QA: Update requirements and refactor message handling logic etc.
This commit is contained in:
@@ -37,6 +37,10 @@ class ChatObserver:
|
||||
Args:
|
||||
stream_id: 聊天流ID
|
||||
"""
|
||||
self.last_check_time = None
|
||||
self.last_check_time = None
|
||||
self.last_bot_speak_time = None
|
||||
self.last_user_speak_time = None
|
||||
if stream_id in self._instances:
|
||||
raise RuntimeError(f"ChatObserver for {stream_id} already exists. Use get_instance() instead.")
|
||||
|
||||
|
||||
@@ -51,11 +51,9 @@ class MongoDBMessageStorage(MessageStorage):
|
||||
"""MongoDB消息存储实现"""
|
||||
|
||||
async def get_messages_after(self, chat_id: str, message_time: float) -> List[Dict[str, Any]]:
|
||||
query = {"chat_id": chat_id}
|
||||
query = {"chat_id": chat_id, "time": {"$gt": message_time}}
|
||||
# print(f"storage_check_message: {message_time}")
|
||||
|
||||
query["time"] = {"$gt": message_time}
|
||||
|
||||
return list(db.messages.find(query).sort("time", 1))
|
||||
|
||||
async def get_messages_before(self, chat_id: str, time_point: float, limit: int = 5) -> List[Dict[str, Any]]:
|
||||
|
||||
@@ -158,6 +158,10 @@ class ObservationInfo:
|
||||
# meta_plan_trigger: bool = False
|
||||
|
||||
# --- 修改:移除 __post_init__ 的参数 ---
|
||||
def __init__(self):
|
||||
self.chat_observer = None
|
||||
self.chat_observer = None
|
||||
|
||||
def __post_init__(self):
|
||||
"""初始化后创建handler并进行必要的设置"""
|
||||
self.chat_observer: Optional[ChatObserver] = None # 添加类型提示
|
||||
|
||||
@@ -147,14 +147,14 @@ class GoalAnalyzer:
|
||||
# 返回第一个目标作为当前主要目标(如果有)
|
||||
if result:
|
||||
first_goal = result[0]
|
||||
return (first_goal.get("goal", ""), "", first_goal.get("reasoning", ""))
|
||||
return first_goal.get("goal", ""), "", first_goal.get("reasoning", "")
|
||||
else:
|
||||
# 单个目标的情况
|
||||
conversation_info.goal_list.append(result)
|
||||
return (goal, "", reasoning)
|
||||
return goal, "", reasoning
|
||||
|
||||
# 如果解析失败,返回默认值
|
||||
return ("", "", "")
|
||||
return "", "", ""
|
||||
|
||||
async def _update_goals(self, new_goal: str, method: str, reasoning: str):
|
||||
"""更新目标列表
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
from typing import Dict, Any
|
||||
|
||||
from ..moods.moods import MoodManager # 导入情绪管理器
|
||||
from ...config.config import global_config
|
||||
from .message import MessageRecv
|
||||
@@ -46,7 +48,7 @@ class ChatBot:
|
||||
except Exception as e:
|
||||
logger.error(f"创建PFC聊天失败: {e}")
|
||||
|
||||
async def message_process(self, message_data: str) -> None:
|
||||
async def message_process(self, message_data: Dict[str, Any]) -> None:
|
||||
"""处理转化后的统一格式消息
|
||||
这个函数本质是预处理一些数据,根据配置信息和消息内容,预处理消息,并分发到合适的消息处理器中
|
||||
heart_flow模式:使用思维流系统进行回复
|
||||
|
||||
@@ -17,6 +17,40 @@ from src.common.logger_manager import get_logger
|
||||
logger = get_logger("sender")
|
||||
|
||||
|
||||
async def send_via_ws(message: MessageSending) -> None:
|
||||
"""通过 WebSocket 发送消息"""
|
||||
try:
|
||||
await send_message(message)
|
||||
except Exception as e:
|
||||
logger.error(f"WS发送失败: {e}")
|
||||
raise ValueError(f"未找到平台:{message.message_info.platform} 的url配置,请检查配置文件") from e
|
||||
|
||||
|
||||
async def send_message(
|
||||
message: MessageSending,
|
||||
) -> None:
|
||||
"""发送消息(核心发送逻辑)"""
|
||||
|
||||
# --- 添加计算打字和延迟的逻辑 (从 heartflow_message_sender 移动并调整) ---
|
||||
typing_time = calculate_typing_time(
|
||||
input_string=message.processed_plain_text,
|
||||
thinking_start_time=message.thinking_start_time,
|
||||
is_emoji=message.is_emoji,
|
||||
)
|
||||
# logger.trace(f"{message.processed_plain_text},{typing_time},计算输入时间结束") # 减少日志
|
||||
await asyncio.sleep(typing_time)
|
||||
# logger.trace(f"{message.processed_plain_text},{typing_time},等待输入时间结束") # 减少日志
|
||||
# --- 结束打字延迟 ---
|
||||
|
||||
message_preview = truncate_message(message.processed_plain_text)
|
||||
|
||||
try:
|
||||
await send_via_ws(message)
|
||||
logger.success(f"发送消息 '{message_preview}' 成功") # 调整日志格式
|
||||
except Exception as e:
|
||||
logger.error(f"发送消息 '{message_preview}' 失败: {str(e)}")
|
||||
|
||||
|
||||
class MessageSender:
|
||||
"""发送器 (不再是单例)"""
|
||||
|
||||
@@ -29,39 +63,6 @@ class MessageSender:
|
||||
"""设置当前bot实例"""
|
||||
pass
|
||||
|
||||
async def send_via_ws(self, message: MessageSending) -> None:
|
||||
"""通过 WebSocket 发送消息"""
|
||||
try:
|
||||
await global_api.send_message(message)
|
||||
except Exception as e:
|
||||
logger.error(f"WS发送失败: {e}")
|
||||
raise ValueError(f"未找到平台:{message.message_info.platform} 的url配置,请检查配置文件") from e
|
||||
|
||||
async def send_message(
|
||||
self,
|
||||
message: MessageSending,
|
||||
) -> None:
|
||||
"""发送消息(核心发送逻辑)"""
|
||||
|
||||
# --- 添加计算打字和延迟的逻辑 (从 heartflow_message_sender 移动并调整) ---
|
||||
typing_time = calculate_typing_time(
|
||||
input_string=message.processed_plain_text,
|
||||
thinking_start_time=message.thinking_start_time,
|
||||
is_emoji=message.is_emoji,
|
||||
)
|
||||
# logger.trace(f"{message.processed_plain_text},{typing_time},计算输入时间结束") # 减少日志
|
||||
await asyncio.sleep(typing_time)
|
||||
# logger.trace(f"{message.processed_plain_text},{typing_time},等待输入时间结束") # 减少日志
|
||||
# --- 结束打字延迟 ---
|
||||
|
||||
