🤖 自动格式化代码 [skip ci]

This commit is contained in:
github-actions[bot]
2025-06-22 16:36:10 +00:00
parent 2128eb6bf2
commit 30eb81ae6b
2 changed files with 213 additions and 174 deletions

View File

@@ -512,16 +512,16 @@ class StatisticOutputTask(AsyncTask):
try:
# 从文件名解析时间戳 (格式: hash_version_date_time.json)
filename = os.path.basename(json_file)
name_parts = filename.replace('.json', '').split('_')
name_parts = filename.replace(".json", "").split("_")
if len(name_parts) >= 4:
date_str = name_parts[-2] # YYYYMMDD
time_str = name_parts[-1] # HHMMSS
file_time_str = f"{date_str}_{time_str}"
file_time = datetime.strptime(file_time_str, "%Y%m%d_%H%M%S")
# 如果文件时间在查询范围内,则处理该文件
if file_time >= query_start_time:
with open(json_file, 'r', encoding='utf-8') as f:
with open(json_file, "r", encoding="utf-8") as f:
cycles_data = json.load(f)
self._process_focus_file_data(cycles_data, stats, collect_period, file_time)
except Exception as e:
@@ -532,8 +532,13 @@ class StatisticOutputTask(AsyncTask):
self._calculate_focus_averages(stats)
return stats
def _process_focus_file_data(self, cycles_data: List[Dict], stats: Dict[str, Any],
collect_period: List[Tuple[str, datetime]], file_time: datetime):
def _process_focus_file_data(
self,
cycles_data: List[Dict],
stats: Dict[str, Any],
collect_period: List[Tuple[str, datetime]],
file_time: datetime,
):
"""
处理单个focus文件的数据
"""
@@ -542,7 +547,7 @@ class StatisticOutputTask(AsyncTask):
# 解析时间戳
timestamp_str = cycle_data.get("timestamp", "")
if timestamp_str:
cycle_time = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
cycle_time = datetime.fromisoformat(timestamp_str.replace("Z", "+00:00"))
else:
cycle_time = file_time # 使用文件时间作为后备
@@ -563,7 +568,7 @@ class StatisticOutputTask(AsyncTask):
if cycle_time >= period_start:
for period_key, _ in collect_period[idx:]:
stat = stats[period_key]
# 基础统计
stat[FOCUS_TOTAL_CYCLES] += 1
stat[FOCUS_ACTION_RATIOS][action_type] += 1
@@ -572,7 +577,7 @@ class StatisticOutputTask(AsyncTask):
stat["focus_action_ratios_by_chat"][chat_id][action_type] += 1
stat[FOCUS_TOTAL_TIME_BY_CHAT][chat_id] += total_time
stat[FOCUS_TOTAL_TIME_BY_ACTION][action_type] += total_time
# 版本统计
stat[FOCUS_CYCLE_CNT_BY_VERSION][version] += 1
stat[FOCUS_ACTION_RATIOS_BY_VERSION][version][action_type] += 1
@@ -583,7 +588,7 @@ class StatisticOutputTask(AsyncTask):
stat[FOCUS_AVG_TIMES_BY_CHAT_ACTION][chat_id][stage].append(time_val)
stat[FOCUS_AVG_TIMES_BY_ACTION][action_type][stage].append(time_val)
stat[FOCUS_AVG_TIMES_BY_VERSION][version][stage].append(time_val)
# 专门收集执行动作阶段的时间按聊天流和action类型分组
if stage == "执行动作":
stat["focus_exec_times_by_chat_action"][chat_id][action_type].append(time_val)
@@ -646,8 +651,6 @@ class StatisticOutputTask(AsyncTask):
else:
stat["focus_exec_times_by_version_action"][version][action_type] = 0.0
def _collect_all_statistics(self, now: datetime) -> Dict[str, Dict[str, Any]]:
"""
收集各时间段的统计数据
@@ -803,12 +806,8 @@ class StatisticOutputTask(AsyncTask):
"""
if stats[FOCUS_TOTAL_CYCLES] <= 0:
return ""
output = [
"Focus系统统计:",
f"总循环数: {stats[FOCUS_TOTAL_CYCLES]}",
""
]
output = ["Focus系统统计:", f"总循环数: {stats[FOCUS_TOTAL_CYCLES]}", ""]
# 全局阶段平均时间
if stats[FOCUS_AVG_TIMES_BY_STAGE]:
@@ -842,23 +841,24 @@ class StatisticOutputTask(AsyncTask):
try:
# 首先尝试从chat_stream获取真实群组名称
from src.chat.message_receive.chat_stream import get_chat_manager
chat_manager = get_chat_manager()
if chat_id in chat_manager.streams:
stream = chat_manager.streams[chat_id]
if stream.group_info and hasattr(stream.group_info, 'group_name'):
if stream.group_info and hasattr(stream.group_info, "group_name"):
group_name = stream.group_info.group_name
if group_name and group_name.strip():
return group_name.strip()
elif stream.user_info and hasattr(stream.user_info, 'user_nickname'):
elif stream.user_info and hasattr(stream.user_info, "user_nickname"):
user_name = stream.user_info.user_nickname
if user_name and user_name.strip():
return user_name.strip()
# 如果从chat_stream获取失败尝试解析chat_id格式
if chat_id.startswith('g'):
if chat_id.startswith("g"):
return f"群聊{chat_id[1:]}"
elif chat_id.startswith('u'):
elif chat_id.startswith("u"):
return f"用户{chat_id[1:]}"
else:
return chat_id
@@ -942,43 +942,53 @@ class StatisticOutputTask(AsyncTask):
for chat_id, count in sorted(stat_data[MSG_CNT_BY_CHAT].items())
]
)
# Focus统计数据
# focus_action_rows = ""
# focus_chat_rows = ""
# focus_stage_rows = ""
# focus_action_stage_rows = ""
if stat_data.get(FOCUS_TOTAL_CYCLES, 0) > 0:
# Action类型统计
total_actions = sum(stat_data[FOCUS_ACTION_RATIOS].values()) if stat_data[FOCUS_ACTION_RATIOS] else 0
_focus_action_rows = "\n".join([
f"<tr><td>{action_type}</td><td>{count}</td><td>{(count/total_actions*100):.1f}%</td></tr>"
for action_type, count in sorted(stat_data[FOCUS_ACTION_RATIOS].items())
])
_focus_action_rows = "\n".join(
[
f"<tr><td>{action_type}</td><td>{count}</td><td>{(count / total_actions * 100):.1f}%</td></tr>"
for action_type, count in sorted(stat_data[FOCUS_ACTION_RATIOS].items())
]
)
# 按聊天流统计
_focus_chat_rows = "\n".join([
f"<tr><td>{self.name_mapping.get(chat_id, (chat_id, 0))[0]}</td><td>{count}</td><td>{stat_data[FOCUS_TOTAL_TIME_BY_CHAT].get(chat_id, 0):.2f}秒</td></tr>"
for chat_id, count in sorted(stat_data[FOCUS_CYCLE_CNT_BY_CHAT].items(), key=lambda x: x[1], reverse=True)
])
_focus_chat_rows = "\n".join(
[
f"<tr><td>{self.name_mapping.get(chat_id, (chat_id, 0))[0]}</td><td>{count}</td><td>{stat_data[FOCUS_TOTAL_TIME_BY_CHAT].get(chat_id, 0):.2f}秒</td></tr>"
for chat_id, count in sorted(
stat_data[FOCUS_CYCLE_CNT_BY_CHAT].items(), key=lambda x: x[1], reverse=True
)
]
)
# 全局阶段时间统计
_focus_stage_rows = "\n".join([
f"<tr><td>{stage}</td><td>{avg_time:.3f}秒</td></tr>"
for stage, avg_time in sorted(stat_data[FOCUS_AVG_TIMES_BY_STAGE].items())
])
_focus_stage_rows = "\n".join(
[
f"<tr><td>{stage}</td><td>{avg_time:.3f}秒</td></tr>"
for stage, avg_time in sorted(stat_data[FOCUS_AVG_TIMES_BY_STAGE].items())
]
)
# 按Action类型的阶段时间统计
focus_action_stage_items = []
for action_type, stage_times in stat_data[FOCUS_AVG_TIMES_BY_ACTION].items():
for stage, avg_time in stage_times.items():
focus_action_stage_items.append((action_type, stage, avg_time))
_focus_action_stage_rows = "\n".join([
f"<tr><td>{action_type}</td><td>{stage}</td><td>{avg_time:.3f}秒</td></tr>"
for action_type, stage, avg_time in sorted(focus_action_stage_items)
])
_focus_action_stage_rows = "\n".join(
[
