This commit is contained in:
SengokuCola
2025-04-24 14:19:26 +08:00
parent f8450f705a
commit 3075664480
13 changed files with 224 additions and 225 deletions

View File

@@ -78,7 +78,6 @@ class ChatBot:
groupinfo = message.message_info.group_info
userinfo = message.message_info.user_info
if userinfo.user_id in global_config.ban_user_id:
logger.debug(f"用户{userinfo.user_id}被禁止回复")
return

View File

@@ -328,7 +328,9 @@ def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
final_sentences = [content for content, sep in merged_segments if content] # 只保留有内容的段
# 清理可能引入的空字符串和仅包含空白的字符串
final_sentences = [s for s in final_sentences if s.strip()] # 过滤掉空字符串以及仅包含空白(如换行符、空格)的字符串
final_sentences = [
s for s in final_sentences if s.strip()
] # 过滤掉空字符串以及仅包含空白(如换行符、空格)的字符串
logger.debug(f"分割并合并后的句子: {final_sentences}")
return final_sentences

View File

@@ -2,6 +2,7 @@ import asyncio
import time
import traceback
from typing import List, Optional, Dict, Any, TYPE_CHECKING
# import json # 移除因为使用了json_utils
from src.plugins.chat.message import MessageRecv, BaseMessageInfo, MessageThinking, MessageSending
from src.plugins.chat.message import MessageSet, Seg # Local import needed after move
@@ -17,7 +18,7 @@ from src.plugins.heartFC_chat.heartFC_generator import HeartFCGenerator
from src.do_tool.tool_use import ToolUser
from ..chat.message_sender import message_manager # <-- Import the global manager
from src.plugins.chat.emoji_manager import emoji_manager
from src.plugins.utils.json_utils import extract_tool_call_arguments, safe_json_dumps, process_llm_tool_response # 导入新的JSON工具
from src.plugins.utils.json_utils import process_llm_tool_response # 导入新的JSON工具
# --- End import ---
@@ -37,7 +38,7 @@ if TYPE_CHECKING:
# Keep this if HeartFCController methods are still needed elsewhere,
# but the instance variable will be removed from HeartFChatting
# from .heartFC_controler import HeartFCController
from src.heart_flow.heartflow import SubHeartflow, heartflow # <-- 同时导入 heartflow 实例用于类型检查
from src.heart_flow.heartflow import SubHeartflow # <-- 同时导入 heartflow 实例用于类型检查
PLANNER_TOOL_DEFINITION = [
{
@@ -327,7 +328,6 @@ class HeartFChatting:
with Timer("Wait New Msg", cycle_timers): # <--- Start Wait timer
wait_start_time = time.monotonic()
while True:
# 检查是否有新消息
has_new = await observation.has_new_messages_since(planner_start_db_time)
if has_new:
@@ -424,7 +424,7 @@ class HeartFChatting:
observed_messages: List[dict] = []
current_mind: Optional[str] = None
llm_error = False