message_preview = truncate_message(message.processed_plain_text)
|
||||
|
||||
try:
|
||||
await self.send_via_ws(message)
|
||||
logger.success(f"发送消息 '{message_preview}' 成功") # 调整日志格式
|
||||
except Exception as e:
|
||||
logger.error(f"发送消息 '{message_preview}' 失败: {str(e)}")
|
||||
|
||||
|
||||
class MessageContainer:
|
||||
"""单个聊天流的发送/思考消息容器"""
|
||||
@@ -119,7 +120,7 @@ class MessageContainer:
|
||||
"""移除指定的消息对象,如果消息存在则返回True,否则返回False"""
|
||||
try:
|
||||
_initial_len = len(self.messages)
|
||||
# 使用列表推导式或 filter 创建新列表,排除要删除的元素
|
||||
# 使用列表推导式或 message_filter 创建新列表,排除要删除的元素
|
||||
# self.messages = [msg for msg in self.messages if msg is not message_to_remove]
|
||||
# 或者直接 remove (如果确定对象唯一性)
|
||||
if message_to_remove in self.messages:
|
||||
@@ -146,6 +147,7 @@ class MessageManager:
|
||||
"""管理所有聊天流的消息容器 (不再是单例)"""
|
||||
|
||||
def __init__(self):
|
||||
self._processor_task = None
|
||||
self.containers: Dict[str, MessageContainer] = {}
|
||||
self.storage = MessageStorage() # 添加 storage 实例
|
||||
self._running = True # 处理器运行状态
|
||||
@@ -226,7 +228,7 @@ class MessageManager:
|
||||
await message.process() # 预处理消息内容
|
||||
|
||||
# 使用全局 message_sender 实例
|
||||
await message_sender.send_message(message)
|
||||
await send_message(message)
|
||||
await self.storage.store_message(message, message.chat_stream)
|
||||
|
||||
# 移除消息要在发送 *之后*
|
||||
|
||||
@@ -263,7 +263,7 @@ def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
|
||||
if char in separators:
|
||||
# 检查分割条件:如果分隔符左右都是英文字母,则不分割
|
||||
can_split = True
|
||||
if i > 0 and i < len(text) - 1:
|
||||
if 0 < i < len(text) - 1:
|
||||
prev_char = text[i - 1]
|
||||
next_char = text[i + 1]
|
||||
# if is_english_letter(prev_char) and is_english_letter(next_char) and char == ' ': # 原计划只对空格应用此规则,现应用于所有分隔符
|
||||
|
||||
@@ -16,7 +16,6 @@ from ..chat.utils_image import image_path_to_base64, image_manager
|
||||
from ..models.utils_model import LLMRequest
|
||||
from src.common.logger_manager import get_logger
|
||||
|
||||
|
||||
logger = get_logger("emoji")
|
||||
|
||||
BASE_DIR = os.path.join("data")
|
||||
@@ -24,7 +23,6 @@ EMOJI_DIR = os.path.join(BASE_DIR, "emoji") # 表情包存储目录
|
||||
EMOJI_REGISTED_DIR = os.path.join(BASE_DIR, "emoji_registed") # 已注册的表情包注册目录
|
||||
MAX_EMOJI_FOR_PROMPT = 20 # 最大允许的表情包描述数量于图片替换的 prompt 中
|
||||
|
||||
|
||||
"""
|
||||
还没经过测试,有些地方数据库和内存数据同步可能不完全
|
||||
|
||||
@@ -225,6 +223,140 @@ class MaiEmoji:
|
||||
return False
|
||||
|
||||
|
||||
def _emoji_objects_to_readable_list(emoji_objects):
|
||||
"""将表情包对象列表转换为可读的字符串列表
|
||||
|
||||
参数:
|
||||
emoji_objects: MaiEmoji对象列表
|
||||
|
||||
返回:
|
||||
list[str]: 可读的表情包信息字符串列表
|
||||
"""
|
||||
emoji_info_list = []
|
||||
for i, emoji in enumerate(emoji_objects):
|
||||
# 转换时间戳为可读时间
|
||||
time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(emoji.register_time))
|
||||
# 构建每个表情包的信息字符串
|
||||
emoji_info = f"编号: {i + 1}\n描述: {emoji.description}\n使用次数: {emoji.usage_count}\n添加时间: {time_str}\n"
|
||||
emoji_info_list.append(emoji_info)
|
||||
return emoji_info_list
|
||||
|
||||
|
||||
def _to_emoji_objects(data):
|
||||
emoji_objects = []
|
||||
load_errors = 0
|
||||
emoji_data_list = list(data)
|
||||
|
||||
for emoji_data in emoji_data_list:
|
||||
full_path = emoji_data.get("full_path")
|
||||
if not full_path:
|
||||
logger.warning(f"[加载错误] 数据库记录缺少 'full_path' 字段: {emoji_data.get('_id')}")
|
||||
load_errors += 1
|
||||
continue # 跳过缺少 full_path 的记录
|
||||
|
||||
try:
|
||||
# 使用 full_path 初始化 MaiEmoji 对象
|
||||
emoji = MaiEmoji(full_path=full_path)
|
||||
|
||||
# 设置从数据库加载的属性
|
||||
emoji.hash = emoji_data.get("hash", "")
|
||||
# 如果 hash 为空,也跳过?取决于业务逻辑
|
||||
if not emoji.hash:
|
||||
logger.warning(f"[加载错误] 数据库记录缺少 'hash' 字段: {full_path}")
|
||||
load_errors += 1
|
||||
continue
|
||||
|
||||
emoji.description = emoji_data.get("description", "")
|
||||
emoji.emotion = emoji_data.get("emotion", [])
|
||||
emoji.usage_count = emoji_data.get("usage_count", 0)
|
||||
# 优先使用 last_used_time,否则用 timestamp,最后用当前时间
|
||||
last_used = emoji_data.get("last_used_time")
|
||||
timestamp = emoji_data.get("timestamp")
|
||||
emoji.last_used_time = (
|
||||
last_used if last_used is not None else (timestamp if timestamp is not None else time.time())
|
||||
)
|
||||
emoji.register_time = timestamp if timestamp is not None else time.time()
|
||||
emoji.format = emoji_data.get("format", "") # 加载格式
|
||||
|
||||
# 不需要再手动设置 path 和 filename,__init__ 会自动处理
|
||||
|
||||
emoji_objects.append(emoji)
|
||||
|
||||
except ValueError as ve: # 捕获 __init__ 可能的错误
|
||||
logger.error(f"[加载错误] 初始化 MaiEmoji 失败 ({full_path}): {ve}")
|
||||
load_errors += 1
|
||||
except Exception as e:
|
||||
logger.error(f"[加载错误] 处理数据库记录时出错 ({full_path}): {str(e)}")
|
||||
load_errors += 1
|
||||
return emoji_objects, load_errors
|
||||
return emoji_objects, load_errors
|
||||
|
||||
|
||||
def _ensure_emoji_dir():
|
||||
"""确保表情存储目录存在"""
|
||||
os.makedirs(EMOJI_DIR, exist_ok=True)
|
||||
os.makedirs(EMOJI_REGISTED_DIR, exist_ok=True)
|
||||
|
||||
|
||||
async def clear_temp_emoji():
|
||||
"""清理临时表情包
|
||||
清理/data/emoji和/data/image目录下的所有文件
|
||||
当目录中文件数超过100时,会全部删除
|
||||
"""
|
||||
|
||||
logger.info("[清理] 开始清理缓存...")
