some typing
This commit is contained in:
@@ -1,5 +1,3 @@
|
||||
from .llm_client import LLMMessage
|
||||
|
||||
entity_extract_system_prompt = """你是一个性能优异的实体提取系统。请从段落中提取出所有实体,并以JSON列表的形式输出。
|
||||
|
||||
输出格式示例:
|
||||
@@ -63,10 +61,10 @@ qa_system_prompt = """
|
||||
"""
|
||||
|
||||
|
||||
def build_qa_context(question: str, knowledge: list[tuple[str, str, str]]) -> list[LLMMessage]:
|
||||
knowledge = "\n".join([f"{i + 1}. 相关性:{k[0]}\n{k[1]}" for i, k in enumerate(knowledge)])
|
||||
messages = [
|
||||
LLMMessage("system", qa_system_prompt).to_dict(),
|
||||
LLMMessage("user", f"问题:\n{question}\n\n可能有帮助的信息:\n{knowledge}").to_dict(),
|
||||
]
|
||||
return messages
|
||||
# def build_qa_context(question: str, knowledge: list[tuple[str, str, str]]) -> list[LLMMessage]:
|
||||
# knowledge = "\n".join([f"{i + 1}. 相关性:{k[0]}\n{k[1]}" for i, k in enumerate(knowledge)])
|
||||
# messages = [
|
||||
# LLMMessage("system", qa_system_prompt).to_dict(),
|
||||
# LLMMessage("user", f"问题:\n{question}\n\n可能有帮助的信息:\n{knowledge}").to_dict(),
|
||||
# ]
|
||||
# return messages
|
||||
|
||||
Reference in New Issue
Block a user