feat:新增记忆唤醒流程

This commit is contained in:
SengokuCola
2025-05-12 12:50:08 +08:00
parent d7c5f7031c
commit 319352294b
34 changed files with 183 additions and 460 deletions

192
src/tools/tool_use.py Normal file
View File

@@ -0,0 +1,192 @@
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
import json
from src.common.logger_manager import get_logger
from src.tools.tool_can_use import get_all_tool_definitions, get_tool_instance
import traceback
from src.plugins.person_info.relationship_manager import relationship_manager
from src.plugins.chat.utils import parse_text_timestamps
from src.plugins.chat.chat_stream import ChatStream
from src.heart_flow.observation.chatting_observation import ChattingObservation
logger = get_logger("tool_use")
class ToolUser:
def __init__(self):
self.llm_model_tool = LLMRequest(
model=global_config.llm_tool_use, temperature=0.2, max_tokens=1000, request_type="tool_use"
)
@staticmethod
async def _build_tool_prompt(
message_txt: str, chat_stream: ChatStream = None, observation: ChattingObservation = None
):
"""构建工具使用的提示词
Args:
message_txt: 用户消息文本
subheartflow: 子心流对象
Returns:
str: 构建好的提示词
"""
if observation:
mid_memory_info = observation.mid_memory_info
# print(f"intol111111111111111111111111111111111222222222222mid_memory_info{mid_memory_info}")
# 这些信息应该从调用者传入而不是从self获取
bot_name = global_config.BOT_NICKNAME
prompt = ""
prompt += mid_memory_info
prompt += "你正在思考如何回复群里的消息。\n"
prompt += "之前群里进行了如下讨论:\n"
prompt += message_txt
# prompt += f"你注意到{sender_name}刚刚说:{message_txt}\n"
prompt += f"注意你就是{bot_name}{bot_name}是你的名字。根据之前的聊天记录补充问题信息,搜索时避开你的名字。\n"
# prompt += "必须调用 'lpmm_get_knowledge' 工具来获取知识。\n"
prompt += "你现在需要对群里的聊天内容进行回复,请你思考应该使用什么工具,然后选择工具来对消息和你的回复进行处理,你是否需要额外的信息,比如回忆或者搜寻已有的知识,改变关系和情感,或者了解你现在正在做什么。"
prompt = await relationship_manager.convert_all_person_sign_to_person_name(prompt)
prompt = parse_text_timestamps(prompt, mode="lite")
return prompt
@staticmethod
def _define_tools():
"""获取所有已注册工具的定义
Returns:
list: 工具定义列表
"""
return get_all_tool_definitions()
@staticmethod
async def _execute_tool_call(tool_call):
"""执行特定的工具调用
Args:
tool_call: 工具调用对象
message_txt: 原始消息文本
Returns:
dict: 工具调用结果
"""
try:
function_name = tool_call["function"]["name"]
function_args = json.loads(tool_call["function"]["arguments"])
# 获取对应工具实例
tool_instance = get_tool_instance(function_name)
if not tool_instance:
logger.warning(f"未知工具名称: {function_name}")
return None
# 执行工具
result = await tool_instance.execute(function_args)
if result:
# 直接使用 function_name 作为 tool_type
tool_type = function_name
return {
"tool_call_id": tool_call["id"],
"role": "tool",
"name": function_name,
"type": tool_type,
"content": result["content"],
}
return None
except Exception as e:
logger.error(f"执行工具调用时发生错误: {str(e)}")
return None
async def use_tool(self, message_txt: str, chat_stream: ChatStream = None, observation: ChattingObservation = None):
"""使用工具辅助思考,判断是否需要额外信息
Args:
message_txt: 用户消息文本
chat_stream: 聊天流对象
observation: 观察对象(可选)
Returns:
dict: 工具使用结果,包含结构化的信息
"""
try:
# 构建提示词
prompt = await self._build_tool_prompt(
message_txt=message_txt,
chat_stream=chat_stream,
observation=observation,
)
# 定义可用工具
tools = self._define_tools()
logger.trace(f"工具定义: {tools}")
# 使用llm_model_tool发送带工具定义的请求
payload = {
"model": self.llm_model_tool.model_name,
"messages": [{"role": "user", "content": prompt}],
"tools": tools,
"temperature": 0.2,
}
logger.trace(f"发送工具调用请求,模型: {self.llm_model_tool.model_name}")
# 发送请求获取模型是否需要调用工具
response = await self.llm_model_tool._execute_request(
endpoint="/chat/completions", payload=payload, prompt=prompt
)
# 根据返回值数量判断是否有工具调用
if len(response) == 3:
content, reasoning_content, tool_calls = response
# logger.info(f"工具思考: {tool_calls}")
# logger.debug(f"工具思考: {content}")
# 检查响应中工具调用是否有效
if not tool_calls:
logger.debug("模型返回了空的tool_calls列表")
return {"used_tools": False}
tool_calls_str = ""
for tool_call in tool_calls:
tool_calls_str += f"{tool_call['function']['name']}\n"
logger.info(
f"根据:\n{prompt}\n\n内容:{content}\n\n模型请求调用{len(tool_calls)}个工具: {tool_calls_str}"
)
tool_results = []
structured_info = {} # 动态生成键
# 执行所有工具调用
for tool_call in tool_calls:
result = await self._execute_tool_call(tool_call)
if result:
tool_results.append(result)
# 使用工具名称作为键
tool_name = result["name"]
if tool_name not in structured_info:
structured_info[tool_name] = []
structured_info[tool_name].append({"name": result["name"], "content": result["content"]})
# 如果有工具结果,返回结构化的信息
if structured_info:
logger.debug(f"工具调用收集到结构化信息: {json.dumps(structured_info, ensure_ascii=False)}")
return {"used_tools": True, "structured_info": structured_info}
else:
# 没有工具调用
content, reasoning_content = response
logger.debug("模型没有请求调用任何工具")
# 如果没有工具调用或处理失败,直接返回原始思考
return {
"used_tools": False,
}
except Exception as e:
logger.error(f"工具调用过程中出错: {str(e)}")
logger.error(f"工具调用过程中出错: {traceback.format_exc()}")
return {
"used_tools": False,
"error": str(e),
}