|
||||
|
||||
for need_clear in (os.path.join(BASE_DIR, "emoji"), os.path.join(BASE_DIR, "image")):
|
||||
if os.path.exists(need_clear):
|
||||
files = os.listdir(need_clear)
|
||||
# 如果文件数超过50就全部删除
|
||||
if len(files) > 100:
|
||||
for filename in files:
|
||||
file_path = os.path.join(need_clear, filename)
|
||||
if os.path.isfile(file_path):
|
||||
os.remove(file_path)
|
||||
logger.debug(f"[清理] 删除: {filename}")
|
||||
|
||||
logger.success("[清理] 完成")
|
||||
|
||||
|
||||
async def clean_unused_emojis(emoji_dir, emoji_objects):
|
||||
"""清理指定目录中未被 emoji_objects 追踪的表情包文件"""
|
||||
if not os.path.exists(emoji_dir):
|
||||
logger.warning(f"[清理] 目标目录不存在,跳过清理: {emoji_dir}")
|
||||
return
|
||||
|
||||
try:
|
||||
# 获取内存中所有有效表情包的完整路径集合
|
||||
tracked_full_paths = {emoji.full_path for emoji in emoji_objects if not emoji.is_deleted}
|
||||
cleaned_count = 0
|
||||
|
||||
# 遍历指定目录中的所有文件
|
||||
for file_name in os.listdir(emoji_dir):
|
||||
file_full_path = os.path.join(emoji_dir, file_name)
|
||||
|
||||
# 确保处理的是文件而不是子目录
|
||||
if not os.path.isfile(file_full_path):
|
||||
continue
|
||||
|
||||
# 如果文件不在被追踪的集合中,则删除
|
||||
if file_full_path not in tracked_full_paths:
|
||||
try:
|
||||
os.remove(file_full_path)
|
||||
logger.info(f"[清理] 删除未追踪的表情包文件: {file_full_path}")
|
||||
cleaned_count += 1
|
||||
except Exception as e:
|
||||
logger.error(f"[错误] 删除文件时出错 ({file_full_path}): {str(e)}")
|
||||
|
||||
if cleaned_count > 0:
|
||||
logger.success(f"[清理] 在目录 {emoji_dir} 中清理了 {cleaned_count} 个破损表情包。")
|
||||
else:
|
||||
logger.info(f"[清理] 目录 {emoji_dir} 中没有需要清理的。")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[错误] 清理未使用表情包文件时出错 ({emoji_dir}): {str(e)}")
|
||||
|
||||
|
||||
class EmojiManager:
|
||||
_instance = None
|
||||
|
||||
@@ -235,6 +367,7 @@ class EmojiManager:
|
||||
return cls._instance
|
||||
|
||||
def __init__(self):
|
||||
self._initialized = None
|
||||
self._scan_task = None
|
||||
self.vlm = LLMRequest(model=global_config.vlm, temperature=0.3, max_tokens=1000, request_type="emoji")
|
||||
self.llm_emotion_judge = LLMRequest(
|
||||
@@ -248,23 +381,18 @@ class EmojiManager:
|
||||
|
||||
logger.info("启动表情包管理器")
|
||||
|
||||
def _ensure_emoji_dir(self):
|
||||
"""确保表情存储目录存在"""
|
||||
os.makedirs(EMOJI_DIR, exist_ok=True)
|
||||
os.makedirs(EMOJI_REGISTED_DIR, exist_ok=True)
|
||||
|
||||
def initialize(self):
|
||||
"""初始化数据库连接和表情目录"""
|
||||
if not self._initialized:
|
||||
try:
|
||||
self._ensure_emoji_collection()
|
||||
self._ensure_emoji_dir()
|
||||
_ensure_emoji_dir()
|
||||
self._initialized = True
|
||||
# 更新表情包数量
|
||||
# 启动时执行一次完整性检查
|
||||
# await self.check_emoji_file_integrity()
|
||||
except Exception:
|
||||
logger.exception("初始化表情管理器失败")
|
||||
except Exception as e:
|
||||
logger.exception(f"初始化表情管理器失败: {e}")
|
||||
|
||||
def _ensure_db(self):
|
||||
"""确保数据库已初始化"""
|
||||
@@ -291,12 +419,12 @@ class EmojiManager:
|
||||
db.emoji.create_index([("embedding", "2dsphere")])
|
||||
db.emoji.create_index([("filename", 1)], unique=True)
|
||||
|
||||
def record_usage(self, hash: str):
|
||||
def record_usage(self, emoji_hash: str):
|
||||
"""记录表情使用次数"""
|
||||
try:
|
||||
db.emoji.update_one({"hash": hash}, {"$inc": {"usage_count": 1}})
|
||||
db.emoji.update_one({"hash": emoji_hash}, {"$inc": {"usage_count": 1}})
|
||||
for emoji in self.emoji_objects:
|
||||
if emoji.hash == hash:
|
||||
if emoji.hash == emoji_hash:
|
||||
emoji.usage_count += 1
|
||||
break
|
||||
|
||||
@@ -458,7 +586,7 @@ class EmojiManager:
|
||||
self.emoji_objects = [e for e in self.emoji_objects if e not in objects_to_remove]
|
||||
|
||||
# 清理 EMOJI_REGISTED_DIR 目录中未被追踪的文件
|
||||
await self.clean_unused_emojis(EMOJI_REGISTED_DIR, self.emoji_objects)
|
||||
await clean_unused_emojis(EMOJI_REGISTED_DIR, self.emoji_objects)
|
||||
|
||||
# 输出清理结果
|
||||
if removed_count > 0:
|
||||
@@ -477,7 +605,7 @@ class EmojiManager:
|
||||
while True:
|
||||
logger.info("[扫描] 开始检查表情包完整性...")
|
||||
await self.check_emoji_file_integrity()
|
||||
await self.clear_temp_emoji()
|
||||
await clear_temp_emoji()
|
||||
logger.info("[扫描] 开始扫描新表情包...")
|
||||
|
||||
# 检查表情包目录是否存在
|
||||
@@ -531,51 +659,7 @@ class EmojiManager:
|
||||
self._ensure_db()
|
||||
logger.info("[数据库] 开始加载所有表情包记录...")
|
||||
|
||||
all_emoji_data = list(db.emoji.find())
|
||||
emoji_objects = []
|
||||
load_errors = 0
|
||||
|
||||
for emoji_data in all_emoji_data:
|
||||
full_path = emoji_data.get("full_path")
|
||||
if not full_path:
|
||||
logger.warning(f"[加载错误] 数据库记录缺少 'full_path' 字段: {emoji_data.get('_id')}")
|
||||
load_errors += 1
|
||||
continue # 跳过缺少 full_path 的记录
|
||||
|
||||
try:
|
||||
# 使用 full_path 初始化 MaiEmoji 对象
|
||||
emoji = MaiEmoji(full_path=full_path)
|
||||
|
||||
# 设置从数据库加载的属性
|
||||
emoji.hash = emoji_data.get("hash", "")
|
||||
# 如果 hash 为空,也跳过?取决于业务逻辑
|
||||
if not emoji.hash:
|
||||
logger.warning(f"[加载错误] 数据库记录缺少 'hash' 字段: {full_path}")
|
||||
load_errors += 1
|
||||
continue
|
||||
|
||||
emoji.description = emoji_data.get("description", "")
|
||||
emoji.emotion = emoji_data.get("emotion", [])
|
||||
emoji.usage_count = emoji_data.get("usage_count", 0)
|
||||
# 优先使用 last_used_time,否则用 timestamp,最后用当前时间
|
||||
last_used = emoji_data.get("last_used_time")
|
||||
timestamp = emoji_data.get("timestamp")
|
||||
emoji.last_used_time = (
|
||||
last_used if last_used is not None else (timestamp if timestamp is not None else time.time())
