From 3544daeadb6c41b48a26e62b9fe0b88a1a0d7fd0 Mon Sep 17 00:00:00 2001 From: SengokuCola <1026294844@qq.com> Date: Tue, 1 Jul 2025 17:47:56 +0800 Subject: [PATCH] =?UTF-8?q?refac=EF=BC=9Atool=E5=8E=BB=E5=A4=84=E7=90=86?= =?UTF-8?q?=E5=99=A8=E5=8C=96?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- src/chat/focus_chat/heartFC_Cycleinfo.py | 3 - src/chat/focus_chat/heartFC_chat.py | 286 +----------- .../info/expression_selection_info.py | 71 --- src/chat/focus_chat/info/mind_info.py | 34 -- src/chat/focus_chat/info/relation_info.py | 40 -- src/chat/focus_chat/info/structured_info.py | 85 ---- .../info_processors/tool_processor.py | 186 -------- src/chat/replyer/default_generator.py | 81 +++- src/config/official_configs.py | 10 +- src/plugin_system/apis/generator_api.py | 2 + src/tools/tool_executor.py | 421 ++++++++++++++++++ template/bot_config_template.toml | 5 +- 12 files changed, 522 insertions(+), 702 deletions(-) delete mode 100644 src/chat/focus_chat/info/expression_selection_info.py delete mode 100644 src/chat/focus_chat/info/mind_info.py delete mode 100644 src/chat/focus_chat/info/relation_info.py delete mode 100644 src/chat/focus_chat/info/structured_info.py delete mode 100644 src/chat/focus_chat/info_processors/tool_processor.py create mode 100644 src/tools/tool_executor.py diff --git a/src/chat/focus_chat/heartFC_Cycleinfo.py b/src/chat/focus_chat/heartFC_Cycleinfo.py index 120381df3..f9a90780d 100644 --- a/src/chat/focus_chat/heartFC_Cycleinfo.py +++ b/src/chat/focus_chat/heartFC_Cycleinfo.py @@ -25,7 +25,6 @@ class CycleDetail: self.loop_processor_info: Dict[str, Any] = {} # 前处理器信息 self.loop_plan_info: Dict[str, Any] = {} self.loop_action_info: Dict[str, Any] = {} - self.loop_post_processor_info: Dict[str, Any] = {} # 后处理器信息 def to_dict(self) -> Dict[str, Any]: """将循环信息转换为字典格式""" @@ -80,7 +79,6 @@ class CycleDetail: "loop_processor_info": convert_to_serializable(self.loop_processor_info), "loop_plan_info": convert_to_serializable(self.loop_plan_info), "loop_action_info": convert_to_serializable(self.loop_action_info), - "loop_post_processor_info": convert_to_serializable(self.loop_post_processor_info), } def complete_cycle(self): @@ -135,4 +133,3 @@ class CycleDetail: self.loop_processor_info = loop_info["loop_processor_info"] self.loop_plan_info = loop_info["loop_plan_info"] self.loop_action_info = loop_info["loop_action_info"] - self.loop_post_processor_info = loop_info["loop_post_processor_info"] diff --git a/src/chat/focus_chat/heartFC_chat.py b/src/chat/focus_chat/heartFC_chat.py index b7ee87c1d..9665f0291 100644 --- a/src/chat/focus_chat/heartFC_chat.py +++ b/src/chat/focus_chat/heartFC_chat.py @@ -19,7 +19,7 @@ from src.chat.heart_flow.observation.working_observation import WorkingMemoryObs from src.chat.heart_flow.observation.chatting_observation import ChattingObservation from src.chat.heart_flow.observation.structure_observation import StructureObservation from src.chat.heart_flow.observation.actions_observation import ActionObservation -from src.chat.focus_chat.info_processors.tool_processor import ToolProcessor + from src.chat.focus_chat.memory_activator import MemoryActivator from src.chat.focus_chat.info_processors.base_processor import BaseProcessor from src.chat.focus_chat.planners.planner_factory import PlannerFactory @@ -34,8 +34,7 @@ from src.person_info.relationship_builder_manager import relationship_builder_ma install(extra_lines=3) -# 超时常量配置 -ACTION_MODIFICATION_TIMEOUT = 15.0 # 动作修改任务超时时限(秒) +# 注释:原来的动作修改超时常量已移除,因为改为顺序执行 # 定义观察器映射:键是观察器名称,值是 (观察器类, 初始化参数) OBSERVATION_CLASSES = { @@ -51,11 +50,6 @@ PROCESSOR_CLASSES = { "WorkingMemoryProcessor": (WorkingMemoryProcessor, "working_memory_processor"), } -# 定义后期处理器映射:在规划后、动作执行前运行的处理器 -POST_PLANNING_PROCESSOR_CLASSES = { - "ToolProcessor": (ToolProcessor, "tool_use_processor"), -} - logger = get_logger("hfc") # Logger Name Changed @@ -128,23 +122,11 @@ class HeartFChatting: if not config_key or getattr(config_processor_settings, config_key, True): self.enabled_processor_names.append(proc_name) - # 初始化后期处理器(规划后执行的处理器) - self.enabled_post_planning_processor_names = [] - for proc_name, (_proc_class, config_key) in POST_PLANNING_PROCESSOR_CLASSES.items(): - # 对于关系相关处理器,需要同时检查关系配置项 - if not config_key or getattr(config_processor_settings, config_key, True): - self.enabled_post_planning_processor_names.append(proc_name) - # logger.info(f"{self.log_prefix} 将启用的处理器: {self.enabled_processor_names}") - # logger.info(f"{self.log_prefix} 将启用的后期处理器: {self.enabled_post_planning_processor_names}") self.processors: List[BaseProcessor] = [] self._register_default_processors() - # 初始化后期处理器 - self.post_planning_processors: List[BaseProcessor] = [] - self._register_post_planning_processors() - self.action_manager = ActionManager() self.action_planner = PlannerFactory.create_planner( log_prefix=self.log_prefix, action_manager=self.action_manager @@ -186,7 +168,7 @@ class HeartFChatting: # 检查是否需要跳过WorkingMemoryObservation if name == "WorkingMemoryObservation": # 如果工作记忆处理器被禁用,则跳过WorkingMemoryObservation - if not global_config.focus_chat_processor.working_memory_processor: + if not global_config.focus_chat.working_memory_processor: logger.debug(f"{self.log_prefix} 工作记忆处理器已禁用,跳过注册观察器 {name}") continue @@ -211,16 +193,13 @@ class HeartFChatting: processor_info = PROCESSOR_CLASSES.get(name) # processor_info is (ProcessorClass, config_key) if processor_info: processor_actual_class = processor_info[0] # 获取实际的类定义 - # 根据处理器类名判断是否需要 subheartflow_id - if name in [ - "WorkingMemoryProcessor", - ]: - self.processors.append(processor_actual_class(subheartflow_id=self.stream_id)) - elif name == "ChattingInfoProcessor": + # 根据处理器类名判断构造参数 + if name == "ChattingInfoProcessor": self.processors.append(processor_actual_class()) + elif name == "WorkingMemoryProcessor": + self.processors.append(processor_actual_class(subheartflow_id=self.stream_id)) else: # 对于PROCESSOR_CLASSES中定义但此处未明确处理构造的处理器 - # (例如, 新增了一个处理器到PROCESSOR_CLASSES, 它不需要id, 也不叫ChattingInfoProcessor) try: self.processors.append(processor_actual_class()) # 尝试无参构造 logger.debug(f"{self.log_prefix} 注册处理器 {name} (尝试无参构造).") @@ -239,46 +218,7 @@ class HeartFChatting: else: logger.warning(f"{self.log_prefix} 没有注册任何处理器。