f"<tr><td>{action_type}</td><td>{stage}</td><td>{avg_time:.3f}秒</td></tr>"
for action_type, stage, avg_time in sorted(focus_action_stage_items)
]
)
# 生成HTML
return f"""
<div id=\"{div_id}\" class=\"tab-content\">
@@ -1046,11 +1056,11 @@ class StatisticOutputTask(AsyncTask):
# 添加Focus统计内容
focus_tab = self._generate_focus_tab(stat)
tab_content_list.append(focus_tab)
# 添加版本对比内容
versions_tab = self._generate_versions_tab(stat)
tab_content_list.append(versions_tab)
# 添加图表内容
chart_data = self._generate_chart_data(stat)
tab_content_list.append(self._generate_chart_tab(chart_data))
@@ -1203,30 +1213,32 @@ class StatisticOutputTask(AsyncTask):
def _generate_focus_tab(self, stat: dict[str, Any]) -> str:
"""生成Focus统计独立分页的HTML内容"""
# 为每个时间段准备Focus数据
focus_sections = []
for period_name, period_delta, period_desc in self.stat_period:
stat_data = stat.get(period_name, {})
if stat_data.get(FOCUS_TOTAL_CYCLES, 0) <= 0:
continue
# 生成Focus统计数据行
focus_action_rows = ""
focus_chat_rows = ""
focus_stage_rows = ""
focus_action_stage_rows = ""
# Action类型统计
total_actions = sum(stat_data[FOCUS_ACTION_RATIOS].values()) if stat_data[FOCUS_ACTION_RATIOS] else 0
if total_actions > 0:
focus_action_rows = "\n".join([
f"<tr><td>{action_type}</td><td>{count}</td><td>{(count/total_actions*100):.1f}%</td></tr>"
for action_type, count in sorted(stat_data[FOCUS_ACTION_RATIOS].items())
])
focus_action_rows = "\n".join(
[
f"<tr><td>{action_type}</td><td>{count}</td><td>{(count / total_actions * 100):.1f}%</td></tr>"
for action_type, count in sorted(stat_data[FOCUS_ACTION_RATIOS].items())
]
)
# 按聊天流统计横向表格显示各阶段时间差异和不同action的平均时间
focus_chat_rows = ""
if stat_data[FOCUS_AVG_TIMES_BY_CHAT_ACTION]:
@@ -1242,72 +1254,84 @@ class StatisticOutputTask(AsyncTask):
break
if stage_exists:
existing_basic_stages.append(stage)
# 获取所有action类型按出现频率排序
all_action_types = sorted(stat_data[FOCUS_ACTION_RATIOS].keys(),
key=lambda x: stat_data[FOCUS_ACTION_RATIOS][x], reverse=True)
all_action_types = sorted(
stat_data[FOCUS_ACTION_RATIOS].keys(), key=lambda x: stat_data[FOCUS_ACTION_RATIOS][x], reverse=True
)
# 为每个聊天流生成一行
chat_rows = []
for chat_id in sorted(stat_data[FOCUS_CYCLE_CNT_BY_CHAT].keys(),
key=lambda x: stat_data[FOCUS_CYCLE_CNT_BY_CHAT][x], reverse=True):
for chat_id in sorted(
stat_data[FOCUS_CYCLE_CNT_BY_CHAT].keys(),
key=lambda x: stat_data[FOCUS_CYCLE_CNT_BY_CHAT][x],
reverse=True,
):
chat_name = self.name_mapping.get(chat_id, (chat_id, 0))[0]
cycle_count = stat_data[FOCUS_CYCLE_CNT_BY_CHAT][chat_id]
# 获取该聊天流的各阶段平均时间
stage_times = stat_data[FOCUS_AVG_TIMES_BY_CHAT_ACTION].get(chat_id, {})
row_cells = [f"<td><strong>{chat_name}</strong><br><small>({cycle_count}次循环)</small></td>"]
# 添加基础阶段时间
for stage in existing_basic_stages:
time_val = stage_times.get(stage, 0.0)
row_cells.append(f"<td>{time_val:.3f}秒</td>")
# 添加每个action类型的平均执行时间
for action_type in all_action_types:
# 使用真实的按聊天流+action类型分组的执行时间数据
exec_times_by_chat_action = stat_data.get("focus_exec_times_by_chat_action", {})
chat_action_times = exec_times_by_chat_action.get(chat_id, {})
avg_exec_time = chat_action_times.get(action_type, 0.0)
if avg_exec_time > 0:
row_cells.append(f"<td>{avg_exec_time:.3f}秒</td>")
else:
row_cells.append("<td>-</td>")