|
||||
)
|
||||
emoji.register_time = timestamp if timestamp is not None else time.time()
|
||||
emoji.format = emoji_data.get("format", "") # 加载格式
|
||||
|
||||
# 不需要再手动设置 path 和 filename,__init__ 会自动处理
|
||||
|
||||
emoji_objects.append(emoji)
|
||||
|
||||
except ValueError as ve: # 捕获 __init__ 可能的错误
|
||||
logger.error(f"[加载错误] 初始化 MaiEmoji 失败 ({full_path}): {ve}")
|
||||
load_errors += 1
|
||||
except Exception as e:
|
||||
logger.error(f"[加载错误] 处理数据库记录时出错 ({full_path}): {str(e)}")
|
||||
load_errors += 1
|
||||
emoji_objects, load_errors = _to_emoji_objects(db.emoji.find())
|
||||
|
||||
# 更新内存中的列表和数量
|
||||
self.emoji_objects = emoji_objects
|
||||
@@ -590,11 +674,11 @@ class EmojiManager:
|
||||
self.emoji_objects = [] # 加载失败则清空列表
|
||||
self.emoji_num = 0
|
||||
|
||||
async def get_emoji_from_db(self, hash=None):
|
||||
async def get_emoji_from_db(self, emoji_hash=None):
|
||||
"""获取指定哈希值的表情包并初始化为MaiEmoji类对象列表 (主要用于调试或特定查找)
|
||||
|
||||
参数:
|
||||
hash: 可选,如果提供则只返回指定哈希值的表情包
|
||||
emoji_hash: 可选,如果提供则只返回指定哈希值的表情包
|
||||
|
||||
返回:
|
||||
list[MaiEmoji]: 表情包对象列表
|
||||
@@ -603,49 +687,14 @@ class EmojiManager:
|
||||
self._ensure_db()
|
||||
|
||||
query = {}
|
||||
if hash:
|
||||
query = {"hash": hash}
|
||||
if emoji_hash:
|
||||
query = {"hash": emoji_hash}
|
||||
else:
|
||||
logger.warning(
|
||||
"[查询] 未提供 hash,将尝试加载所有表情包,建议使用 get_all_emoji_from_db 更新管理器状态。"
|
||||
)
|
||||
|
||||
emoji_data_list = list(db.emoji.find(query))
|
||||
emoji_objects = []
|
||||
load_errors = 0
|
||||
|
||||
for emoji_data in emoji_data_list:
|
||||
full_path = emoji_data.get("full_path")
|
||||
if not full_path:
|
||||
logger.warning(f"[加载错误] 数据库记录缺少 'full_path' 字段: {emoji_data.get('_id')}")
|
||||
load_errors += 1
|
||||
continue
|
||||
|
||||
try:
|
||||
emoji = MaiEmoji(full_path=full_path)
|
||||
emoji.hash = emoji_data.get("hash", "")
|
||||
if not emoji.hash:
|
||||
logger.warning(f"[加载错误] 数据库记录缺少 'hash' 字段: {full_path}")
|
||||
load_errors += 1
|
||||
continue
|
||||
|
||||
emoji.description = emoji_data.get("description", "")
|
||||
emoji.emotion = emoji_data.get("emotion", [])
|
||||
emoji.usage_count = emoji_data.get("usage_count", 0)
|
||||
last_used = emoji_data.get("last_used_time")
|
||||
timestamp = emoji_data.get("timestamp")
|
||||
emoji.last_used_time = (
|
||||
last_used if last_used is not None else (timestamp if timestamp is not None else time.time())
|
||||
)
|
||||
emoji.register_time = timestamp if timestamp is not None else time.time()
|
||||
emoji.format = emoji_data.get("format", "")
|
||||
emoji_objects.append(emoji)
|
||||
except ValueError as ve:
|
||||
logger.error(f"[加载错误] 初始化 MaiEmoji 失败 ({full_path}): {ve}")
|
||||
load_errors += 1
|
||||
except Exception as e:
|
||||
logger.error(f"[加载错误] 处理数据库记录时出错 ({full_path}): {str(e)}")
|
||||
load_errors += 1
|
||||
emoji_objects, load_errors = _to_emoji_objects(db.emoji.find(query))
|
||||
|
||||
if load_errors > 0:
|
||||
logger.warning(f"[查询] 加载过程中出现 {load_errors} 个错误。")
|
||||
@@ -656,17 +705,17 @@ class EmojiManager:
|
||||
logger.error(f"[错误] 从数据库获取表情包对象失败: {str(e)}")
|
||||
return []
|
||||
|
||||
async def get_emoji_from_manager(self, hash) -> Optional[MaiEmoji]:
|
||||
async def get_emoji_from_manager(self, emoji_hash) -> Optional[MaiEmoji]:
|
||||
"""从内存中的 emoji_objects 列表获取表情包
|
||||
|
||||
参数:
|
||||
hash: 要查找的表情包哈希值
|
||||
emoji_hash: 要查找的表情包哈希值
|
||||
返回:
|
||||
MaiEmoji 或 None: 如果找到则返回 MaiEmoji 对象,否则返回 None
|
||||
"""
|
||||
for emoji in self.emoji_objects:
|
||||
# 确保对象未被标记为删除且哈希值匹配
|
||||
if not emoji.is_deleted and emoji.hash == hash:
|
||||
if not emoji.is_deleted and emoji.hash == emoji_hash:
|
||||
return emoji
|
||||
return None # 如果循环结束还没找到,则返回 None
|
||||
|
||||
@@ -709,26 +758,6 @@ class EmojiManager:
|
||||
logger.error(traceback.format_exc())
|
||||
return False
|
||||
|
||||
def _emoji_objects_to_readable_list(self, emoji_objects):
|
||||
"""将表情包对象列表转换为可读的字符串列表
|
||||
|
||||
参数:
|
||||
emoji_objects: MaiEmoji对象列表
|
||||
|
||||
返回:
|
||||
list[str]: 可读的表情包信息字符串列表
|
||||
"""
|
||||
emoji_info_list = []
|
||||
for i, emoji in enumerate(emoji_objects):
|
||||
# 转换时间戳为可读时间
|
||||
time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(emoji.register_time))
|
||||
# 构建每个表情包的信息字符串
|
||||
emoji_info = (
|
||||
f"编号: {i + 1}\n描述: {emoji.description}\n使用次数: {emoji.usage_count}\n添加时间: {time_str}\n"
|
||||
)
|
||||
emoji_info_list.append(emoji_info)
|
||||
return emoji_info_list
|
||||
|
||||
async def replace_a_emoji(self, new_emoji: MaiEmoji):
|
||||
"""替换一个表情包
|
||||
|
||||
@@ -755,7 +784,7 @@ class EmojiManager:
|
||||
)
|
||||
|
||||
# 将表情包信息转换为可读的字符串
|
||||
emoji_info_list = self._emoji_objects_to_readable_list(selected_emojis)
|
||||
emoji_info_list = _emoji_objects_to_readable_list(selected_emojis)
|
||||
|
||||
# 构建提示词
|
||||
prompt = (
|
||||
@@ -853,7 +882,7 @@ class EmojiManager:
|
||||
'''
|
||||
content, _ = await self.vlm.generate_response_for_image(prompt, image_base64, image_format)
|
||||
if content == "否":
|
||||
return None, []
|
||||
return "", []
|
||||
|
||||
# 分析情感含义
|
||||
emotion_prompt = f"""
|
||||
@@ -989,76 +1018,6 @@ class EmojiManager:
|
||||
logger.error(f"[错误] 删除异常处理文件时出错: {remove_error}")
|
||||
return False
|
||||
|
||||
async def clear_temp_emoji(self):
|
||||
"""清理临时表情包
|
||||
清理/data/emoji和/data/image目录下的所有文件
|
||||
当目录中文件数超过100时,会全部删除
|
||||
"""
|
||||
|
||||
logger.info("[清理] 开始清理缓存...")