这可能是由于配置错误或所有处理器都被禁用了。") - def _register_post_planning_processors(self): - """根据 self.enabled_post_planning_processor_names 注册后期处理器""" - self.post_planning_processors = [] # 清空已有的 - for name in self.enabled_post_planning_processor_names: # 'name' is "PersonImpressionpProcessor", etc. - processor_info = POST_PLANNING_PROCESSOR_CLASSES.get(name) # processor_info is (ProcessorClass, config_key) - if processor_info: - processor_actual_class = processor_info[0] # 获取实际的类定义 - # 根据处理器类名判断是否需要 subheartflow_id - if name in [ - "ToolProcessor", - "RelationshipBuildProcessor", - "RealTimeInfoProcessor", - "ExpressionSelectorProcessor", - ]: - self.post_planning_processors.append(processor_actual_class(subheartflow_id=self.stream_id)) - else: - # 对于POST_PLANNING_PROCESSOR_CLASSES中定义但此处未明确处理构造的处理器 - # (例如, 新增了一个处理器到POST_PLANNING_PROCESSOR_CLASSES, 它不需要id, 也不叫PersonImpressionpProcessor) - try: - self.post_planning_processors.append(processor_actual_class()) # 尝试无参构造 - logger.debug(f"{self.log_prefix} 注册后期处理器 {name} (尝试无参构造).") - except TypeError: - logger.error( - f"{self.log_prefix} 后期处理器 {name} 构造失败。它可能需要参数(如 subheartflow_id)但未在注册逻辑中明确处理。" - ) - else: - # 这理论上不应该发生,因为 enabled_post_planning_processor_names 是从 POST_PLANNING_PROCESSOR_CLASSES 的键生成的 - logger.warning( - f"{self.log_prefix} 在 POST_PLANNING_PROCESSOR_CLASSES 中未找到名为 '{name}' 的处理器定义,将跳过注册。" - ) - - if self.post_planning_processors: - logger.info( - f"{self.log_prefix} 已注册后期处理器: {[p.__class__.__name__ for p in self.post_planning_processors]}" - ) - else: - logger.warning( - f"{self.log_prefix} 没有注册任何后期处理器。这可能是由于配置错误或所有后期处理器都被禁用了。" - ) async def start(self): """检查是否需要启动主循环,如果未激活则启动。""" @@ -460,19 +400,7 @@ class HeartFChatting: ("\n前处理器耗时: " + "; ".join(processor_time_strings)) if processor_time_strings else "" ) - # 新增:输出每个后处理器的耗时 - post_processor_time_costs = self._current_cycle_detail.loop_post_processor_info.get( - "post_processor_time_costs", {} - ) - post_processor_time_strings = [] - for pname, ptime in post_processor_time_costs.items(): - formatted_ptime = f"{ptime * 1000:.2f}毫秒" if ptime < 1 else f"{ptime:.2f}秒" - post_processor_time_strings.append(f"{pname}: {formatted_ptime}") - post_processor_time_log = ( - ("\n后处理器耗时: " + "; ".join(post_processor_time_strings)) - if post_processor_time_strings - else "" - ) + logger.info( f"{self.log_prefix} 第{self._current_cycle_detail.cycle_id}次思考," @@ -480,7 +408,6 @@ class HeartFChatting: f"动作: {self._current_cycle_detail.loop_plan_info.get('action_result', {}).get('action_type', '未知动作')}" + (f"\n详情: {'; '.join(timer_strings)}" if timer_strings else "") + processor_time_log - + post_processor_time_log ) # 记录性能数据 @@ -491,8 +418,7 @@ class HeartFChatting: "action_type": action_result.get("action_type", "unknown"), "total_time": self._current_cycle_detail.end_time - self._current_cycle_detail.start_time, "step_times": cycle_timers.copy(), - "processor_time_costs": processor_time_costs, # 前处理器时间 - "post_processor_time_costs": post_processor_time_costs, # 后处理器时间 + "processor_time_costs": processor_time_costs, # 处理器时间 "reasoning": action_result.get("reasoning", ""), "success": self._current_cycle_detail.loop_action_info.get("action_taken", False), } @@ -634,122 +560,7 @@ class HeartFChatting: return all_plan_info, processor_time_costs - async def _process_post_planning_processors_with_timing( - self, observations: List[Observation], action_type: str, action_data: dict - ) -> tuple[dict, dict]: - """ - 处理后期处理器(规划后执行的处理器)并收集详细时间统计 - 包括:关系处理器、表达选择器、记忆激活器 - 参数: - observations: 观察器列表 - action_type: 动作类型 - action_data: 原始动作数据 - - 返回: - tuple[dict, dict]: (更新后的动作数据, 后处理器时间统计) - """ - logger.info(f"{self.log_prefix} 开始执行后期处理器(带详细统计)") - - # 创建所有后期任务 - task_list = [] - task_to_name_map = {} - task_start_times = {} - post_processor_time_costs = {} - - # 添加后期处理器任务 - for processor in self.post_planning_processors: - processor_name = processor.__class__.__name__ - - async def run_processor_with_timeout_and_timing(proc=processor, name=processor_name): - start_time = time.time() - try: - result = await asyncio.wait_for( - proc.process_info(observations=observations, action_type=action_type, action_data=action_data), - 30, - ) - end_time = time.time() - post_processor_time_costs[name] = end_time - start_time - logger.debug(f"{self.log_prefix} 后期处理器 {name} 耗时: {end_time - start_time:.3f}秒") - return result - except Exception as e: - end_time = time.time() - post_processor_time_costs[name] = end_time - start_time - logger.warning(f"{self.log_prefix} 后期处理器 {name} 执行异常,耗时: {end_time - start_time:.3f}秒") - raise e - - task = asyncio.create_task(run_processor_with_timeout_and_timing()) - task_list.append(task) - task_to_name_map[task] = ("processor", processor_name) - task_start_times[task] = time.time() - logger.info(f"{self.log_prefix} 启动后期处理器任务: {processor_name}") - - # 如果没有任何后期任务,直接返回 - if not task_list: - logger.info(f"{self.log_prefix} 没有启用的后期处理器或记忆激活器") - return action_data, {} - - # 等待所有任务完成 - pending_tasks = set(task_list) - all_post_plan_info = [] - - while pending_tasks: - done, pending_tasks = await asyncio.wait(pending_tasks, return_when=asyncio.FIRST_COMPLETED) - - for task in done: - task_type, task_name = task_to_name_map[task] - - try: - result = await task - - if task_type == "processor": - logger.info(f"{self.log_prefix} 后期处理器 {task_name} 已完成!") - if result is not None: - all_post_plan_info.extend(result) - else: - logger.warning(f"{self.log_prefix} 后期处理器 {task_name} 返回了 None") - - except asyncio.TimeoutError: - # 对于超时任务,记录已用时间 - elapsed_time = time.time() - task_start_times[task] - if task_type == "processor": - post_processor_time_costs[task_name] = elapsed_time - logger.warning( - f"{self.log_prefix} 后期处理器 {task_name} 超时(>30s),已跳过,耗时: {elapsed_time:.3f}秒" - ) - except Exception as e: - # 对于异常任务,记录已用时间 - elapsed_time = time.time() - task_start_times[task] - if task_type == "processor": - post_processor_time_costs[task_name] = elapsed_time - logger.error( - f"{self.log_prefix} 后期处理器 {task_name} 执行失败,耗时: {elapsed_time:.3f}秒. 错误: {e}", - exc_info=True, - ) - - # 将后期处理器的结果整合到 action_data 中 - updated_action_data = action_data.copy() - - structured_info = "" - - for info in all_post_plan_info: - if isinstance(info, StructuredInfo): - structured_info = info.get_processed_info() - - if structured_info: - updated_action_data["structured_info"] = structured_info - - if all_post_plan_info: - logger.info(f"{self.log_prefix} 后期处理完成,产生了 {len(all_post_plan_info)} 个信息项") - - # 输出详细统计信息 - if post_processor_time_costs: - stats_str = ", ".join( - [f"{name}: {time_cost:.3f}s" for name, time_cost in post_processor_time_costs.items()] - ) - logger.info(f"{self.log_prefix} 后期处理器详细耗时统计: {stats_str}") - - return updated_action_data, post_processor_time_costs async def _observe_process_plan_action_loop(self, cycle_timers: dict, thinking_id: str) -> dict: try: @@ -765,10 +576,10 @@ class HeartFChatting: await self.relationship_builder.build_relation() - # 并行执行调整动作、回忆和处理器阶段 - with Timer("调整动作、处理", cycle_timers): - # 创建并行任务 - async def modify_actions_task(): + # 顺序执行调整动作和处理器阶段 + # 第一步:动作修改 + with Timer("动作修改", cycle_timers): + try: # 调用完整的动作修改流程 await self.action_modifier.modify_actions( observations=self.observations, @@ -776,44 +587,17 @@ class HeartFChatting: await self.action_observation.observe() self.observations.append(self.action_observation) - return True - - # 创建两个并行任务,为LLM调用添加超时保护 - action_modify_task = asyncio.create_task( - asyncio.wait_for(modify_actions_task(), timeout=ACTION_MODIFICATION_TIMEOUT) - ) - processor_task = asyncio.create_task(self._process_processors(self.observations)) - - # 等待两个任务完成,使用超时保护和详细错误处理 - action_modify_result = None - all_plan_info = [] - processor_time_costs = {} - - try: - action_modify_result, (all_plan_info, processor_time_costs) = await asyncio.gather( - action_modify_task, processor_task, return_exceptions=True - ) - - # 检查各个任务的结果 - if isinstance(action_modify_result, Exception): - if isinstance(action_modify_result, asyncio.TimeoutError): - logger.error(f"{self.log_prefix} 动作修改任务超时") - else: - logger.error(f"{self.log_prefix} 动作修改任务失败: {action_modify_result}") - - processor_result = (all_plan_info, processor_time_costs) - if isinstance(processor_result, Exception): - if isinstance(processor_result, asyncio.TimeoutError): - logger.error(f"{self.log_prefix} 处理器任务超时") - else: - logger.error(f"{self.log_prefix} 处理器任务失败: {processor_result}") - all_plan_info = [] - processor_time_costs = {} - else: - all_plan_info, processor_time_costs = processor_result - + logger.debug(f"{self.log_prefix} 动作修改完成") except Exception as e: - logger.error(f"{self.log_prefix} 并行任务gather失败: {e}") + logger.error(f"{self.log_prefix} 动作修改失败: {e}") + # 继续执行,不中断流程 + + # 第二步:信息处理器 + with Timer("信息处理器", cycle_timers): + try: + all_plan_info, processor_time_costs = await self._process_processors(self.observations) + except Exception as e: + logger.error(f"{self.log_prefix} 信息处理器失败: {e}") # 设置默认值以继续执行 all_plan_info = [] processor_time_costs = {} @@ -833,7 +617,6 @@ class HeartFChatting: "observed_messages": plan_result.get("observed_messages", ""), } - # 修正:将后期处理器从执行动作Timer中分离出来 action_type, action_data, reasoning = ( plan_result.get("action_result", {}).get("action_type", "error"), plan_result.get("action_result", {}).get("action_data", {}), @@ -849,22 +632,7 @@ class HeartFChatting: logger.debug(f"{self.log_prefix} 麦麦想要:'{action_str}'") - # 添加:单独计时后期处理器,并收集详细统计 - post_processor_time_costs = {} - if action_type != "no_reply": - with Timer("后期处理器", cycle_timers): - logger.debug(f"{self.log_prefix} 执行后期处理器(动作类型: {action_type})") - # 记录详细的后处理器时间 - post_start_time = time.time() - action_data, post_processor_time_costs = await self._process_post_planning_processors_with_timing( - self.observations, action_type, action_data - ) - post_end_time = time.time() - logger.info(f"{self.log_prefix} 后期处理器总耗时: {post_end_time - post_start_time:.3f}秒") - else: - logger.debug(f"{self.log_prefix} 跳过后期处理器(动作类型: {action_type})") - - # 修正:纯动作执行计时 + # 动作执行计时 with Timer("动作执行", cycle_timers): success, reply_text, command = await self._handle_action( action_type, reasoning, action_data, cycle_timers, thinking_id @@ -877,17 +645,11 @@ class HeartFChatting: "taken_time": time.time(), } - # 添加后处理器统计到loop_info - loop_post_processor_info = { - "post_processor_time_costs": post_processor_time_costs, - } - loop_info = { "loop_observation_info": loop_observation_info, "loop_processor_info": loop_processor_info, "loop_plan_info": loop_plan_info, "loop_action_info": loop_action_info, - "loop_post_processor_info": loop_post_processor_info, # 新增 } return loop_info diff --git a/src/chat/focus_chat/info/expression_selection_info.py b/src/chat/focus_chat/info/expression_selection_info.py deleted file mode 100644 index 9eaa0f4e0..000000000 --- a/src/chat/focus_chat/info/expression_selection_info.py +++ /dev/null @@ -1,71 +0,0 @@ -from dataclasses import dataclass -from typing import List, Dict -from .info_base import InfoBase - - -@dataclass -class ExpressionSelectionInfo(InfoBase): - """表达选择信息类 - - 用于存储和管理选中的表达方式信息。 - - Attributes: - type (str): 信息类型标识符,默认为 "expression_selection" - data (Dict[str, Any]): 包含选中表达方式的数据字典 - """ - - type: str = "expression_selection" - - def get_selected_expressions(self) -> List[Dict[str, str]]: - """获取选中的表达方式列表 - - Returns: - List[Dict[str, str]]: 选中的表达方式列表 - """ - return self.get_info("selected_expressions") or [] - - def set_selected_expressions(self, expressions: List[Dict[str, str]]) -> None: - """设置选中的表达方式列表 - - Args: - expressions: 选中的表达方式列表 - """ - self.data["selected_expressions"] = expressions - - def get_expressions_count(self) -> int: - """获取选中表达方式的数量 - - Returns: - int: 表达方式数量 - """ - return len(self.get_selected_expressions()) - - def get_processed_info(self) -> str: - """获取处理后的信息 - - Returns: - str: 处理后的信息字符串 - """ - expressions = self.get_selected_expressions() - if not expressions: - return "" - - # 格式化表达方式为可读文本 - formatted_expressions = [] - for expr in expressions: - situation = expr.get("situation", "") - style = expr.get("style", "") - expr.get("type", "") - - if situation and style: - formatted_expressions.append(f"当{situation}时,使用 {style}") - - return "\n".join(formatted_expressions) - - def get_expressions_for_action_data(self) -> List[Dict[str, str]]: - """获取用于action_data的表达方式数据 - - Returns: - List[Dict[str, str]]: 格式化后的表达方式数据 - """ - return self.get_selected_expressions() diff --git a/src/chat/focus_chat/info/mind_info.py b/src/chat/focus_chat/info/mind_info.py deleted file mode 100644 index 3cfde1bbb..000000000 --- a/src/chat/focus_chat/info/mind_info.py +++ /dev/null @@ -1,34 +0,0 @@ -from typing import Dict, Any -from dataclasses import dataclass, field -from .info_base import InfoBase - - -@dataclass -class MindInfo(InfoBase): - """思维信息类 - - 用于存储和管理当前思维状态的信息。 - - Attributes: - type (str): 信息类型标识符,默认为 "mind" - data (Dict[str, Any]): 包含 current_mind 的数据字典 - """ - - type: str = "mind" - data: Dict[str, Any] = field(default_factory=lambda: {"current_mind": ""}) - - def get_current_mind(self) -> str: - """获取当前思维状态 - - Returns: - str: 当前思维状态 - """ - return self.get_info("current_mind") or "" - - def set_current_mind(self, mind: str) -> None: - """设置当前思维状态 - - Args: - mind: 要设置的思维状态 - """ - self.data["current_mind"] = mind diff --git a/src/chat/focus_chat/info/relation_info.py b/src/chat/focus_chat/info/relation_info.py deleted file mode 100644 index 0e4ea9533..000000000 --- a/src/chat/focus_chat/info/relation_info.py +++ /dev/null @@ -1,40 +0,0 @@ -from dataclasses import dataclass -from .info_base import InfoBase - - -@dataclass -class RelationInfo(InfoBase): - """关系信息类 - - 用于存储和管理当前关系状态的信息。 - - Attributes: - type (str): 信息类型标识符,默认为 "relation" - data (Dict[str, Any]): 包含 current_relation 的数据字典 - """ - - type: str = "relation" - - def get_relation_info(self) -> str: - """获取当前关系状态 - - Returns: - str: 当前关系状态 - """ - return self.get_info("relation_info") or "" - - def set_relation_info(self, relation_info: str) -> None: - """设置当前关系状态 - - Args: - relation_info: 要设置的关系状态 - """ - self.data["relation_info"] = relation_info - - def get_processed_info(self) -> str: - """获取处理后的信息 - - Returns: - str: 处理后的信息 - """ - return self.get_relation_info() or "" diff --git a/src/chat/focus_chat/info/structured_info.py b/src/chat/focus_chat/info/structured_info.py deleted file mode 100644 index a925a6d17..000000000 --- a/src/chat/focus_chat/info/structured_info.py +++ /dev/null @@ -1,85 +0,0 @@ -from typing import Dict, Optional, Any, List -from dataclasses import dataclass, field - - -@dataclass -class StructuredInfo: - """信息基类 - - 这是一个基础信息类,用于存储和管理各种类型的信息数据。 - 所有具体的信息类都应该继承自这个基类。 - - Attributes: - type (str): 信息类型标识符,默认为 "base" - data (Dict[str, Union[str, Dict, list]]): 存储具体信息数据的字典, - 支持存储字符串、字典、列表等嵌套数据结构 - """ - - type: str = "structured_info" - data: Dict[str, Any] = field(default_factory=dict) - - def get_type(self) -> str: - """获取信息类型 - - Returns: - str: 当前信息对象的类型标识符 - """ - return self.type - - def get_data(self) -> Dict[str, Any]: - """获取所有信息数据 - - Returns: - Dict[str, Any]: 包含所有信息数据的字典 - """ - return self.data - - def get_info(self, key: str) -> Optional[Any]: - """获取特定属性的信息 - - Args: - key: 要获取的属性键名 - - Returns: - Optional[Any]: 属性值,如果键不存在则返回 None - """ - return self.data.get(key) - - def get_info_list(self, key: str) -> List[Any]: - """获取特定属性的信息列表 - - Args: - key: 要获取的属性键名 - - Returns: - List[Any]: 属性值列表,如果键不存在则返回空列表 - """ - value = self.data.get(key) - if isinstance(value, list): - return value - return [] - - def set_info(self, key: str, value: Any) -> None: - """设置特定属性的信息值 - - Args: - key: 要设置的属性键名 - value: 要设置的属性值 - """ - self.data[key] = value - - def get_processed_info(self) -> str: - """获取处理后的信息 - - Returns: - str: 处理后的信息字符串 - """ - - info_str = "" - # print(f"self.data: {self.data}") - - for key, value in self.data.items(): - # print(f"key: {key}, value: {value}") - info_str += f"信息类型:{key},信息内容:{value}\n" - - return info_str diff --git a/src/chat/focus_chat/info_processors/tool_processor.py b/src/chat/focus_chat/info_processors/tool_processor.py deleted file mode 100644 index f0034af1d..000000000 --- a/src/chat/focus_chat/info_processors/tool_processor.py +++ /dev/null @@ -1,186 +0,0 @@ -from src.chat.heart_flow.observation.chatting_observation import ChattingObservation -from src.llm_models.utils_model import LLMRequest -from src.config.config import global_config -import time -from src.common.logger import get_logger -from src.individuality.individuality import get_individuality -from src.chat.utils.prompt_builder import Prompt, global_prompt_manager -from src.tools.tool_use import ToolUser -from src.chat.utils.json_utils import process_llm_tool_calls -from .base_processor import BaseProcessor -from typing import List -from src.chat.heart_flow.observation.observation import Observation -from src.chat.focus_chat.info.structured_info import StructuredInfo -from src.chat.heart_flow.observation.structure_observation import StructureObservation - -logger = get_logger("processor") - - -def init_prompt(): - # ... 