chat_rows.append(f"<tr>{''.join(row_cells)}</tr>")
# 生成表头
stage_headers = "".join([f"<th>{stage}</th>" for stage in existing_basic_stages])
action_headers = "".join([f"<th>{action_type}<br><small>(执行)</small></th>" for action_type in all_action_types])
action_headers = "".join(
[f"<th>{action_type}<br><small>(执行)</small></th>" for action_type in all_action_types]
)
focus_chat_table_header = f"<tr><th>聊天流</th>{stage_headers}{action_headers}</tr>"
focus_chat_rows = focus_chat_table_header + "\n" + "\n".join(chat_rows)
# 全局阶段时间统计
focus_stage_rows = "\n".join([
f"<tr><td>{stage}</td><td>{avg_time:.3f}秒</td></tr>"
for stage, avg_time in sorted(stat_data[FOCUS_AVG_TIMES_BY_STAGE].items())
])
focus_stage_rows = "\n".join(
[
f"<tr><td>{stage}</td><td>{avg_time:.3f}秒</td></tr>"
for stage, avg_time in sorted(stat_data[FOCUS_AVG_TIMES_BY_STAGE].items())
]
)
# 聊天流Action选择比例对比表横向表格
focus_chat_action_ratios_rows = ""
if stat_data.get("focus_action_ratios_by_chat"):
# 获取所有action类型按全局频率排序
all_action_types_for_ratio = sorted(stat_data[FOCUS_ACTION_RATIOS].keys(),
key=lambda x: stat_data[FOCUS_ACTION_RATIOS][x], reverse=True)
all_action_types_for_ratio = sorted(
stat_data[FOCUS_ACTION_RATIOS].keys(), key=lambda x: stat_data[FOCUS_ACTION_RATIOS][x], reverse=True
)
if all_action_types_for_ratio:
# 为每个聊天流生成数据行(按循环数排序)
chat_ratio_rows = []
for chat_id in sorted(stat_data[FOCUS_CYCLE_CNT_BY_CHAT].keys(),
key=lambda x: stat_data[FOCUS_CYCLE_CNT_BY_CHAT][x], reverse=True):
for chat_id in sorted(
stat_data[FOCUS_CYCLE_CNT_BY_CHAT].keys(),
key=lambda x: stat_data[FOCUS_CYCLE_CNT_BY_CHAT][x],
reverse=True,
):
chat_name = self.name_mapping.get(chat_id, (chat_id, 0))[0]
total_cycles = stat_data[FOCUS_CYCLE_CNT_BY_CHAT][chat_id]
chat_action_counts = stat_data["focus_action_ratios_by_chat"].get(chat_id, {})
row_cells = [f"<td><strong>{chat_name}</strong><br><small>({total_cycles}次循环)</small></td>"]
# 添加每个action类型的数量和百分比
for action_type in all_action_types_for_ratio:
count = chat_action_counts.get(action_type, 0)
@@ -1316,9 +1340,9 @@ class StatisticOutputTask(AsyncTask):
row_cells.append(f"<td>{count}<br><small>({ratio:.1f}%)</small></td>")
else:
row_cells.append("<td>-<br><small>(0%)</small></td>")
chat_ratio_rows.append(f"<tr>{''.join(row_cells)}</tr>")
# 生成表头
action_headers = "".join([f"<th>{action_type}</th>" for action_type in all_action_types_for_ratio])
chat_action_ratio_table_header = f"<tr><th>聊天流</th>{action_headers}</tr>"
@@ -1333,33 +1357,38 @@ class StatisticOutputTask(AsyncTask):
for stage in stage_order:
if any(stage in stage_times for stage_times in stat_data[FOCUS_AVG_TIMES_BY_ACTION].values()):
all_stages.append(stage)
# 为每个Action类型生成一行
action_rows = []
for action_type in sorted(stat_data[FOCUS_AVG_TIMES_BY_ACTION].keys()):
stage_times = stat_data[FOCUS_AVG_TIMES_BY_ACTION][action_type]
row_cells = [f"<td><strong>{action_type}</strong></td>"]
for stage in all_stages:
time_val = stage_times.get(stage, 0.0)
row_cells.append(f"<td>{time_val:.3f}秒</td>")
action_rows.append(f"<tr>{''.join(row_cells)}</tr>")
# 生成表头
stage_headers = "".join([f"<th>{stage}</th>" for stage in all_stages])
focus_action_stage_table_header = f"<tr><th>Action类型</th>{stage_headers}</tr>"