|
||||
|
||||
# 清理emoji目录
|
||||
emoji_dir = os.path.join(BASE_DIR, "emoji")
|
||||
if os.path.exists(emoji_dir):
|
||||
files = os.listdir(emoji_dir)
|
||||
# 如果文件数超过50就全部删除
|
||||
if len(files) > 100:
|
||||
for filename in files:
|
||||
file_path = os.path.join(emoji_dir, filename)
|
||||
if os.path.isfile(file_path):
|
||||
os.remove(file_path)
|
||||
logger.debug(f"[清理] 删除: {filename}")
|
||||
|
||||
# 清理image目录
|
||||
image_dir = os.path.join(BASE_DIR, "image")
|
||||
if os.path.exists(image_dir):
|
||||
files = os.listdir(image_dir)
|
||||
# 如果文件数超过50就全部删除
|
||||
if len(files) > 100:
|
||||
for filename in files:
|
||||
file_path = os.path.join(image_dir, filename)
|
||||
if os.path.isfile(file_path):
|
||||
os.remove(file_path)
|
||||
logger.debug(f"[清理] 删除图片: {filename}")
|
||||
|
||||
logger.success("[清理] 完成")
|
||||
|
||||
async def clean_unused_emojis(self, emoji_dir, emoji_objects):
|
||||
"""清理指定目录中未被 emoji_objects 追踪的表情包文件"""
|
||||
if not os.path.exists(emoji_dir):
|
||||
logger.warning(f"[清理] 目标目录不存在,跳过清理: {emoji_dir}")
|
||||
return
|
||||
|
||||
try:
|
||||
# 获取内存中所有有效表情包的完整路径集合
|
||||
tracked_full_paths = {emoji.full_path for emoji in emoji_objects if not emoji.is_deleted}
|
||||
cleaned_count = 0
|
||||
|
||||
# 遍历指定目录中的所有文件
|
||||
for file_name in os.listdir(emoji_dir):
|
||||
file_full_path = os.path.join(emoji_dir, file_name)
|
||||
|
||||
# 确保处理的是文件而不是子目录
|
||||
if not os.path.isfile(file_full_path):
|
||||
continue
|
||||
|
||||
# 如果文件不在被追踪的集合中,则删除
|
||||
if file_full_path not in tracked_full_paths:
|
||||
try:
|
||||
os.remove(file_full_path)
|
||||
logger.info(f"[清理] 删除未追踪的表情包文件: {file_full_path}")
|
||||
cleaned_count += 1
|
||||
except Exception as e:
|
||||
logger.error(f"[错误] 删除文件时出错 ({file_full_path}): {str(e)}")
|
||||
|
||||
if cleaned_count > 0:
|
||||
logger.success(f"[清理] 在目录 {emoji_dir} 中清理了 {cleaned_count} 个破损表情包。")
|
||||
else:
|
||||
logger.info(f"[清理] 目录 {emoji_dir} 中没有需要清理的。")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[错误] 清理未使用表情包文件时出错 ({emoji_dir}): {str(e)}")
|
||||
|
||||
|
||||
# 创建全局单例
|
||||
emoji_manager = EmojiManager()
|
||||
|
||||
@@ -144,6 +144,25 @@ class SenderError(HeartFCError):
|
||||
pass
|
||||
|
||||
|
||||
async def _handle_cycle_delay(action_taken_this_cycle: bool, cycle_start_time: float, log_prefix: str):
|
||||
"""处理循环延迟"""
|
||||
cycle_duration = time.monotonic() - cycle_start_time
|
||||
|
||||
try:
|
||||
sleep_duration = 0.0
|
||||
if not action_taken_this_cycle and cycle_duration < 1:
|
||||
sleep_duration = 1 - cycle_duration
|
||||
elif cycle_duration < 0.2:
|
||||
sleep_duration = 0.2
|
||||
|
||||
if sleep_duration > 0:
|
||||
await asyncio.sleep(sleep_duration)
|
||||
|
||||
except asyncio.CancelledError:
|
||||
logger.info(f"{log_prefix} Sleep interrupted, loop likely cancelling.")
|
||||
raise
|
||||
|
||||
|
||||
class HeartFChatting:
|
||||
"""
|
||||
管理一个连续的Plan-Replier-Sender循环
|
||||
@@ -327,7 +346,7 @@ class HeartFChatting:
|
||||
self._current_cycle.timers = cycle_timers
|
||||
|
||||
# 防止循环过快消耗资源
|
||||
await self._handle_cycle_delay(action_taken, loop_cycle_start_time, self.log_prefix)
|
||||
await _handle_cycle_delay(action_taken, loop_cycle_start_time, self.log_prefix)
|
||||
|
||||
# 完成当前循环并保存历史
|
||||
self._current_cycle.complete_cycle()
|
||||
@@ -715,24 +734,6 @@ class HeartFChatting:
|
||||
if not self._shutting_down:
|
||||
logger.debug(f"{log_prefix} 该次决策耗时: {'; '.join(timer_strings)}")
|
||||
|
||||
async def _handle_cycle_delay(self, action_taken_this_cycle: bool, cycle_start_time: float, log_prefix: str):
|
||||
"""处理循环延迟"""
|
||||
cycle_duration = time.monotonic() - cycle_start_time
|
||||
|
||||
try:
|
||||
sleep_duration = 0.0
|
||||
if not action_taken_this_cycle and cycle_duration < 1:
|
||||
sleep_duration = 1 - cycle_duration
|
||||
elif cycle_duration < 0.2:
|
||||
sleep_duration = 0.2
|
||||
|
||||
if sleep_duration > 0:
|
||||
await asyncio.sleep(sleep_duration)
|
||||
|
||||
except asyncio.CancelledError:
|
||||
logger.info(f"{log_prefix} Sleep interrupted, loop likely cancelling.")
|
||||
raise
|
||||
|
||||
async def _get_submind_thinking(self, cycle_timers: dict) -> str:
|
||||
"""
|
||||
获取子思维的思考结果
|
||||
|
||||
@@ -12,6 +12,22 @@ from src.plugins.chat.utils import calculate_typing_time
|
||||
logger = get_logger("sender")
|
||||
|
||||
|
||||
async def send_message(message: MessageSending) -> None:
|
||||
"""合并后的消息发送函数,包含WS发送和日志记录"""
|
||||
message_preview = truncate_message(message.processed_plain_text)
|
||||
|
||||
try:
|
||||
# 直接调用API发送消息
|
||||
await send_message(message)
|
||||
logger.success(f"发送消息 '{message_preview}' 成功")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"发送消息 '{message_preview}' 失败: {str(e)}")
|
||||
if not message.message_info.platform:
|
||||
raise ValueError(f"未找到平台:{message.message_info.platform} 的url配置,请检查配置文件") from e
|
||||
raise e # 重新抛出其他异常
|
||||
|
||||
|
||||
class HeartFCSender:
|
||||
"""管理消息的注册、即时处理、发送和存储,并跟踪思考状态。"""
|
||||
|
||||
@@ -21,21 +37,6 @@ class HeartFCSender:
|
||||
self.thinking_messages: Dict[str, Dict[str, MessageThinking]] = {}
|
||||
self._thinking_lock = asyncio.Lock() # 保护 thinking_messages 的锁
|
||||
|
||||
async def send_message(self, message: MessageSending) -> None:
|
||||
"""合并后的消息发送函数,包含WS发送和日志记录"""
|
||||
message_preview = truncate_message(message.processed_plain_text)
|
||||
|
||||
try:
|
||||
# 直接调用API发送消息
|
||||
await global_api.send_message(message)
|
||||
logger.success(f"发送消息 '{message_preview}' 成功")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"发送消息 '{message_preview}' 失败: {str(e)}")
|
||||
if not message.message_info.platform:
|
||||
raise ValueError(f"未找到平台:{message.message_info.platform} 的url配置,请检查配置文件") from e
|
||||
raise e # 重新抛出其他异常
|
||||
|
||||
async def register_thinking(self, thinking_message: MessageThinking):
|
||||
"""注册一个思考中的消息。"""
|
||||
if not thinking_message.chat_stream or not thinking_message.message_info.message_id:
|
||||
@@ -73,7 +74,7 @@ class HeartFCSender:
|
||||