原有代码 ... - - # 添加工具执行器提示词 - tool_executor_prompt = """ -你是一个专门执行工具的助手。你的名字是{bot_name}。现在是{time_now}。 -群里正在进行的聊天内容: -{chat_observe_info} - -请仔细分析聊天内容,考虑以下几点: -1. 内容中是否包含需要查询信息的问题 -2. 是否有明确的工具使用指令 - -If you need to use a tool, please directly call the corresponding tool function. If you do not need to use any tool, simply output "No tool needed". -""" - Prompt(tool_executor_prompt, "tool_executor_prompt") - - -class ToolProcessor(BaseProcessor): - log_prefix = "工具执行器" - - def __init__(self, subheartflow_id: str): - super().__init__() - self.subheartflow_id = subheartflow_id - self.log_prefix = f"[{subheartflow_id}:ToolExecutor] " - self.llm_model = LLMRequest( - model=global_config.model.focus_tool_use, - request_type="focus.processor.tool", - ) - self.structured_info = [] - - async def process_info( - self, - observations: List[Observation] = None, - action_type: str = None, - action_data: dict = None, - **kwargs, - ) -> List[StructuredInfo]: - """处理信息对象 - - Args: - observations: 可选的观察列表,包含ChattingObservation和StructureObservation类型 - action_type: 动作类型 - action_data: 动作数据 - **kwargs: 其他可选参数 - - Returns: - list: 处理后的结构化信息列表 - """ - - working_infos = [] - result = [] - - if observations: - for observation in observations: - if isinstance(observation, ChattingObservation): - result, used_tools, prompt = await self.execute_tools(observation) - - logger.info(f"工具调用结果: {result}") - # 更新WorkingObservation中的结构化信息 - for observation in observations: - if isinstance(observation, StructureObservation): - for structured_info in result: - # logger.debug(f"{self.log_prefix} 更新WorkingObservation中的结构化信息: {structured_info}") - observation.add_structured_info(structured_info) - - working_infos = observation.get_observe_info() - logger.debug(f"{self.log_prefix} 获取更新后WorkingObservation中的结构化信息: {working_infos}") - - structured_info = StructuredInfo() - if working_infos: - for working_info in working_infos: - structured_info.set_info(key=working_info.get("type"), value=working_info.get("content")) - - return [structured_info] - - async def execute_tools(self, observation: ChattingObservation, action_type: str = None, action_data: dict = None): - """ - 并行执行工具,返回结构化信息 - - 参数: - sub_mind: 子思维对象 - chat_target_name: 聊天目标名称,默认为"对方" - is_group_chat: 是否为群聊,默认为False - return_details: 是否返回详细信息,默认为False - cycle_info: 循环信息对象,可用于记录详细执行信息 - action_type: 动作类型 - action_data: 动作数据 - - 返回: - 如果return_details为False: - List[Dict]: 工具执行结果的结构化信息列表 - 如果return_details为True: - Tuple[List[Dict], List[str], str]: (工具执行结果列表, 使用的工具列表, 工具执行提示词) - """ - tool_instance = ToolUser() - tools = tool_instance._define_tools() - - # logger.debug(f"observation: {observation}") - # logger.debug(f"observation.chat_target_info: {observation.chat_target_info}") - # logger.debug(f"observation.is_group_chat: {observation.is_group_chat}") - # logger.debug(f"observation.person_list: {observation.person_list}") - - is_group_chat = observation.is_group_chat - - # chat_observe_info = observation.get_observe_info() - chat_observe_info = observation.talking_message_str_truncate_short - # person_list = observation.person_list - - # 获取时间信息 - time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) - - # 构建专用于工具调用的提示词 - prompt = await global_prompt_manager.format_prompt( - "tool_executor_prompt", - chat_observe_info=chat_observe_info, - is_group_chat=is_group_chat, - bot_name=get_individuality().name, - time_now=time_now, - ) - - # 调用LLM,专注于工具使用 - # logger.info(f"开始执行工具调用{prompt}") - response, other_info = await self.llm_model.generate_response_async(prompt=prompt, tools=tools) - - if len(other_info) == 3: - reasoning_content, model_name, tool_calls = other_info - else: - reasoning_content, model_name = other_info - tool_calls = None - - # print("tooltooltooltooltooltooltooltooltooltooltooltooltooltooltooltooltool") - if tool_calls: - logger.info(f"获取到工具原始输出:\n{tool_calls}") - # 处理工具调用和结果收集,类似于SubMind中的逻辑 - new_structured_items = [] - used_tools = [] # 记录使用了哪些工具 - - if tool_calls: - success, valid_tool_calls, error_msg = process_llm_tool_calls(tool_calls) - if success and valid_tool_calls: - for tool_call in valid_tool_calls: - try: - # 记录使用的工具名称 - tool_name = tool_call.get("name", "unknown_tool") - used_tools.append(tool_name) - - result = await tool_instance._execute_tool_call(tool_call) - - name = result.get("type", "unknown_type") - content = result.get("content", "") - - logger.info(f"工具{name},获得信息:{content}") - if result: - new_item = { - "type": result.get("type", "unknown_type"), - "id": result.get("id", f"tool_exec_{time.time()}"), - "content": result.get("content", ""), - "ttl": 3, - } - new_structured_items.append(new_item) - except Exception as e: - logger.error(f"{self.log_prefix}工具执行失败: {e}") - - return new_structured_items, used_tools, prompt - - -init_prompt() diff --git a/src/chat/replyer/default_generator.py b/src/chat/replyer/default_generator.py index 2e7448600..532f19f3a 100644 --- a/src/chat/replyer/default_generator.py +++ b/src/chat/replyer/default_generator.py @@ -28,6 +28,7 @@ from datetime import datetime import re from src.chat.knowledge.knowledge_lib import qa_manager from src.chat.focus_chat.memory_activator import MemoryActivator +from src.tools.tool_executor import ToolExecutor logger = get_logger("replyer") @@ -42,7 +43,7 @@ def init_prompt(): Prompt( """ {expression_habits_block} -{structured_info_block} +{tool_info_block} {memory_block} {relation_info_block} {extra_info_block} @@ -67,7 +68,7 @@ def init_prompt(): Prompt( """ {expression_habits_block} -{structured_info_block} +{tool_info_block} {memory_block} {relation_info_block} {extra_info_block} @@ -156,12 +157,20 @@ class DefaultReplyer: fallback_config = global_config.model.replyer_1.copy() fallback_config.setdefault("weight", 1.0) self.express_model_configs = [fallback_config] - - self.heart_fc_sender = HeartFCSender() - self.memory_activator = MemoryActivator() - + self.chat_stream = chat_stream self.is_group_chat, self.chat_target_info = get_chat_type_and_target_info(self.chat_stream.stream_id) + + self.heart_fc_sender = HeartFCSender() + self.memory_activator = MemoryActivator() + self.tool_executor = ToolExecutor( + chat_id=self.chat_stream.stream_id, + enable_cache=True, + cache_ttl=3 + ) + + + def _select_weighted_model_config(self) -> Dict[str, Any]: """使用加权随机选择来挑选一个模型配置""" @@ -394,6 +403,54 @@ class DefaultReplyer: return memory_block + async def build_tool_info(self, reply_data=None, chat_history=None): + """构建工具信息块 + + Args: + reply_data: 回复数据,包含要回复的消息内容 + chat_history: 聊天历史 + + Returns: + str: 工具信息字符串 + """ + if not reply_data: + return "" + + reply_to = reply_data.get("reply_to", "") + sender, text = self._parse_reply_target(reply_to) + + if not text: + return "" + + try: + # 使用工具执行器获取信息 + tool_results = await self.tool_executor.execute_from_chat_message( + sender = sender, + target_message=text, + chat_history=chat_history, + return_details=False + ) + + if tool_results: + tool_info_str = "以下是你通过工具获取到的实时信息:\n" + for tool_result in tool_results: + tool_name = tool_result.get("tool_name", "unknown") + content = tool_result.get("content", "") + result_type = tool_result.get("type", "info") + + tool_info_str += f"- 【{tool_name}】{result_type}: {content}\n" + + tool_info_str += "以上是你获取到的实时信息,请在回复时参考这些信息。" + logger.info(f"{self.log_prefix} 获取到 {len(tool_results)} 个工具结果") + return tool_info_str + else: + logger.debug(f"{self.log_prefix} 未获取到任何工具结果") + return "" + + except Exception as e: + logger.error(f"{self.log_prefix} 工具信息获取失败: {e}") + return "" + def _parse_reply_target(self, target_message: str) -> tuple: sender = "" target = "" @@ -502,11 +559,12 @@ class DefaultReplyer: show_actions=True, ) - # 并行执行三个构建任务 - expression_habits_block, relation_info, memory_block = await asyncio.gather( + # 并行执行四个构建任务 + expression_habits_block, relation_info, memory_block, tool_info = await asyncio.gather( self.build_expression_habits(chat_talking_prompt_half, target), self.build_relation_info(reply_data, chat_talking_prompt_half), self.build_memory_block(chat_talking_prompt_half, target), + self.build_tool_info(reply_data, chat_talking_prompt_half), ) keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target) @@ -518,6 +576,11 @@ class DefaultReplyer: else: structured_info_block = "" + if tool_info: + tool_info_block = f"{tool_info}" + else: + tool_info_block = "" + if extra_info_block: extra_info_block = f"以下是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策\n{extra_info_block}\n以上是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策" else: @@ -590,6 +653,7 @@ class DefaultReplyer: chat_info=chat_talking_prompt, memory_block=memory_block, structured_info_block=structured_info_block, + tool_info_block=tool_info_block, extra_info_block=extra_info_block, relation_info_block=relation_info, time_block=time_block, @@ -620,6 +684,7 @@ class DefaultReplyer: chat_info=chat_talking_prompt, memory_block=memory_block, structured_info_block=structured_info_block, + tool_info_block=tool_info_block, relation_info_block=relation_info, extra_info_block=extra_info_block, time_block=time_block, diff --git a/src/config/official_configs.py b/src/config/official_configs.py index fcba7e36d..bec7ce904 100644 --- a/src/config/official_configs.py +++ b/src/config/official_configs.py @@ -314,15 +314,7 @@ class FocusChatConfig(ConfigBase): consecutive_replies: float = 1 """连续回复能力,值越高,麦麦连续回复的概率越高""" - -@dataclass -class FocusChatProcessorConfig(ConfigBase): - """专注聊天处理器配置类""" - - tool_use_processor: bool = True - """是否启用工具使用处理器""" - - working_memory_processor: bool = True + working_memory_processor: bool = False """是否启用工作记忆处理器""" diff --git a/src/plugin_system/apis/generator_api.py b/src/plugin_system/apis/generator_api.py index da0af0866..95e3b29da 100644 --- a/src/plugin_system/apis/generator_api.py +++ b/src/plugin_system/apis/generator_api.py @@ -8,6 +8,7 @@ success, reply_set = await generator_api.generate_reply(chat_stream, action_data, reasoning) """ +import traceback from typing import Tuple, Any, Dict, List, Optional from src.common.logger import get_logger from src.chat.replyer.default_generator import DefaultReplyer @@ -50,6 +51,7 @@ def get_replyer( ) except Exception as e: logger.error(f"[GeneratorAPI] 获取回复器时发生意外错误: {e}", exc_info=True) + traceback.print_exc() return None diff --git a/src/tools/tool_executor.py b/src/tools/tool_executor.py new file mode 100644 index 000000000..a46fdc4cd --- /dev/null +++ b/src/tools/tool_executor.py @@ -0,0 +1,421 @@ +from src.llm_models.utils_model import LLMRequest +from src.config.config import global_config +import time +from src.common.logger import get_logger +from src.individuality.individuality import get_individuality +from src.chat.utils.prompt_builder import Prompt, global_prompt_manager +from src.tools.tool_use import ToolUser +from src.chat.utils.json_utils import process_llm_tool_calls +from typing import List, Dict, Tuple, Optional + +logger = get_logger("tool_executor") + + +def init_tool_executor_prompt(): + """初始化工具执行器的提示词""" + tool_executor_prompt = """ +你是一个专门执行工具的助手。