focus_action_stage_rows = focus_action_stage_table_header + "\n" + "\n".join(action_rows)
# 计算时间范围
if period_name == "all_time":
from src.manager.local_store_manager import local_storage
start_time = datetime.fromtimestamp(local_storage["deploy_time"])
time_range = f"{start_time.strftime('%Y-%m-%d %H:%M:%S')} ~ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
time_range = (
f"{start_time.strftime('%Y-%m-%d %H:%M:%S')} ~ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
)
else:
start_time = datetime.now() - period_delta
time_range = f"{start_time.strftime('%Y-%m-%d %H:%M:%S')} ~ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
time_range = (
f"{start_time.strftime('%Y-%m-%d %H:%M:%S')} ~ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
)
# 生成该时间段的Focus统计HTML
section_html = f"""
<div class="focus-period-section">
@@ -1410,9 +1439,9 @@ class StatisticOutputTask(AsyncTask):
</div>
</div>
"""
focus_sections.append(section_html)
# 如果没有任何Focus数据
if not focus_sections:
focus_sections.append("""
@@ -1422,7 +1451,7 @@ class StatisticOutputTask(AsyncTask):
<p class="info-item">请确保 <code>log/hfc_loop/</code> 目录下存在相应的JSON文件。</p>
</div>
""")
return f"""
<div id="focus" class="tab-content">
<h1>Focus系统详细统计</h1>
@@ -1431,7 +1460,7 @@ class StatisticOutputTask(AsyncTask):
<strong>统计内容:</strong> 各时间段的Focus循环性能分析
</p>
{''.join(focus_sections)}
{"".join(focus_sections)}
<style>
.focus-period-section {{
@@ -1537,20 +1566,23 @@ class StatisticOutputTask(AsyncTask):
def _generate_versions_tab(self, stat: dict[str, Any]) -> str:
"""生成版本对比独立分页的HTML内容"""
# 为每个时间段准备版本对比数据
version_sections = []
for period_name, period_delta, period_desc in self.stat_period:
stat_data = stat.get(period_name, {})
if not stat_data.get(FOCUS_CYCLE_CNT_BY_VERSION):
continue
# 获取所有版本(按循环数排序)
all_versions = sorted(stat_data[FOCUS_CYCLE_CNT_BY_VERSION].keys(),
key=lambda x: stat_data[FOCUS_CYCLE_CNT_BY_VERSION][x], reverse=True)
all_versions = sorted(
stat_data[FOCUS_CYCLE_CNT_BY_VERSION].keys(),
key=lambda x: stat_data[FOCUS_CYCLE_CNT_BY_VERSION][x],
reverse=True,
)
# 生成版本Action分布表
focus_version_action_rows = ""
if stat_data[FOCUS_ACTION_RATIOS_BY_VERSION]:
@@ -1559,40 +1591,42 @@ class StatisticOutputTask(AsyncTask):
for version_actions in stat_data[FOCUS_ACTION_RATIOS_BY_VERSION].values():
all_action_types_for_version.update(version_actions.keys())
all_action_types_for_version = sorted(all_action_types_for_version)
if all_action_types_for_version:
version_action_rows = []
for version in all_versions:
version_actions = stat_data[FOCUS_ACTION_RATIOS_BY_VERSION].get(version, {})
total_cycles = stat_data[FOCUS_CYCLE_CNT_BY_VERSION][version]
row_cells = [f"<td><strong>{version}</strong><br><small>({total_cycles}次循环)</small></td>"]
for action_type in all_action_types_for_version:
count = version_actions.get(action_type, 0)
ratio = (count / total_cycles * 100) if total_cycles > 0 else 0
row_cells.append(f"<td>{count}<br><small>({ratio:.1f}%)</small></td>")
version_action_rows.append(f"<tr>{''.join(row_cells)}</tr>")
# 生成表头
action_headers = "".join([f"<th>{action_type}</th>" for action_type in all_action_types_for_version])
action_headers = "".join(