thinking_message = self.thinking_messages.get(chat_id, {}).get(message_id)
|
||||
return thinking_message.thinking_start_time if thinking_message else None
|
||||
|
||||
async def type_and_send_message(self, message: MessageSending, type=False):
|
||||
async def type_and_send_message(self, message: MessageSending, typing=False):
|
||||
"""
|
||||
立即处理、发送并存储单个 MessageSending 消息。
|
||||
调用此方法前,应先调用 register_thinking 注册对应的思考消息。
|
||||
@@ -100,7 +101,7 @@ class HeartFCSender:
|
||||
|
||||
await message.process()
|
||||
|
||||
if type:
|
||||
if typing:
|
||||
typing_time = calculate_typing_time(
|
||||
input_string=message.processed_plain_text,
|
||||
thinking_start_time=message.thinking_start_time,
|
||||
@@ -108,7 +109,7 @@ class HeartFCSender:
|
||||
)
|
||||
await asyncio.sleep(typing_time)
|
||||
|
||||
await self.send_message(message)
|
||||
await send_message(message)
|
||||
await self.storage.store_message(message, message.chat_stream)
|
||||
|
||||
except Exception as e:
|
||||
@@ -136,7 +137,7 @@ class HeartFCSender:
|
||||
|
||||
await asyncio.sleep(0.5)
|
||||
|
||||
await self.send_message(message) # 使用现有的发送方法
|
||||
await send_message(message) # 使用现有的发送方法
|
||||
await self.storage.store_message(message, message.chat_stream) # 使用现有的存储方法
|
||||
|
||||
except Exception as e:
|
||||
|
||||
@@ -12,11 +12,134 @@ from ..chat.chat_stream import chat_manager
|
||||
from ..chat.message_buffer import message_buffer
|
||||
from ..utils.timer_calculator import Timer
|
||||
from src.plugins.person_info.relationship_manager import relationship_manager
|
||||
from typing import Optional, Tuple
|
||||
from typing import Optional, Tuple, Dict, Any
|
||||
|
||||
logger = get_logger("chat")
|
||||
|
||||
|
||||
async def _handle_error(error: Exception, context: str, message: Optional[MessageRecv] = None) -> None:
|
||||
"""统一的错误处理函数
|
||||
|
||||
Args:
|
||||
error: 捕获到的异常
|
||||
context: 错误发生的上下文描述
|
||||
message: 可选的消息对象,用于记录相关消息内容
|
||||
"""
|
||||
logger.error(f"{context}: {error}")
|
||||
logger.error(traceback.format_exc())
|
||||
if message and hasattr(message, "raw_message"):
|
||||
logger.error(f"相关消息原始内容: {message.raw_message}")
|
||||
|
||||
|
||||
async def _process_relationship(message: MessageRecv) -> None:
|
||||
"""处理用户关系逻辑
|
||||
|
||||
Args:
|
||||
message: 消息对象,包含用户信息
|
||||
"""
|
||||
platform = message.message_info.platform
|
||||
user_id = message.message_info.user_info.user_id
|
||||
nickname = message.message_info.user_info.user_nickname
|
||||
cardname = message.message_info.user_info.user_cardname or nickname
|
||||
|
||||
is_known = await relationship_manager.is_known_some_one(platform, user_id)
|
||||
|
||||
if not is_known:
|
||||
logger.info(f"首次认识用户: {nickname}")
|
||||
await relationship_manager.first_knowing_some_one(platform, user_id, nickname, cardname, "")
|
||||
elif not await relationship_manager.is_qved_name(platform, user_id):
|
||||
logger.info(f"给用户({nickname},{cardname})取名: {nickname}")
|
||||
await relationship_manager.first_knowing_some_one(platform, user_id, nickname, cardname, "")
|
||||
|
||||
|
||||
async def _calculate_interest(message: MessageRecv) -> Tuple[float, bool]:
|
||||
"""计算消息的兴趣度
|
||||
|
||||
Args:
|
||||
message: 待处理的消息对象
|
||||
|
||||
Returns:
|
||||
Tuple[float, bool]: (兴趣度, 是否被提及)
|
||||
"""
|
||||
is_mentioned, _ = is_mentioned_bot_in_message(message)
|
||||
interested_rate = 0.0
|
||||
|
||||
with Timer("记忆激活"):
|
||||
interested_rate = await HippocampusManager.get_instance().get_activate_from_text(
|
||||
message.processed_plain_text,
|
||||
fast_retrieval=True,
|
||||
)
|
||||
logger.trace(f"记忆激活率: {interested_rate:.2f}")
|
||||
|
||||
if is_mentioned:
|
||||
interest_increase_on_mention = 1
|
||||
interested_rate += interest_increase_on_mention
|
||||
|
||||
return interested_rate, is_mentioned
|
||||
|
||||
|
||||
def _get_message_type(message: MessageRecv) -> str:
|
||||
"""获取消息类型
|
||||
|
||||
Args:
|
||||
message: 消息对象
|
||||
|
||||
Returns:
|
||||
str: 消息类型
|
||||
"""
|
||||
if message.message_segment.type != "seglist":
|
||||
return message.message_segment.type
|
||||
|
||||
if (
|
||||
isinstance(message.message_segment.data, list)
|
||||
and all(isinstance(x, Seg) for x in message.message_segment.data)
|
||||
and len(message.message_segment.data) == 1
|
||||
):
|
||||
return message.message_segment.data[0].type
|
||||
|
||||
return "seglist"
|
||||
|
||||
|
||||
def _check_ban_words(text: str, chat, userinfo) -> bool:
|
||||
"""检查消息是否包含过滤词
|
||||
|
||||
Args:
|
||||
text: 待检查的文本
|
||||
chat: 聊天对象
|
||||
userinfo: 用户信息
|
||||
|
||||
Returns:
|
||||
bool: 是否包含过滤词
|
||||
"""
|
||||
for word in global_config.ban_words:
|
||||
if word in text:
|
||||
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
|
||||
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
|
||||
logger.info(f"[过滤词识别]消息中含有{word},filtered")
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def _check_ban_regex(text: str, chat, userinfo) -> bool:
|
||||
"""检查消息是否匹配过滤正则表达式
|
||||
|
||||
Args:
|
||||
text: 待检查的文本
|
||||
chat: 聊天对象
|
||||
userinfo: 用户信息
|
||||
|
||||
Returns:
|
||||
bool: 是否匹配过滤正则
|
||||
"""
|
||||
for pattern in global_config.ban_msgs_regex:
|
||||
if pattern.search(text):
|
||||
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
|
||||
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
|
||||
logger.info(f"[正则表达式过滤]消息匹配到{pattern},filtered")
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
class HeartFCProcessor:
|
||||
"""心流处理器,负责处理接收到的消息并计算兴趣度"""
|
||||
|
||||
@@ -24,86 +147,7 @@ class HeartFCProcessor:
|
||||
"""初始化心流处理器,创建消息存储实例"""
|
||||
self.storage = MessageStorage()
|
||||
|
||||
async def _handle_error(self, error: Exception, context: str, message: Optional[MessageRecv] = None) -> None:
|
||||
"""统一的错误处理函数
|
||||
|
||||
Args:
|
||||
error: 捕获到的异常
|
||||
context: 错误发生的上下文描述
|
||||
message: 可选的消息对象,用于记录相关消息内容
|
||||
"""
|
||||
logger.error(f"{context}: {error}")
|
||||
logger.error(traceback.format_exc())
|
||||