你的名字是{bot_name}。现在是{time_now}。 +群里正在进行的聊天内容: +{chat_history} + +现在,{sender}发送了内容:{target_message},你想要回复ta。 +请仔细分析聊天内容,考虑以下几点: +1. 内容中是否包含需要查询信息的问题 +2. 是否有明确的工具使用指令 + +If you need to use a tool, please directly call the corresponding tool function. If you do not need to use any tool, simply output "No tool needed". +""" + Prompt(tool_executor_prompt, "tool_executor_prompt") + + +class ToolExecutor: + """独立的工具执行器组件 + + 可以直接输入聊天消息内容,自动判断并执行相应的工具,返回结构化的工具执行结果。 + """ + + def __init__(self, chat_id: str = None, enable_cache: bool = True, cache_ttl: int = 3): + """初始化工具执行器 + + Args: + executor_id: 执行器标识符,用于日志记录 + enable_cache: 是否启用缓存机制 + cache_ttl: 缓存生存时间(周期数) + """ + self.chat_id = chat_id + self.log_prefix = f"[ToolExecutor:{self.chat_id}] " + self.llm_model = LLMRequest( + model=global_config.model.focus_tool_use, + request_type="tool_executor", + ) + + # 初始化工具实例 + self.tool_instance = ToolUser() + + # 缓存配置 + self.enable_cache = enable_cache + self.cache_ttl = cache_ttl + self.tool_cache = {} # 格式: {cache_key: {"result": result, "ttl": ttl, "timestamp": timestamp}} + + logger.info(f"{self.log_prefix}工具执行器初始化完成,缓存{'启用' if enable_cache else '禁用'},TTL={cache_ttl}") + + async def execute_from_chat_message( + self, + target_message: str, + chat_history: list[str], + sender: str, + return_details: bool = False + ) -> List[Dict] | Tuple[List[Dict], List[str], str]: + """从聊天消息执行工具 + + Args: + target_message: 目标消息内容 + chat_history: 聊天历史 + sender: 发送者 + return_details: 是否返回详细信息(使用的工具列表和提示词) + + Returns: + 如果return_details为False: List[Dict] - 工具执行结果列表 + 如果return_details为True: Tuple[List[Dict], List[str], str] - (结果列表, 使用的工具, 提示词) + """ + + # 首先检查缓存 + cache_key = self._generate_cache_key(target_message, chat_history, sender) + cached_result = self._get_from_cache(cache_key) + + if cached_result: + logger.info(f"{self.log_prefix}使用缓存结果,跳过工具执行") + if return_details: + # 从缓存结果中提取工具名称 + used_tools = [result.get("tool_name", "unknown") for result in cached_result] + return cached_result, used_tools, "使用缓存结果" + else: + return cached_result + + # 缓存未命中,执行工具调用 + # 获取可用工具 + tools = self.tool_instance._define_tools() + + # 获取当前时间 + time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + + bot_name = global_config.bot.nickname + + # 构建工具调用提示词 + prompt = await global_prompt_manager.format_prompt( + "tool_executor_prompt", + target_message=target_message, + chat_history=chat_history, + sender=sender, + bot_name=bot_name, + time_now=time_now, + ) + + logger.debug(f"{self.log_prefix}开始LLM工具调用分析") + + # 调用LLM进行工具决策 + response, other_info = await self.llm_model.generate_response_async( + prompt=prompt, + tools=tools + ) + + # 解析LLM响应 + if len(other_info) == 3: + reasoning_content, model_name, tool_calls = other_info + else: + reasoning_content, model_name = other_info + tool_calls = None + + # 执行工具调用 + tool_results, used_tools = await self._execute_tool_calls(tool_calls) + + # 缓存结果 + if tool_results: + self._set_cache(cache_key, tool_results) + + logger.info(f"{self.log_prefix}工具执行完成,共执行{len(used_tools)}个工具: {used_tools}") + + if return_details: + return tool_results, used_tools, prompt + else: + return tool_results + + async def _execute_tool_calls(self, tool_calls) -> Tuple[List[Dict], List[str]]: + """执行工具调用 + + Args: + tool_calls: LLM返回的工具调用列表 + + Returns: + Tuple[List[Dict], List[str]]: (工具执行结果列表, 使用的工具名称列表) + """ + tool_results = [] + used_tools = [] + + if not tool_calls: + logger.debug(f"{self.log_prefix}无需执行工具") + return tool_results, used_tools + + logger.info(f"{self.log_prefix}开始执行工具调用: {tool_calls}") + + # 处理工具调用 + success, valid_tool_calls, error_msg = process_llm_tool_calls(tool_calls) + + if not success: + logger.error(f"{self.log_prefix}工具调用解析失败: {error_msg}") + return tool_results, used_tools + + if not valid_tool_calls: + logger.debug(f"{self.log_prefix}无有效工具调用") + return tool_results, used_tools + + # 执行每个工具调用 + for tool_call in valid_tool_calls: + try: + tool_name = tool_call.get("name", "unknown_tool") + used_tools.append(tool_name) + + logger.debug(f"{self.log_prefix}执行工具: {tool_name}") + + # 执行工具 + result = await self.tool_instance._execute_tool_call(tool_call) + + if result: + tool_info = { + "type": result.get("type", "unknown_type"), + "id": result.get("id", f"tool_exec_{time.time()}"), + "content": result.get("content", ""), + "tool_name": tool_name, + "timestamp": time.time(), + } + tool_results.append(tool_info) + + logger.info(f"{self.log_prefix}工具{tool_name}执行成功,类型: {tool_info['type']}") + logger.debug(f"{self.log_prefix}工具{tool_name}结果内容: {tool_info['content'][:200]}...") + + except Exception as e: + logger.error(f"{self.log_prefix}工具{tool_name}执行失败: {e}") + # 添加错误信息到结果中 + error_info = { + "type": "tool_error", + "id": f"tool_error_{time.time()}", + "content": f"工具{tool_name}执行失败: {str(e)}", + "tool_name": tool_name, + "timestamp": time.time(), + } + tool_results.append(error_info) + + return tool_results, used_tools + + def _generate_cache_key(self, target_message: str, chat_history: list[str], sender: str) -> str: + """生成缓存键 + + Args: + target_message: 目标消息内容 + chat_history: 聊天历史 + sender: 发送者 + + Returns: + str: 缓存键 + """ + import hashlib + # 使用消息内容和群聊状态生成唯一缓存键 + content = f"{target_message}_{chat_history}_{sender}" + return hashlib.md5(content.encode()).hexdigest() + + def _get_from_cache(self, cache_key: str) -> Optional[List[Dict]]: + """从缓存获取结果 + + Args: + cache_key: 缓存键 + + Returns: + Optional[List[Dict]]: 缓存的结果,如果不存在或过期则返回None + """ + if not self.enable_cache or cache_key not in self.tool_cache: + return None + + cache_item = self.tool_cache[cache_key] + if cache_item["ttl"] <= 0: + # 缓存过期,删除 + del self.tool_cache[cache_key] + logger.debug(f"{self.log_prefix}缓存过期,删除缓存键: {cache_key}") + return None + + # 减少TTL + cache_item["ttl"] -= 1 + logger.debug(f"{self.log_prefix}使用缓存结果,剩余TTL: {cache_item['ttl']}") + return cache_item["result"] + + def _set_cache(self, cache_key: str, result: List[Dict]): + """设置缓存 + + Args: + cache_key: 缓存键 + result: 要缓存的结果 + """ + if not self.enable_cache: + return + + self.tool_cache[cache_key] = { + "result": result, + "ttl": self.cache_ttl, + "timestamp": time.time() + } + logger.debug(f"{self.log_prefix}设置缓存,TTL: {self.cache_ttl}") + + def _cleanup_expired_cache(self): + """清理过期的缓存""" + if not self.enable_cache: + return + + expired_keys = [] + for cache_key, cache_item in self.tool_cache.items(): + if cache_item["ttl"] <= 0: + expired_keys.append(cache_key) + + for key in expired_keys: + del self.tool_cache[key] + + if expired_keys: + logger.debug(f"{self.log_prefix}清理了{len(expired_keys)}个过期缓存") + + def get_available_tools(self) -> List[str]: + """获取可用工具列表 + + Returns: + List[str]: 可用工具名称列表 + """ + tools = self.tool_instance._define_tools() + return [tool.get("function", {}).get("name", "unknown") for tool in tools] + + async def execute_specific_tool( + self, + tool_name: str, + tool_args: Dict, + validate_args: bool = True + ) -> Optional[Dict]: + """直接执行指定工具 + + Args: + tool_name: 工具名称 + tool_args: 工具参数 + validate_args: 是否验证参数 + + Returns: + Optional[Dict]: 工具执行结果,失败时返回None + """ + try: + tool_call = { + "name": tool_name, + "arguments": tool_args + } + + logger.info(f"{self.log_prefix}直接执行工具: {tool_name}") + + result = await self.tool_instance._execute_tool_call(tool_call) + + if result: + tool_info = { + "type": result.get("type", "unknown_type"), + "id": result.get("id", f"direct_tool_{time.time()}"), + "content": result.get("content", ""), + "tool_name": tool_name, + "timestamp": time.time(), + } + logger.info(f"{self.log_prefix}直接工具执行成功: {tool_name}") + return tool_info + + except Exception as e: + logger.error(f"{self.log_prefix}直接工具执行失败 {tool_name}: {e}") + + return None + + def clear_cache(self): + """清空所有缓存""" + if self.enable_cache: + cache_count = len(self.tool_cache) + self.tool_cache.clear() + logger.info(f"{self.log_prefix}清空了{cache_count}个缓存项") + + def get_cache_status(self) -> Dict: + """获取缓存状态信息 + + Returns: + Dict: 包含缓存统计信息的字典 + """ + if not self.enable_cache: + return {"enabled": False, "cache_count": 0} + + # 清理过期缓存 + self._cleanup_expired_cache() + + total_count = len(self.tool_cache) + ttl_distribution = {} + + for cache_item in self.tool_cache.values(): + ttl = cache_item["ttl"] + ttl_distribution[ttl] = ttl_distribution.get(ttl, 0) + 1 + + return { + "enabled": True, + "cache_count": total_count, + "cache_ttl": self.cache_ttl, + "ttl_distribution": ttl_distribution + } + + def set_cache_config(self, enable_cache: bool = None, cache_ttl: int = None): + """动态修改缓存配置 + + Args: + enable_cache: 是否启用缓存 + cache_ttl: 缓存TTL + """ + if enable_cache is not None: + self.enable_cache = enable_cache + logger.info(f"{self.log_prefix}缓存状态修改为: {'启用' if enable_cache else '禁用'}") + + if cache_ttl is not None and cache_ttl > 0: + self.cache_ttl = cache_ttl + logger.info(f"{self.log_prefix}缓存TTL修改为: {cache_ttl}") + + +# 初始化提示词 +init_tool_executor_prompt() + + +""" +使用示例: + +# 1. 基础使用 - 从聊天消息执行工具(启用缓存,默认TTL=3) +executor = ToolExecutor(executor_id="my_executor") +results = await executor.execute_from_chat_message( + talking_message_str="今天天气怎么样?现在几点了?", + is_group_chat=False +) + +# 2. 禁用缓存的执行器 +no_cache_executor = ToolExecutor(executor_id="no_cache", enable_cache=False) + +# 3. 自定义缓存TTL +long_cache_executor = ToolExecutor(executor_id="long_cache", cache_ttl=10) + +# 4. 获取详细信息 +results, used_tools, prompt = await executor.execute_from_chat_message( + talking_message_str="帮我查询Python相关知识", + is_group_chat=False, + return_details=True +) + +# 5. 直接执行特定工具 +result = await executor.execute_specific_tool( + tool_name="get_knowledge", + tool_args={"query": "机器学习"} +) + +# 6. 缓存管理 +available_tools = executor.get_available_tools() +cache_status = executor.get_cache_status() # 查看缓存状态 +executor.clear_cache() # 清空缓存 +executor.set_cache_config(cache_ttl=5) # 动态修改缓存配置 +""" \ No newline at end of file diff --git a/template/bot_config_template.toml b/template/bot_config_template.toml index cbe65179f..f45534b46 100644 --- a/template/bot_config_template.toml +++ b/template/bot_config_template.toml @@ -1,5 +1,5 @@ [inner] -version = "2.29.0" +version = "2.30.0" #----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读---- #如果你想要修改配置文件,请在修改后将version的值进行变更 @@ -133,9 +133,6 @@ think_interval = 3 # 思考间隔 单位秒,可以有效减少消耗 consecutive_replies = 1 # 连续回复能力,值越高,麦麦连续回复的概率越高 compressed_length = 8 # 不能大于observation_context_size,心流上下文压缩的最短压缩长度,超过心流观察到的上下文长度,会压缩,最短压缩长度为5 compress_length_limit = 4 #最多压缩份数,超过该数值的压缩上下文会被删除 - -[focus_chat_processor] # 专注聊天处理器,打开可以实现更多功能,但是会增加token消耗 -tool_use_processor = false # 是否启用工具使用处理器 working_memory_processor = false # 是否启用工作记忆处理器,消耗量大 [emoji]