fix;调整概率和Log、

This commit is contained in:
SengokuCola
2025-06-14 21:55:16 +08:00
parent 751a46da7b
commit 30f2eac278
5 changed files with 27 additions and 143 deletions

View File

@@ -267,7 +267,7 @@ class EmbeddingStore:
result: 最相似的k个项的(hash, 余弦相似度)列表 result: 最相似的k个项的(hash, 余弦相似度)列表
""" """
if self.faiss_index is None: if self.faiss_index is None:
logger.warning("FaissIndex尚未构建,返回None") logger.debug("FaissIndex尚未构建,返回None")
return None return None
if self.idx2hash is None: if self.idx2hash is None:
logger.warning("idx2hash尚未构建,返回None") logger.warning("idx2hash尚未构建,返回None")

View File

@@ -121,5 +121,5 @@ class QAManager:
found_knowledge = found_knowledge[:MAX_KNOWLEDGE_LENGTH] + "\n" found_knowledge = found_knowledge[:MAX_KNOWLEDGE_LENGTH] + "\n"
return found_knowledge return found_knowledge
else: else:
logger.info("LPMM知识库并未初始化可能是从未导入过知识...") logger.debug("LPMM知识库并未初始化可能是从未导入过知识...")
return None return None

View File

@@ -366,7 +366,7 @@ class Hippocampus:
# 过滤掉不存在于记忆图中的关键词 # 过滤掉不存在于记忆图中的关键词
valid_keywords = [keyword for keyword in keywords if keyword in self.memory_graph.G] valid_keywords = [keyword for keyword in keywords if keyword in self.memory_graph.G]
if not valid_keywords: if not valid_keywords:
logger.info("没有找到有效的关键词节点") logger.debug("没有找到有效的关键词节点")
return [] return []
logger.debug(f"有效的关键词: {', '.join(valid_keywords)}") logger.debug(f"有效的关键词: {', '.join(valid_keywords)}")
@@ -537,7 +537,7 @@ class Hippocampus:
# 过滤掉不存在于记忆图中的关键词 # 过滤掉不存在于记忆图中的关键词
valid_keywords = [keyword for keyword in keywords if keyword in self.memory_graph.G] valid_keywords = [keyword for keyword in keywords if keyword in self.memory_graph.G]
if not valid_keywords: if not valid_keywords:
logger.info("没有找到有效的关键词节点") logger.debug("没有找到有效的关键词节点")
return [] return []
logger.debug(f"有效的关键词: {', '.join(valid_keywords)}") logger.debug(f"有效的关键词: {', '.join(valid_keywords)}")