if message and hasattr(message, "raw_message"):
|
||||
logger.error(f"相关消息原始内容: {message.raw_message}")
|
||||
|
||||
async def _process_relationship(self, message: MessageRecv) -> None:
|
||||
"""处理用户关系逻辑
|
||||
|
||||
Args:
|
||||
message: 消息对象,包含用户信息
|
||||
"""
|
||||
platform = message.message_info.platform
|
||||
user_id = message.message_info.user_info.user_id
|
||||
nickname = message.message_info.user_info.user_nickname
|
||||
cardname = message.message_info.user_info.user_cardname or nickname
|
||||
|
||||
is_known = await relationship_manager.is_known_some_one(platform, user_id)
|
||||
|
||||
if not is_known:
|
||||
logger.info(f"首次认识用户: {nickname}")
|
||||
await relationship_manager.first_knowing_some_one(platform, user_id, nickname, cardname, "")
|
||||
elif not await relationship_manager.is_qved_name(platform, user_id):
|
||||
logger.info(f"给用户({nickname},{cardname})取名: {nickname}")
|
||||
await relationship_manager.first_knowing_some_one(platform, user_id, nickname, cardname, "")
|
||||
|
||||
async def _calculate_interest(self, message: MessageRecv) -> Tuple[float, bool]:
|
||||
"""计算消息的兴趣度
|
||||
|
||||
Args:
|
||||
message: 待处理的消息对象
|
||||
|
||||
Returns:
|
||||
Tuple[float, bool]: (兴趣度, 是否被提及)
|
||||
"""
|
||||
is_mentioned, _ = is_mentioned_bot_in_message(message)
|
||||
interested_rate = 0.0
|
||||
|
||||
with Timer("记忆激活"):
|
||||
interested_rate = await HippocampusManager.get_instance().get_activate_from_text(
|
||||
message.processed_plain_text,
|
||||
fast_retrieval=True,
|
||||
)
|
||||
logger.trace(f"记忆激活率: {interested_rate:.2f}")
|
||||
|
||||
if is_mentioned:
|
||||
interest_increase_on_mention = 1
|
||||
interested_rate += interest_increase_on_mention
|
||||
|
||||
return interested_rate, is_mentioned
|
||||
|
||||
def _get_message_type(self, message: MessageRecv) -> str:
|
||||
"""获取消息类型
|
||||
|
||||
Args:
|
||||
message: 消息对象
|
||||
|
||||
Returns:
|
||||
str: 消息类型
|
||||
"""
|
||||
if message.message_segment.type != "seglist":
|
||||
return message.message_segment.type
|
||||
|
||||
if (
|
||||
isinstance(message.message_segment.data, list)
|
||||
and all(isinstance(x, Seg) for x in message.message_segment.data)
|
||||
and len(message.message_segment.data) == 1
|
||||
):
|
||||
return message.message_segment.data[0].type
|
||||
|
||||
return "seglist"
|
||||
|
||||
async def process_message(self, message_data: str) -> None:
|
||||
async def process_message(self, message_data: Dict[str, Any]) -> None:
|
||||
"""处理接收到的原始消息数据
|
||||
|
||||
主要流程:
|
||||
@@ -138,7 +182,7 @@ class HeartFCProcessor:
|
||||
await message.process()
|
||||
|
||||
# 3. 过滤检查
|
||||
if self._check_ban_words(message.processed_plain_text, chat, userinfo) or self._check_ban_regex(
|
||||
if _check_ban_words(message.processed_plain_text, chat, userinfo) or _check_ban_regex(
|
||||
message.raw_message, chat, userinfo
|
||||
):
|
||||
return
|
||||
@@ -146,7 +190,7 @@ class HeartFCProcessor:
|
||||
# 4. 缓冲检查
|
||||
buffer_result = await message_buffer.query_buffer_result(message)
|
||||
if not buffer_result:
|
||||
msg_type = self._get_message_type(message)
|
||||
msg_type = _get_message_type(message)
|
||||
type_messages = {
|
||||
"text": f"触发缓冲,消息:{message.processed_plain_text}",
|
||||
"image": "触发缓冲,表情包/图片等待中",
|
||||
@@ -160,7 +204,7 @@ class HeartFCProcessor:
|
||||
logger.trace(f"存储成功: {message.processed_plain_text}")
|
||||
|
||||
# 6. 兴趣度计算与更新
|
||||
interested_rate, is_mentioned = await self._calculate_interest(message)
|
||||
interested_rate, is_mentioned = await _calculate_interest(message)
|
||||
await subheartflow.interest_chatting.increase_interest(value=interested_rate)
|
||||
subheartflow.interest_chatting.add_interest_dict(message, interested_rate, is_mentioned)
|
||||
|
||||
@@ -175,45 +219,7 @@ class HeartFCProcessor:
|
||||
)
|
||||
|
||||
# 8. 关系处理
|
||||
await self._process_relationship(message)
|
||||
await _process_relationship(message)
|
||||
|
||||
except Exception as e:
|
||||
await self._handle_error(e, "消息处理失败", message)
|
||||
|
||||
def _check_ban_words(self, text: str, chat, userinfo) -> bool:
|
||||
"""检查消息是否包含过滤词
|
||||
|
||||
Args:
|
||||
text: 待检查的文本
|
||||
chat: 聊天对象
|
||||
userinfo: 用户信息
|
||||
|
||||
Returns:
|
||||
bool: 是否包含过滤词
|
||||
"""
|
||||
for word in global_config.ban_words:
|
||||
if word in text:
|
||||
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
|
||||
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
|
||||
logger.info(f"[过滤词识别]消息中含有{word},filtered")
|
||||
return True
|
||||
return False
|
||||
|
||||
def _check_ban_regex(self, text: str, chat, userinfo) -> bool:
|
||||
"""检查消息是否匹配过滤正则表达式
|
||||
|
||||
Args:
|
||||
text: 待检查的文本
|
||||
chat: 聊天对象
|
||||
userinfo: 用户信息
|
||||
|
||||
Returns:
|
||||
bool: 是否匹配过滤正则
|
||||
"""
|
||||
for pattern in global_config.ban_msgs_regex:
|
||||
if pattern.search(text):
|
||||
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
|
||||
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
|
||||
logger.info(f"[正则表达式过滤]消息匹配到{pattern},filtered")
|
||||
return True
|
||||
return False
|
||||
await _handle_error(e, "消息处理失败", message)
|
||||
|
||||
@@ -151,6 +151,96 @@ JSON 结构如下,包含三个字段 "action", "reasoning", "emoji_query":
|
||||
Prompt("\n你有以下这些**知识**:\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n", "knowledge_prompt")
|
||||
|
||||
|
||||
async def _build_prompt_focus(
|
||||
reason, current_mind_info, structured_info, chat_stream, sender_name
|
||||
) -> tuple[str, str]:
|
||||
individuality = Individuality.get_instance()
|
||||
prompt_personality = individuality.get_prompt(x_person=0, level=2)
|
||||
# 日程构建
|
||||
# schedule_prompt = f'''你现在正在做的事情是:{bot_schedule.get_current_num_task(num = 1,time_info = False)}'''
|
||||
|
||||
if chat_stream.group_info:
|
||||
chat_in_group = True
|
||||
else:
|
||||
chat_in_group = False
|
||||
|
||||
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=chat_stream.stream_id,
|
||||
timestamp=time.time(),
|
||||
limit=global_config.observation_context_size,
|
||||
)
|
||||
|