llm_error = False
try:
observation = self.sub_hf._get_primary_observation()
@@ -434,19 +434,17 @@ class HeartFChatting:
except Exception as e:
logger.error(f"{log_prefix}[Planner] 获取观察信息时出错: {e}")
try:
current_mind, _past_mind = await self.sub_hf.do_thinking_before_reply()
except Exception as e_subhf:
logger.error(f"{log_prefix}[Planner] SubHeartflow 思考失败: {e_subhf}")
current_mind = "[思考时出错]"
# --- 使用 LLM 进行决策 --- #
action = "no_reply" # 默认动作
emoji_query = "" # 默认表情查询
reasoning = "默认决策或获取决策失败"
llm_error = False # LLM错误标志
emoji_query = "" # 默认表情查询
reasoning = "默认决策或获取决策失败"
llm_error = False # LLM错误标志
try:
prompt = await self._build_planner_prompt(observed_messages_str, current_mind, self.sub_hf.structured_info)
@@ -475,21 +473,17 @@ class HeartFChatting:
# 使用辅助函数处理工具调用响应
success, arguments, error_msg = process_llm_tool_response(
response,
expected_tool_name="decide_reply_action",
log_prefix=f"{log_prefix}[Planner] "
response, expected_tool_name="decide_reply_action", log_prefix=f"{log_prefix}[Planner] "
)
if success:
# 提取决策参数
action = arguments.get("action", "no_reply")
reasoning = arguments.get("reasoning", "未提供理由")
emoji_query = arguments.get("emoji_query", "")
# 记录决策结果
logger.debug(
f"{log_prefix}[Planner] 决策结果: {action}, 理由: {reasoning}, 表情查询: '{emoji_query}'"
)
logger.debug(f"{log_prefix}[Planner] 决策结果: {action}, 理由: {reasoning}, 表情查询: '{emoji_query}'")
else:
# 处理工具调用失败
logger.warning(f"{log_prefix}[Planner] {error_msg}")
@@ -584,7 +578,7 @@ class HeartFChatting:
"""优雅关闭HeartFChatting实例取消活动循环任务"""
log_prefix = self._get_log_prefix()
logger.info(f"{log_prefix} 正在关闭HeartFChatting...")
# 取消循环任务
if self._loop_task and not self._loop_task.done():
logger.info(f"{log_prefix} 正在取消HeartFChatting循环任务")
@@ -605,17 +599,19 @@ class HeartFChatting:
if self._processing_lock.locked():
self._processing_lock.release()
logger.warning(f"{log_prefix} 已释放处理锁")
logger.info(f"{log_prefix} HeartFChatting关闭完成")
async def _build_planner_prompt(self, observed_messages_str: str, current_mind: Optional[str], structured_info: Dict[str, Any]) -> str:
async def _build_planner_prompt(
self, observed_messages_str: str, current_mind: Optional[str], structured_info: Dict[str, Any]
) -> str:
"""构建 Planner LLM 的提示词"""
prompt = f"你的名字是 {global_config.BOT_NICKNAME}。是一个女大二学生正在QQ聊天正在决定是否以及如何回应当前的聊天。\n"
if structured_info:
prompt += f"以下是一些额外的信息:\n{structured_info}\n"
if observed_messages_str:
prompt += "观察到的最新聊天内容如下 (最近的消息在最后)\n---\n"
prompt += observed_messages_str