View File

@@ -587,14 +587,14 @@ class NormalChat:
if differ > 0.1: if differ > 0.1:
mapped = 1 + (differ - 0.1) * 4 / 0.9 mapped = 1 + (differ - 0.1) * 4 / 0.9
mapped = max(1, min(5, mapped)) mapped = max(1, min(5, mapped))
logger.info( logger.debug(
f"[{self.stream_name}] 回复频率低于{global_config.normal_chat.talk_frequency}增加回复概率differ={differ:.3f},映射值={mapped:.2f}" f"[{self.stream_name}] 回复频率低于{global_config.normal_chat.talk_frequency}增加回复概率differ={differ:.3f},映射值={mapped:.2f}"
) )
self.willing_amplifier += mapped * 0.1 # 你可以根据实际需要调整系数 self.willing_amplifier += mapped * 0.1 # 你可以根据实际需要调整系数
elif differ < -0.1: elif differ < -0.1:
mapped = 1 - (differ + 0.1) * 4 / 0.9 mapped = 1 - (differ + 0.1) * 4 / 0.9
mapped = max(1, min(5, mapped)) mapped = max(1, min(5, mapped))
logger.info( logger.debug(
f"[{self.stream_name}] 回复频率高于{global_config.normal_chat.talk_frequency}减少回复概率differ={differ:.3f},映射值={mapped:.2f}" f"[{self.stream_name}] 回复频率高于{global_config.normal_chat.talk_frequency}减少回复概率differ={differ:.3f},映射值={mapped:.2f}"
) )
self.willing_amplifier -= mapped * 0.1 self.willing_amplifier -= mapped * 0.1
@@ -689,143 +689,20 @@ class NormalChat:
self.engaging_persons[person_id]["last_time"] = current_time self.engaging_persons[person_id]["last_time"] = current_time
logger.debug(f"[{self.stream_name}] 用户 {person_id} 消息次数更新: {self.engaging_persons[person_id]['receive_count']}") logger.debug(f"[{self.stream_name}] 用户 {person_id} 消息次数更新: {self.engaging_persons[person_id]['receive_count']}")
def get_engaging_persons(self) -> dict:
"""获取所有engaging_persons统计信息
Returns:
dict: person_id -> {first_time, last_time, receive_count, reply_count}
"""
return self.engaging_persons.copy()
def get_engaging_person_stats(self, person_id: str) -> dict:
"""获取特定用户的统计信息
Args:
person_id: 用户ID
Returns:
dict: 用户统计信息如果用户不存在则返回None
"""
return self.engaging_persons.get(person_id)
def get_top_engaging_persons(self, limit: int = 10, sort_by: str = "receive_count") -> list:
"""获取最活跃的用户列表
Args:
limit: 返回的用户数量限制
sort_by: 排序依据,可选值: "receive_count", "reply_count", "last_time"
Returns:
list: 按指定条件排序的用户列表
"""
if sort_by not in ["receive_count", "reply_count", "last_time"]:
sort_by = "receive_count"
sorted_persons = sorted(
self.engaging_persons.items(),
key=lambda x: x[1][sort_by],
reverse=True
)
return sorted_persons[:limit]
def clear_engaging_persons_stats(self):
"""清空engaging_persons统计信息"""
self.engaging_persons.clear()
logger.info(f"[{self.stream_name}] 已清空engaging_persons统计信息")
def get_relation_building_stats(self) -> dict:
"""获取关系构建相关统计信息
Returns:
dict: 关系构建统计信息
"""
total_persons = len(self.engaging_persons)
relation_built_count = sum(1 for stats in self.engaging_persons.values()
if stats.get("relation_built", False))
pending_persons = []
current_time = time.time()
for person_id, stats in self.engaging_persons.items():
if not stats.get("relation_built", False):
time_elapsed = current_time - stats["first_time"]
total_messages = self._get_total_messages_in_timerange(
stats["first_time"], stats["last_time"]
)
# 检查是否接近满足条件
progress_info = {
"person_id": person_id,
"time_elapsed": time_elapsed,
"total_messages": total_messages,
"receive_count": stats["receive_count"],
"reply_count": stats["reply_count"],
"progress": {
"50_messages": f"{total_messages}/50 ({total_messages/50*100:.1f}%)",
"35_msg_10min": f"{total_messages}/35 + {time_elapsed}/600s",
"25_msg_30min": f"{total_messages}/25 + {time_elapsed}/1800s",
"10_msg_1hour": f"{total_messages}/10 + {time_elapsed}/3600s"
}
}
pending_persons.append(progress_info)
return {
"total_persons": total_persons,
"relation_built_count": relation_built_count,
"pending_count": len(pending_persons),
"pending_persons": pending_persons
}
def get_engaging_persons_summary(self) -> dict:
"""获取engaging_persons统计摘要
Returns:
dict: 包含总用户数、总消息数、总回复数等统计信息
"""
if not self.engaging_persons:
return {
"total_persons": 0,
"total_messages": 0,
"total_replies": 0,
"most_active_person": None,
"most_replied_person": None
}
total_messages = sum(stats["receive_count"] for stats in self.engaging_persons.values())
total_replies = sum(stats["reply_count"] for stats in self.engaging_persons.values())
most_active = max(self.engaging_persons.items(), key=lambda x: x[1]["receive_count"])
most_replied = max(self.engaging_persons.items(), key=lambda x: x[1]["reply_count"])
return {
"total_persons": len(self.engaging_persons),
"total_messages": total_messages,
"total_replies": total_replies,
"most_active_person": {
"person_id": most_active[0],
"message_count": most_active[1]["receive_count"]
},
"most_replied_person": {
"person_id": most_replied[0],
"reply_count": most_replied[1]["reply_count"]
}
}
async def _check_relation_building_conditions(self): async def _check_relation_building_conditions(self):
"""检查engaging_persons中是否有满足关系构建条件的用户""" """检查engaging_persons中是否有满足关系构建条件的用户"""