[f"<th>{action_type}</th>" for action_type in all_action_types_for_version]
)
version_action_table_header = f"<tr><th>版本</th>{action_headers}</tr>"
focus_version_action_rows = version_action_table_header + "\n" + "\n".join(version_action_rows)
# 生成版本阶段时间表按action类型分解执行时间
focus_version_stage_rows = ""
if stat_data[FOCUS_AVG_TIMES_BY_VERSION]:
# 基础三个阶段
basic_stages = ["观察", "并行调整动作、处理", "规划器"]
# 获取所有action类型用于执行时间列
all_action_types_for_exec = set()
if stat_data.get("focus_exec_times_by_version_action"):
for version_actions in stat_data["focus_exec_times_by_version_action"].values():
all_action_types_for_exec.update(version_actions.keys())
all_action_types_for_exec = sorted(all_action_types_for_exec)
# 检查哪些基础阶段存在数据
existing_basic_stages = []
for stage in basic_stages:
@@ -1603,23 +1637,23 @@ class StatisticOutputTask(AsyncTask):
break
if stage_exists:
existing_basic_stages.append(stage)
# 构建表格
if existing_basic_stages or all_action_types_for_exec:
version_stage_rows = []
# 为每个版本生成数据行
for version in all_versions:
version_stages = stat_data[FOCUS_AVG_TIMES_BY_VERSION].get(version, {})
total_cycles = stat_data[FOCUS_CYCLE_CNT_BY_VERSION][version]
row_cells = [f"<td><strong>{version}</strong><br><small>({total_cycles}次循环)</small></td>"]
# 添加基础阶段时间
for stage in existing_basic_stages:
time_val = version_stages.get(stage, 0.0)
row_cells.append(f"<td>{time_val:.3f}秒</td>")
# 添加不同action类型的执行时间
for action_type in all_action_types_for_exec:
# 获取该版本该action类型的平均执行时间
@@ -1629,24 +1663,34 @@ class StatisticOutputTask(AsyncTask):
row_cells.append(f"<td>{exec_time:.3f}秒</td>")
else:
row_cells.append("<td>-</td>")
version_stage_rows.append(f"<tr>{''.join(row_cells)}</tr>")
# 生成表头
basic_headers = "".join([f"<th>{stage}</th>" for stage in existing_basic_stages])
action_headers = "".join([f"<th>执行时间<br><small>[{action_type}]</small></th>" for action_type in all_action_types_for_exec])
action_headers = "".join(
[
f"<th>执行时间<br><small>[{action_type}]</small></th>"
for action_type in all_action_types_for_exec
]
)
version_stage_table_header = f"<tr><th>版本</th>{basic_headers}{action_headers}</tr>"
focus_version_stage_rows = version_stage_table_header + "\n" + "\n".join(version_stage_rows)
# 计算时间范围
if period_name == "all_time":
from src.manager.local_store_manager import local_storage
start_time = datetime.fromtimestamp(local_storage["deploy_time"])
time_range = f"{start_time.strftime('%Y-%m-%d %H:%M:%S')} ~ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
time_range = (
f"{start_time.strftime('%Y-%m-%d %H:%M:%S')} ~ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
)
else:
start_time = datetime.now() - period_delta
time_range = f"{start_time.strftime('%Y-%m-%d %H:%M:%S')} ~ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
time_range = (
f"{start_time.strftime('%Y-%m-%d %H:%M:%S')} ~ {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
)
# 生成该时间段的版本对比HTML
section_html = f"""
<div class="version-period-section">
@@ -1673,9 +1717,9 @@ class StatisticOutputTask(AsyncTask):
</div>
</div>
"""
version_sections.append(section_html)
# 如果没有任何版本数据
if not version_sections:
version_sections.append("""
@@ -1685,7 +1729,7 @@ class StatisticOutputTask(AsyncTask):
<p class="info-item">请确保 <code>log/hfc_loop/</code> 目录下的JSON文件包含版本信息。</p>
</div>
""")
return f"""
<div id="versions" class="tab-content">
<h1>Focus HFC版本对比分析</h1>
@@ -1694,7 +1738,7 @@ class StatisticOutputTask(AsyncTask):
<strong>数据来源:</strong> log/hfc_loop/ 目录下JSON文件中的version字段
</p>
{''.join(version_sections)}
{"".join(version_sections)}
<style>
.version-period-section {{
@@ -1876,7 +1920,7 @@ class StatisticOutputTask(AsyncTask):
# 查询Focus循环记录
focus_cycles_by_action = {}
focus_time_by_stage = {}
log_dir = "log/hfc_loop"
if os.path.exists(log_dir):
json_files = glob.glob(os.path.join(log_dir, "*.json"))
@@ -1884,39 +1928,39 @@ class StatisticOutputTask(AsyncTask):
try:
# 解析文件时间
filename = os.path.basename(json_file)
name_parts = filename.replace('.json', '').split('_')
name_parts = filename.replace(".json", "").split("_")
if len(name_parts) >= 4:
date_str = name_parts[-2]
time_str = name_parts[-1]
file_time_str = f"{date_str}_{time_str}"
file_time = datetime.strptime(file_time_str, "%Y%m%d_%H%M%S")
if file_time >= start_time:
with open(json_file, 'r', encoding='utf-8') as f:
with open(json_file, "r", encoding="utf-8") as f:
cycles_data = json.load(f)
for cycle in cycles_data:
try:
timestamp_str = cycle.get("timestamp", "")
if timestamp_str:
cycle_time = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
cycle_time = datetime.fromisoformat(timestamp_str.replace("Z", "+00:00"))
else:
cycle_time = file_time
if cycle_time >= start_time:
# 计算时间间隔索引
time_diff = (cycle_time - start_time).total_seconds()
interval_index = int(time_diff // interval_seconds)
if 0 <= interval_index < len(time_points):
action_type = cycle.get("action_type", "unknown")
step_times = cycle.get("step_times", {})
# 累计action类型数据
if action_type not in focus_cycles_by_action:
focus_cycles_by_action[action_type] = [0] * len(time_points)
focus_cycles_by_action[action_type][interval_index] += 1
# 累计阶段时间数据
for stage, time_val in step_times.items():
if stage not in focus_time_by_stage:
@@ -1937,8 +1981,6 @@ class StatisticOutputTask(AsyncTask):
"focus_time_by_stage": focus_time_by_stage,
}
def _generate_chart_tab(self, chart_data: dict) -> str:
"""生成图表选项卡HTML内容"""
@@ -2298,8 +2340,13 @@ class AsyncStatisticOutputTask(AsyncTask):
def _collect_focus_statistics_for_period(self, collect_period: List[Tuple[str, datetime]]) -> Dict[str, Any]:
return StatisticOutputTask._collect_focus_statistics_for_period(self, collect_period)
def _process_focus_file_data(self, cycles_data: List[Dict], stats: Dict[str, Any],
collect_period: List[Tuple[str, datetime]], file_time: datetime):
def _process_focus_file_data(
self,
cycles_data: List[Dict],
stats: Dict[str, Any],
collect_period: List[Tuple[str, datetime]],
file_time: datetime,
):
return StatisticOutputTask._process_focus_file_data(self, cycles_data, stats, collect_period, file_time)
def _calculate_focus_averages(self, stats: Dict[str, Any]):
@@ -2327,7 +2374,7 @@ class AsyncStatisticOutputTask(AsyncTask):
def _generate_chart_tab(self, chart_data: dict) -> str:
return StatisticOutputTask._generate_chart_tab(self, chart_data)
def _get_chat_display_name_from_id(self, chat_id: str) -> str:
return StatisticOutputTask._get_chat_display_name_from_id(self, chat_id)