View File

@@ -72,7 +72,13 @@ class HeartFCGenerator:
return None
async def _generate_response_with_model(
self, structured_info: str, current_mind_info: str, reason: str, message: MessageRecv, model: LLMRequest, thinking_id: str
self,
structured_info: str,
current_mind_info: str,
reason: str,
message: MessageRecv,
model: LLMRequest,
thinking_id: str,
) -> str:
sender_name = ""

View File

@@ -81,13 +81,22 @@ class PromptBuilder:
self.activate_messages = ""
async def build_prompt(
self, build_mode, reason, current_mind_info, structured_info, message_txt: str, sender_name: str = "某人", chat_stream=None
self,
build_mode,
reason,
current_mind_info,
structured_info,
message_txt: str,
sender_name: str = "某人",
chat_stream=None,
) -> Optional[tuple[str, str]]:
if build_mode == "normal":
return await self._build_prompt_normal(chat_stream, message_txt, sender_name)
elif build_mode == "focus":
return await self._build_prompt_focus(reason, current_mind_info, structured_info, chat_stream, message_txt, sender_name)
return await self._build_prompt_focus(
reason, current_mind_info, structured_info, chat_stream, message_txt, sender_name
)
return None
async def _build_prompt_focus(

View File

@@ -711,7 +711,7 @@ class LLMRequest:
reasoning_content = ""
content = ""
tool_calls = None # 初始化工具调用变量
async for line_bytes in response.content:
try:
line = line_bytes.decode("utf-8").strip()
@@ -733,7 +733,7 @@ class LLMRequest:
if delta_content is None:
delta_content = ""
accumulated_content += delta_content
# 提取工具调用信息
if "tool_calls" in delta:
if tool_calls is None:
@@ -741,7 +741,7 @@ class LLMRequest:
else:
# 合并工具调用信息
tool_calls.extend(delta["tool_calls"])
# 检测流式输出文本是否结束
finish_reason = chunk["choices"][0].get("finish_reason")
if delta.get("reasoning_content", None):
@@ -774,23 +774,19 @@ class LLMRequest:
if think_match:
reasoning_content = think_match.group(1).strip()
content = re.sub(r"<think>.*?</think>", "", content, flags=re.DOTALL).strip()
# 构建消息对象
message = {
"content": content,
"reasoning_content": reasoning_content,
}
# 如果有工具调用,添加到消息中
if tool_calls:
message["tool_calls"] = tool_calls
result = {
"choices": [
{
"message": message
}
],
"choices": [{"message": message}],
"usage": usage,
}
return result
@@ -1128,9 +1124,9 @@ class LLMRequest:
response = await self._execute_request(endpoint="/chat/completions", payload=data, prompt=prompt)
# 原样返回响应,不做处理
return response
async def generate_response_tool_async(self, prompt: str, tools: list, **kwargs) -> Union[str, Tuple]:
"""异步方式根据输入的提示生成模型的响应"""
# 构建请求体不硬编码max_tokens
@@ -1139,7 +1135,7 @@ class LLMRequest:
"messages": [{"role": "user", "content": prompt}],
**self.params,
**kwargs,
"tools": tools
"tools": tools,
}
logger.debug(f"向模型 {self.model_name} 发送工具调用请求,包含 {len(tools)} 个工具")
@@ -1150,7 +1146,7 @@ class LLMRequest:
logger.debug(f"收到工具调用响应,包含 {len(tool_calls) if tool_calls else 0} 个工具调用")
return content, reasoning_content, tool_calls
else:
logger.debug(f"收到普通响应,无工具调用")
logger.debug("收到普通响应,无工具调用")
return response
async def get_embedding(self, text: str) -> Union[list, None]:

View File

@@ -303,7 +303,9 @@ async def build_readable_messages(
)
readable_read_mark = translate_timestamp_to_human_readable(read_mark, mode=timestamp_mode)
read_mark_line = f"\n\n--- 以上消息已读 (标记时间: {readable_read_mark}) ---\n--- 请关注你上次思考之后以下的新消息---\n"
read_mark_line = (
f"\n\n--- 以上消息已读 (标记时间: {readable_read_mark}) ---\n--- 请关注你上次思考之后以下的新消息---\n"
)
# 组合结果,确保空部分不引入多余的标记或换行
if formatted_before and formatted_after:

View File

@@ -1,27 +1,28 @@
import json
import logging
from typing import Any, Dict, Optional, TypeVar, Generic, List, Union, Callable, Tuple
from typing import Any, Dict, TypeVar, List, Union, Callable, Tuple
# 定义类型变量用于泛型类型提示
T = TypeVar('T')
T = TypeVar("T")
# 获取logger
logger = logging.getLogger("json_utils")
def safe_json_loads(json_str: str, default_value: T = None) -> Union[Any, T]:
"""
安全地解析JSON字符串出错时返回默认值
参数:
json_str: 要解析的JSON字符串
default_value: 解析失败时返回的默认值
返回:
解析后的Python对象或在解析失败时返回default_value
"""
if not json_str:
return default_value
try:
return json.loads(json_str)
except json.JSONDecodeError as e:
@@ -31,66 +32,67 @@ def safe_json_loads(json_str: str, default_value: T = None) -> Union[Any, T]:
logger.error(f"JSON解析过程中发生意外错误: {e}")
return default_value
def extract_tool_call_arguments(tool_call: Dict[str, Any],
default_value: Dict[str, Any] = None) -> Dict[str, Any]:
def extract_tool_call_arguments(tool_call: Dict[str, Any], default_value: Dict[str, Any] = None) -> Dict[str, Any]:
"""
从LLM工具调用对象中提取参数
参数:
tool_call: 工具调用对象字典
default_value: 解析失败时返回的默认值
返回:
解析后的参数字典或在解析失败时返回default_value
"""
default_result = default_value or {}
if not tool_call or not isinstance(tool_call, dict):
logger.error(f"无效的工具调用对象: {tool_call}")
return default_result
try:
# 提取function参数
function_data = tool_call.get("function", {})
if not function_data or not isinstance(function_data, dict):
logger.error(f"工具调用缺少function字段或格式不正确: {tool_call}")
return default_result
# 提取arguments
arguments_str = function_data.get("arguments", "{}")
if not arguments_str:
return default_result
# 解析JSON
return safe_json_loads(arguments_str, default_result)
except Exception as e:
logger.error(f"提取工具调用参数时出错: {e}")
return default_result
def get_json_value(json_obj: Dict[str, Any], key_path: str,
default_value: T = None,
transform_func: Callable[[Any], T] = None) -> Union[Any, T]:
def get_json_value(
json_obj: Dict[str, Any], key_path: str, default_value: T = None, transform_func: Callable[[Any], T] = None
) -> Union[Any, T]:
"""
从JSON对象中按照路径提取值支持点表示法路径"data.items.0.name"
参数:
json_obj: JSON对象(已解析的字典)
key_path: 键路径,使用点表示法,如"data.items.0.name"
default_value: 获取失败时返回的默认值
transform_func: 可选的转换函数,用于对获取的值进行转换
返回:
路径指向的值或在获取失败时返回default_value
"""
if not json_obj or not key_path:
return default_value
try:
# 分割路径
keys = key_path.split(".")
current = json_obj
# 遍历路径
for key in keys:
# 处理数组索引
@@ -108,7 +110,7 @@ def get_json_value(json_obj: Dict[str, Any], key_path: str,
return default_value
else:
return default_value
# 应用转换函数(如果提供)
if transform_func and current is not None:
return transform_func(current)
@@ -117,17 +119,17 @@ def get_json_value(json_obj: Dict[str, Any], key_path: str,
logger.error(f"从JSON获取值时出错: {e}, 路径: {key_path}")
return default_value
def safe_json_dumps(obj: Any, default_value: str = "{}", ensure_ascii: bool = False,
pretty: bool = False) -> str:
def safe_json_dumps(obj: Any, default_value: str = "{}", ensure_ascii: bool = False, pretty: bool = False) -> str:
"""
安全地将Python对象序列化为JSON字符串
参数:
obj: 要序列化的Python对象
default_value: 序列化失败时返回的默认值
ensure_ascii: 是否确保ASCII编码(默认False允许中文等非ASCII字符)
pretty: 是否美化输出JSON
返回:
序列化后的JSON字符串或在序列化失败时返回default_value
"""
@@ -141,13 +143,14 @@ def safe_json_dumps(obj: Any, default_value: str = "{}", ensure_ascii: bool = Fa
logger.error(f"JSON序列化过程中发生意外错误: {e}")
return default_value
def merge_json_objects(*objects: Dict[str, Any]) -> Dict[str, Any]:
"""
合并多个JSON对象(字典)
参数:
*objects: 要合并的JSON对象(字典)
返回:
合并后的字典,后面的对象会覆盖前面对象的相同键
"""
@@ -157,109 +160,110 @@ def merge_json_objects(*objects: Dict[str, Any]) -> Dict[str, Any]:
result.update(obj)
return result
def normalize_llm_response(response: Any, log_prefix: str = "") -> Tuple[bool, List[Any], str]:
"""
标准化LLM响应格式将各种格式如元组转换为统一的列表格式
参数:
response: 原始LLM响应
log_prefix: 日志前缀
返回:
元组 (成功标志, 标准化后的响应列表, 错误消息)
"""
# 检查是否为None
if response is None:
return False, [], "LLM响应为None"
# 记录原始类型
logger.debug(f"{log_prefix}LLM响应原始类型: {type(response).__name__}")
# 将元组转换为列表
if isinstance(response, tuple):
logger.debug(f"{log_prefix}将元组响应转换为列表")
response = list(response)
# 确保是列表类型
if not isinstance(response, list):
return False, [], f"无法处理的LLM响应类型: {type(response).__name__}"
# 处理工具调用部分(如果存在)
if len(response) == 3:
content, reasoning, tool_calls = response
# 将工具调用部分转换为列表(如果是元组)
if isinstance(tool_calls, tuple):
logger.debug(f"{log_prefix}将工具调用元组转换为列表")
tool_calls = list(tool_calls)
response[2] = tool_calls
return True, response, ""
def process_llm_tool_calls(response: List[Any], log_prefix: str = "") -> Tuple[bool, List[Dict[str, Any]], str]:
"""
处理并提取LLM响应中的工具调用列表
参数:
response: 标准化后的LLM响应列表
log_prefix: 日志前缀
返回:
元组 (成功标志, 工具调用列表, 错误消息)
"""
# 确保响应格式正确
if len(response) != 3:
return False, [], f"LLM响应元素数量不正确: 预期3个元素实际{len(response)}"
# 提取工具调用部分
tool_calls = response[2]
# 检查工具调用是否有效
if tool_calls is None:
return False, [], "工具调用部分为None"
if not isinstance(tool_calls, list):
return False, [], f"工具调用部分不是列表: {type(tool_calls).__name__}"
if len(tool_calls) == 0:
return False, [], "工具调用列表为空"
# 检查工具调用是否格式正确
valid_tool_calls = []
for i, tool_call in enumerate(tool_calls):
if not isinstance(tool_call, dict):
logger.warning(f"{log_prefix}工具调用[{i}]不是字典: {type(tool_call).__name__}")
continue
if tool_call.get("type") != "function":
logger.warning(f"{log_prefix}工具调用[{i}]不是函数类型: {tool_call.get('type', '未知')}")
continue
if "function" not in tool_call or not isinstance(tool_call["function"], dict):
logger.warning(f"{log_prefix}工具调用[{i}]缺少function字段或格式不正确")
continue
valid_tool_calls.append(tool_call)
# 检查是否有有效的工具调用
if not valid_tool_calls:
return False, [], "没有找到有效的工具调用"
return True, valid_tool_calls, ""
def process_llm_tool_response(
response: Any,
expected_tool_name: str = None,
log_prefix: str = ""
response: Any, expected_tool_name: str = None, log_prefix: str = ""
) -> Tuple[bool, Dict[str, Any], str]:
"""
处理LLM返回的工具调用响应进行常见错误检查并提取参数
参数:
response: LLM的响应预期是[content, reasoning, tool_calls]格式的列表或元组
expected_tool_name: 预期的工具名称,如不指定则不检查
log_prefix: 日志前缀,用于标识日志来源
返回:
三元组(成功标志, 参数字典, 错误描述)
- 如果成功解析,返回(True, 参数字典, "")
@@ -269,29 +273,29 @@ def process_llm_tool_response(
success, normalized_response, error_msg = normalize_llm_response(response, log_prefix)
if not success:
return False, {}, error_msg
# 使用新的工具调用处理函数
success, valid_tool_calls, error_msg = process_llm_tool_calls(normalized_response, log_prefix)
if not success:
return False, {}, error_msg
# 检查是否有工具调用
if not valid_tool_calls:
return False, {}, "没有有效的工具调用"
# 获取第一个工具调用
tool_call = valid_tool_calls[0]
# 检查工具名称(如果提供了预期名称)
if expected_tool_name:
actual_name = tool_call.get("function", {}).get("name")
if actual_name != expected_tool_name:
return False, {}, f"工具名称不匹配: 预期'{expected_tool_name}',实际'{actual_name}'"
# 提取并解析参数
try:
arguments = extract_tool_call_arguments(tool_call, {})
return True, arguments, ""
except Exception as e:
logger.error(f"{log_prefix}解析工具参数时出错: {e}")
return False, {}, f"解析参数失败: {str(e)}"
return False, {}, f"解析参数失败: {str(e)}"