current_time = time.time() current_time = time.time()
for person_id, stats in list(self.engaging_persons.items()): for person_id, stats in list(self.engaging_persons.items()):
# 跳过已经进行过关系构建的用户
if stats.get("relation_built", False):
continue
# 计算时间差和消息数量 # 计算时间差和消息数量
time_elapsed = current_time - stats["first_time"] time_elapsed = current_time - stats["first_time"]
total_messages = self._get_total_messages_in_timerange( total_messages = self._get_total_messages_in_timerange(
stats["first_time"], stats["last_time"] stats["first_time"], stats["last_time"]
) )
print(f"person_id: {person_id}, total_messages: {total_messages}, time_elapsed: {time_elapsed}")
# 检查是否满足关系构建条件 # 检查是否满足关系构建条件
should_build_relation = ( should_build_relation = (
total_messages >= 50 # 50条消息必定满足 total_messages >= 50 # 50条消息必定满足
@@ -844,6 +721,10 @@ class NormalChat:
# 计算构建概率并决定是否构建 # 计算构建概率并决定是否构建
await self._evaluate_and_build_relation(person_id, stats, total_messages) await self._evaluate_and_build_relation(person_id, stats, total_messages)
# 评估完成后移除该用户,重新开始统计
del self.engaging_persons[person_id]
logger.info(f"[{self.stream_name}] 用户 {person_id} 评估完成,已移除记录,将重新开始统计")
def _get_total_messages_in_timerange(self, start_time: float, end_time: float) -> int: def _get_total_messages_in_timerange(self, start_time: float, end_time: float) -> int:
"""获取指定时间范围内的总消息数量""" """获取指定时间范围内的总消息数量"""
@@ -856,24 +737,31 @@ class NormalChat:
async def _evaluate_and_build_relation(self, person_id: str, stats: dict, total_messages: int): async def _evaluate_and_build_relation(self, person_id: str, stats: dict, total_messages: int):
"""评估并执行关系构建""" """评估并执行关系构建"""
import math
receive_count = stats["receive_count"] receive_count = stats["receive_count"]
reply_count = stats["reply_count"] reply_count = stats["reply_count"]
# 计算回复概率reply_count在总消息中的比值 # 计算回复概率reply_count在总消息中的比值
reply_ratio = reply_count / total_messages if total_messages > 0 else 0 reply_ratio = reply_count / total_messages if total_messages > 0 else 0
reply_build_probability = reply_ratio # 100%回复则100%构建 # 使用对数函数让低比率时概率上升更快log(1 + ratio * k) / log(1 + k)
# k=10时0.1比率对应约0.67概率0.5比率对应约0.95概率
k_reply = 10
reply_build_probability = math.log(1 + reply_ratio * k_reply) / math.log(1 + k_reply) if reply_ratio > 0 else 0
# 计算接收概率receive_count的影响 # 计算接收概率receive_count的影响
receive_ratio = receive_count / total_messages if total_messages > 0 else 0 receive_ratio = receive_count / total_messages if total_messages > 0 else 0
receive_build_probability = receive_ratio * 0.25 # 100%接收则25%构建 # 接收概率使用更温和的对数曲线最大0.4
k_receive = 8
receive_build_probability = (math.log(1 + receive_ratio * k_receive) / math.log(1 + k_receive)) * 0.4 if receive_ratio > 0 else 0
# 取最高概率 # 取最高概率
final_probability = max(reply_build_probability, receive_build_probability) final_probability = max(reply_build_probability, receive_build_probability)
logger.info( logger.info(
f"[{self.stream_name}] 用户 {person_id} 关系构建概率评估:" f"[{self.stream_name}] 用户 {person_id} 关系构建概率评估:"
f"回复比例:{reply_ratio:.2f}({reply_build_probability:.2f})" f"回复比例:{reply_ratio:.2f}(对数概率:{reply_build_probability:.2f})"
f",接收比例:{receive_ratio:.2f}({receive_build_probability:.2f})" f",接收比例:{receive_ratio:.2f}(对数概率:{receive_build_probability:.2f})"
f",最终概率:{final_probability:.2f}" f",最终概率:{final_probability:.2f}"
) )
@@ -881,12 +769,8 @@ class NormalChat:
if random() < final_probability: if random() < final_probability:
logger.info(f"[{self.stream_name}] 决定为用户 {person_id} 构建关系") logger.info(f"[{self.stream_name}] 决定为用户 {person_id} 构建关系")
await self._build_relation_for_person(person_id, stats) await self._build_relation_for_person(person_id, stats)
# 标记已构建
stats["relation_built"] = True
else: else:
logger.info(f"[{self.stream_name}] 用户 {person_id} 未通过关系构建概率判定") logger.info(f"[{self.stream_name}] 用户 {person_id} 未通过关系构建概率判定")
# 即使未构建,也标记为已处理,避免重复判定
stats["relation_built"] = True
async def _build_relation_for_person(self, person_id: str, stats: dict): async def _build_relation_for_person(self, person_id: str, stats: dict):
"""为特定用户构建关系""" """为特定用户构建关系"""

View File

@@ -158,10 +158,10 @@ class NormalChatPlanner:
try: try:
content, (reasoning_content, model_name) = await self.planner_llm.generate_response_async(prompt) content, (reasoning_content, model_name) = await self.planner_llm.generate_response_async(prompt)
logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}") logger.debug(f"{self.log_prefix}规划器原始提示词: {prompt}")
logger.info(f"{self.log_prefix}规划器原始响应: {content}") logger.debug(f"{self.log_prefix}规划器原始响应: {content}")
logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}") logger.debug(f"{self.log_prefix}规划器推理: {reasoning_content}")
logger.info(f"{self.log_prefix}规划器模型: {model_name}") logger.debug(f"{self.log_prefix}规划器模型: {model_name}")
# 解析JSON响应 # 解析JSON响应
try: try: