 0 for count in node_changes.values()): + self.memory_cortex.sync_memory_to_db() + print("\n遗忘操作统计:") + print(f"连接变化: {edge_changes['weakened']} 个减弱, {edge_changes['removed']} 个移除") + print(f"节点变化: {node_changes['reduced']} 个减少记忆, {node_changes['removed']} 个移除") + else: + print("\n本次检查没有节点或连接满足遗忘条件") + + async def merge_memory(self, topic): + """ + 对指定话题的记忆进行合并压缩 + + Args: + topic: 要合并的话题节点 + """ + # 获取节点的记忆项 + memory_items = self.memory_graph.G.nodes[topic].get('memory_items', []) + if not isinstance(memory_items, list): + memory_items = [memory_items] if memory_items else [] + + # 如果记忆项不足,直接返回 + if len(memory_items) < 10: + return + + # 随机选择10条记忆 + selected_memories = random.sample(memory_items, 10) + + # 拼接成文本 + merged_text = "\n".join(selected_memories) + print(f"\n[合并记忆] 话题: {topic}") + print(f"选择的记忆:\n{merged_text}") + + # 使用memory_compress生成新的压缩记忆 + compressed_memories, _ = await self.memory_compress(selected_memories, 0.1) + + # 从原记忆列表中移除被选中的记忆 + for memory in selected_memories: + memory_items.remove(memory) + + # 添加新的压缩记忆 + for _, compressed_memory in compressed_memories: + memory_items.append(compressed_memory) + print(f"添加压缩记忆: {compressed_memory}") + + # 更新节点的记忆项 + self.memory_graph.G.nodes[topic]['memory_items'] = memory_items + print(f"完成记忆合并,当前记忆数量: {len(memory_items)}") + + async def operation_merge_memory(self, percentage=0.1): + """ + 随机检查一定比例的节点,对内容数量超过100的节点进行记忆合并 + + Args: + percentage: 要检查的节点比例,默认为0.1(10%) + """ + # 获取所有节点 + all_nodes = list(self.memory_graph.G.nodes()) + # 计算要检查的节点数量 + check_count = max(1, int(len(all_nodes) * percentage)) + # 随机选择节点 + nodes_to_check = random.sample(all_nodes, check_count) + + merged_nodes = [] + for node in nodes_to_check: + # 获取节点的内容条数 + memory_items = self.memory_graph.G.nodes[node].get('memory_items', []) + if not isinstance(memory_items, list): + memory_items = [memory_items] if memory_items else [] + content_count = len(memory_items) + + # 如果内容数量超过100,进行合并 + if content_count > 100: + print(f"\n检查节点: {node}, 当前记忆数量: {content_count}") + await self.merge_memory(node) + merged_nodes.append(node) + + # 同步到数据库 + if merged_nodes: + self.memory_cortex.sync_memory_to_db() + print(f"\n完成记忆合并操作,共处理 {len(merged_nodes)} 个节点") + else: + print("\n本次检查没有需要合并的节点") + + async def _identify_topics(self, text: str) -> list: + """从文本中识别可能的主题""" + topics_response = self.llm_model_get_topic.generate_response(self.find_topic_llm(text, 5)) + topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()] + return topics + + def _find_similar_topics(self, topics: list, similarity_threshold: float = 0.4, debug_info: str = "") -> list: + """查找与给定主题相似的记忆主题""" + all_memory_topics = list(self.memory_graph.G.nodes()) + all_similar_topics = [] + + for topic in topics: + if debug_info: + pass + + topic_vector = text_to_vector(topic) + has_similar_topic = False + + for memory_topic in all_memory_topics: + memory_vector = text_to_vector(memory_topic) + all_words = set(topic_vector.keys()) | set(memory_vector.keys()) + v1 = [topic_vector.get(word, 0) for word in all_words] + v2 = [memory_vector.get(word, 0) for word in all_words] + similarity = cosine_similarity(v1, v2) + + if similarity >= similarity_threshold: + has_similar_topic = True + all_similar_topics.append((memory_topic, similarity)) + + return all_similar_topics + + def _get_top_topics(self, similar_topics: list, max_topics: int = 5) -> list: + """获取相似度最高的主题""" + seen_topics = set() + top_topics = [] + + for topic, score in sorted(similar_topics, key=lambda x: x[1], reverse=True): + if topic not in seen_topics and len(top_topics) < max_topics: + seen_topics.add(topic) + top_topics.append((topic, score)) + + return top_topics + + async def memory_activate_value(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.3) -> int: + """计算输入文本对记忆的激活程度""" + logger.info(f"[记忆激活]识别主题: {await self._identify_topics(text)}") + + identified_topics = await self._identify_topics(text) + if not identified_topics: + return 0 + + all_similar_topics = self._find_similar_topics( + identified_topics, + similarity_threshold=similarity_threshold, + debug_info="记忆激活" + ) + + if not all_similar_topics: + return 0 + + top_topics = self._get_top_topics(all_similar_topics, max_topics) + + if len(top_topics) == 1: + topic, score = top_topics[0] + memory_items = self.memory_graph.G.nodes[topic].get('memory_items', []) + if not isinstance(memory_items, list): + memory_items = [memory_items] if memory_items else [] + content_count = len(memory_items) + penalty = 1.0 / (1 + math.log(content_count + 1)) + + activation = int(score * 50 * penalty) + print(f"\033[1;32m[记忆激活]\033[0m 单主题「{topic}」- 相似度: {score:.3f}, 内容数: {content_count}, 激活值: {activation}") + return activation + + matched_topics = set() + topic_similarities = {} + + for memory_topic, similarity in top_topics: + memory_items = self.memory_graph.G.nodes[memory_topic].get('memory_items', []) + if not isinstance(memory_items, list): + memory_items = [memory_items] if memory_items else [] + content_count = len(memory_items) + penalty = 1.0 / (1 + math.log(content_count + 1)) + + for input_topic in identified_topics: + topic_vector = text_to_vector(input_topic) + memory_vector = text_to_vector(memory_topic) + all_words = set(topic_vector.keys()) | set(memory_vector.keys()) + v1 = [topic_vector.get(word, 0) for word in all_words] + v2 = [memory_vector.get(word, 0) for word in all_words] + sim = cosine_similarity(v1, v2) + if sim >= similarity_threshold: + matched_topics.add(input_topic) + adjusted_sim = sim * penalty + topic_similarities[input_topic] = max(topic_similarities.get(input_topic, 0), adjusted_sim) + print(f"\033[1;32m[记忆激活]\033[0m 主题「{input_topic}」-> 「{memory_topic}」(内容数: {content_count}, 相似度: {adjusted_sim:.3f})") + + topic_match = len(matched_topics) / len(identified_topics) + average_similarities = sum(topic_similarities.values()) / len(topic_similarities) if topic_similarities else 0 + + activation = int((topic_match + average_similarities) / 2 * 100) + print(f"\033[1;32m[记忆激活]\033[0m 匹配率: {topic_match:.3f}, 平均相似度: {average_similarities:.3f}, 激活值: {activation}") + + return activation + + async def get_relevant_memories(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.4, max_memory_num: int = 5) -> list: + """根据输入文本获取相关的记忆内容""" + identified_topics = await self._identify_topics(text) + + all_similar_topics = self._find_similar_topics( + identified_topics, + similarity_threshold=similarity_threshold, + debug_info="记忆检索" + ) + + relevant_topics = self._get_top_topics(all_similar_topics, max_topics) + + relevant_memories = [] + for topic, score in relevant_topics: + first_layer, _ = self.memory_graph.get_related_item(topic, depth=1) + if first_layer: + if len(first_layer) > max_memory_num/2: + first_layer = random.sample(first_layer, max_memory_num//2) + for memory in first_layer: + relevant_memories.append({ + 'topic': topic, + 'similarity': score, + 'content': memory + }) + + relevant_memories.sort(key=lambda x: x['similarity'], reverse=True) + + if len(relevant_memories) > max_memory_num: + relevant_memories = random.sample(relevant_memories, max_memory_num) + + return relevant_memories + + def find_topic_llm(self,text, topic_num): + prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个关键的概念,可以是名词,动词,或者特定人物,帮我列出来,用逗号,隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要有序号,不要告诉我其他内容。' + return prompt + + def topic_what(self,text, topic, time_info): + prompt = f'这是一段文字,{time_info}:{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好' + return prompt + +def segment_text(text): + """使用jieba进行文本分词""" + seg_text = list(jieba.cut(text)) + return seg_text + +def text_to_vector(text): + """将文本转换为词频向量""" + words = segment_text(text) + vector = {} + for word in words: + vector[word] = vector.get(word, 0) + 1 + return vector + +def cosine_similarity(v1, v2): + """计算两个向量的余弦相似度""" + dot_product = sum(a * b for a, b in zip(v1, v2)) + norm1 = math.sqrt(sum(a * a for a in v1)) + norm2 = math.sqrt(sum(b * b for b in v2)) + if norm1 == 0 or norm2 == 0: + return 0 + return dot_product / (norm1 * norm2) + +def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = False): + # 设置中文字体 + plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 + plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 + + G = memory_graph.G + + # 创建一个新图用于可视化 + H = G.copy() + + # 过滤掉内容数量小于2的节点 + nodes_to_remove = [] + for node in H.nodes(): + memory_items = H.nodes[node].get('memory_items', []) + memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0) + if memory_count < 2: + nodes_to_remove.append(node) + + H.remove_nodes_from(nodes_to_remove) + + # 如果没有符合条件的节点,直接返回 + if len(H.nodes()) == 0: + print("没有找到内容数量大于等于2的节点") + return + + # 计算节点大小和颜色 + node_colors = [] + node_sizes = [] + nodes = list(H.nodes()) + + # 获取最大记忆数用于归一化节点大小 + max_memories = 1 + for node in nodes: + memory_items = H.nodes[node].get('memory_items', []) + memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0) + max_memories = max(max_memories, memory_count) + + # 计算每个节点的大小和颜色 + for node in nodes: + # 计算节点大小(基于记忆数量) + memory_items = H.nodes[node].get('memory_items', []) + memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0) + # 使用指数函数使变化更明显 + ratio = memory_count / max_memories + size = 400 + 2000 * (ratio ** 2) # 增大节点大小 + node_sizes.append(size) + + # 计算节点颜色(基于连接数) + degree = H.degree(node) + if degree >= 30: + node_colors.append((1.0, 0, 0)) # 亮红色 (#FF0000) + else: + # 将1-10映射到0-1的范围 + color_ratio = (degree - 1) / 29.0 if degree > 1 else 0 + # 使用蓝到红的渐变 + red = min(0.9, color_ratio) + blue = max(0.0, 1.0 - color_ratio) + node_colors.append((red, 0, blue)) + + # 绘制图形 + plt.figure(figsize=(16, 12)) # 减小图形尺寸 + pos = nx.spring_layout(H, + k=1, # 调整节点间斥力 + iterations=100, # 增加迭代次数 + scale=1.5, # 减小布局尺寸 + weight='strength') # 使用边的strength属性作为权重 + + nx.draw(H, pos, + with_labels=True, + node_color=node_colors, + node_size=node_sizes, + font_size=12, # 保持增大的字体大小 + font_family='SimHei', + font_weight='bold', + edge_color='gray', + width=1.5) # 统一的边宽度 + + title = '记忆图谱可视化(仅显示内容≥2的节点)\n节点大小表示记忆数量\n节点颜色:蓝(弱连接)到红(强连接)渐变,边的透明度表示连接强度\n连接强度越大的节点距离越近' + plt.title(title, fontsize=16, fontfamily='SimHei') + plt.show() + +async def main(): + # 初始化数据库 + logger.info("正在初始化数据库连接...") + db = Database.get_instance() + start_time = time.time() + + test_pare = {'do_build_memory':True,'do_forget_topic':False,'do_visualize_graph':True,'do_query':False,'do_merge_memory':False} + + # 创建记忆图 + memory_graph = Memory_graph() + + # 创建海马体 + hippocampus = Hippocampus(memory_graph) + + # 从数据库同步数据 + hippocampus.memory_cortex.sync_memory_from_db() + + end_time = time.time() + logger.info(f"\033[32m[加载海马体耗时: {end_time - start_time:.2f} 秒]\033[0m") + + # 构建记忆 + if test_pare['do_build_memory']: + logger.info("开始构建记忆...") + chat_size = 20 + await hippocampus.operation_build_memory(chat_size=chat_size) + + end_time = time.time() + logger.info(f"\033[32m[构建记忆耗时: {end_time - start_time:.2f} 秒,chat_size={chat_size},chat_count = 16]\033[0m") + + if test_pare['do_forget_topic']: + logger.info("开始遗忘记忆...") + await hippocampus.operation_forget_topic(percentage=0.01) + + end_time = time.time() + logger.info(f"\033[32m[遗忘记忆耗时: {end_time - start_time:.2f} 秒]\033[0m") + + if test_pare['do_merge_memory']: + logger.info("开始合并记忆...") + await hippocampus.operation_merge_memory(percentage=0.1) + + end_time = time.time() + logger.info(f"\033[32m[合并记忆耗时: {end_time - start_time:.2f} 秒]\033[0m") + + if test_pare['do_visualize_graph']: + # 展示优化后的图形 + logger.info("生成记忆图谱可视化...") + print("\n生成优化后的记忆图谱:") + visualize_graph_lite(memory_graph) + + if test_pare['do_query']: + # 交互式查询 + while True: + query = input("\n请输入新的查询概念(输入'退出'以结束):") + if query.lower() == '退出': + break + + items_list = memory_graph.get_related_item(query) + if items_list: + first_layer, second_layer = items_list + if first_layer: + print("\n直接相关的记忆:") + for item in first_layer: + print(f"- {item}") + if second_layer: + print("\n间接相关的记忆:") + for item in second_layer: + print(f"- {item}") + else: + print("未找到相关记忆。") + + +if __name__ == "__main__": + import asyncio + asyncio.run(main()) + +