||||
chat_talking_prompt = await build_readable_messages(
|
||||
message_list_before_now,
|
||||
replace_bot_name=True,
|
||||
merge_messages=False,
|
||||
timestamp_mode="normal",
|
||||
read_mark=0.0,
|
||||
truncate=True,
|
||||
)
|
||||
|
||||
# 中文高手(新加的好玩功能)
|
||||
prompt_ger = ""
|
||||
if random.random() < 0.04:
|
||||
prompt_ger += "你喜欢用倒装句"
|
||||
if random.random() < 0.02:
|
||||
prompt_ger += "你喜欢用反问句"
|
||||
|
||||
reply_styles1 = [
|
||||
("给出日常且口语化的回复,平淡一些", 0.4), # 40%概率
|
||||
("给出非常简短的回复", 0.4), # 40%概率
|
||||
("给出缺失主语的回复,简短", 0.15), # 15%概率
|
||||
("给出带有语病的回复,朴实平淡", 0.05), # 5%概率
|
||||
]
|
||||
reply_style1_chosen = random.choices(
|
||||
[style[0] for style in reply_styles1], weights=[style[1] for style in reply_styles1], k=1
|
||||
)[0]
|
||||
|
||||
reply_styles2 = [
|
||||
("不要回复的太有条理,可以有个性", 0.6), # 60%概率
|
||||
("不要回复的太有条理,可以复读", 0.15), # 15%概率
|
||||
("回复的认真一些", 0.2), # 20%概率
|
||||
("可以回复单个表情符号", 0.05), # 5%概率
|
||||
]
|
||||
reply_style2_chosen = random.choices(
|
||||
[style[0] for style in reply_styles2], weights=[style[1] for style in reply_styles2], k=1
|
||||
)[0]
|
||||
|
||||
if structured_info:
|
||||
structured_info_prompt = await global_prompt_manager.format_prompt(
|
||||
"info_from_tools", structured_info=structured_info
|
||||
)
|
||||
else:
|
||||
structured_info_prompt = ""
|
||||
|
||||
logger.debug("开始构建prompt")
|
||||
|
||||
prompt = await global_prompt_manager.format_prompt(
|
||||
"heart_flow_prompt",
|
||||
info_from_tools=structured_info_prompt,
|
||||
chat_target=await global_prompt_manager.get_prompt_async("chat_target_group1")
|
||||
if chat_in_group
|
||||
else await global_prompt_manager.get_prompt_async("chat_target_private1"),
|
||||
chat_talking_prompt=chat_talking_prompt,
|
||||
bot_name=global_config.BOT_NICKNAME,
|
||||
prompt_personality=prompt_personality,
|
||||
chat_target_2=await global_prompt_manager.get_prompt_async("chat_target_group2")
|
||||
if chat_in_group
|
||||
else await global_prompt_manager.get_prompt_async("chat_target_private2"),
|
||||
current_mind_info=current_mind_info,
|
||||
reply_style2=reply_style2_chosen,
|
||||
reply_style1=reply_style1_chosen,
|
||||
reason=reason,
|
||||
prompt_ger=prompt_ger,
|
||||
moderation_prompt=await global_prompt_manager.get_prompt_async("moderation_prompt"),
|
||||
sender_name=sender_name,
|
||||
)
|
||||
|
||||
logger.debug(f"focus_chat_prompt: \n{prompt}")
|
||||
|
||||
return prompt
|
||||
|
||||
|
||||
class PromptBuilder:
|
||||
def __init__(self):
|
||||
self.prompt_built = ""
|
||||
@@ -170,7 +260,7 @@ class PromptBuilder:
|
||||
return await self._build_prompt_normal(chat_stream, message_txt, sender_name)
|
||||
|
||||
elif build_mode == "focus":
|
||||
return await self._build_prompt_focus(
|
||||
return await _build_prompt_focus(
|
||||
reason,
|
||||
current_mind_info,
|
||||
structured_info,
|
||||
@@ -179,95 +269,6 @@ class PromptBuilder:
|
||||
)
|
||||
return None
|
||||
|
||||
async def _build_prompt_focus(
|
||||
self, reason, current_mind_info, structured_info, chat_stream, sender_name
|
||||
) -> tuple[str, str]:
|
||||
individuality = Individuality.get_instance()
|
||||
prompt_personality = individuality.get_prompt(x_person=0, level=2)
|
||||
# 日程构建
|
||||
# schedule_prompt = f'''你现在正在做的事情是:{bot_schedule.get_current_num_task(num = 1,time_info = False)}'''
|
||||
|
||||
if chat_stream.group_info:
|
||||
chat_in_group = True
|
||||
else:
|
||||
chat_in_group = False
|
||||
|
||||
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=chat_stream.stream_id,
|
||||
timestamp=time.time(),
|
||||
limit=global_config.observation_context_size,
|
||||
)
|
||||
|
||||
chat_talking_prompt = await build_readable_messages(
|
||||
message_list_before_now,
|
||||
replace_bot_name=True,
|
||||
merge_messages=False,
|
||||
timestamp_mode="normal",
|
||||
read_mark=0.0,
|
||||
truncate=True,
|
||||
)
|
||||
|
||||
# 中文高手(新加的好玩功能)
|
||||
prompt_ger = ""
|
||||
if random.random() < 0.04:
|
||||
prompt_ger += "你喜欢用倒装句"
|
||||
if random.random() < 0.02:
|
||||
prompt_ger += "你喜欢用反问句"
|
||||
|
||||
reply_styles1 = [
|
||||
("给出日常且口语化的回复,平淡一些", 0.4), # 40%概率
|
||||
("给出非常简短的回复", 0.4), # 40%概率
|
||||
("给出缺失主语的回复,简短", 0.15), # 15%概率
|
||||
("给出带有语病的回复,朴实平淡", 0.05), # 5%概率
|
||||
]
|
||||
reply_style1_chosen = random.choices(
|
||||
[style[0] for style in reply_styles1], weights=[style[1] for style in reply_styles1], k=1
|
||||
)[0]
|
||||
|
||||
reply_styles2 = [
|
||||
("不要回复的太有条理,可以有个性", 0.6), # 60%概率
|
||||
("不要回复的太有条理,可以复读", 0.15), # 15%概率
|
||||
("回复的认真一些", 0.2), # 20%概率
|
||||
("可以回复单个表情符号", 0.05), # 5%概率
|
||||
]
|
||||
reply_style2_chosen = random.choices(
|
||||
[style[0] for style in reply_styles2], weights=[style[1] for style in reply_styles2], k=1
|
||||
)[0]
|
||||
|
||||
if structured_info:
|
||||
structured_info_prompt = await global_prompt_manager.format_prompt(
|
||||
"info_from_tools", structured_info=structured_info
|
||||
)
|
||||
else:
|
||||
structured_info_prompt = ""
|
||||
|
||||
logger.debug("开始构建prompt")
|
||||
|
||||
prompt = await global_prompt_manager.format_prompt(
|
||||
"heart_flow_prompt",
|
||||
info_from_tools=structured_info_prompt,
|
||||
chat_target=await global_prompt_manager.get_prompt_async("chat_target_group1")
|
||||
if chat_in_group
|
||||
else await global_prompt_manager.get_prompt_async("chat_target_private1"),
|
||||
chat_talking_prompt=chat_talking_prompt,
|
||||
bot_name=global_config.BOT_NICKNAME,
|
||||
prompt_personality=prompt_personality,
|
||||
chat_target_2=await global_prompt_manager.get_prompt_async("chat_target_group2")
|
||||
if chat_in_group
|
||||
else await global_prompt_manager.get_prompt_async("chat_target_private2"),
|
||||
current_mind_info=current_mind_info,
|
||||
reply_style2=reply_style2_chosen,
|
||||
reply_style1=reply_style1_chosen,
|
||||
reason=reason,
|
||||
prompt_ger=prompt_ger,
|
||||
moderation_prompt=await global_prompt_manager.get_prompt_async("moderation_prompt"),
|
||||
sender_name=sender_name,
|
||||
)
|
||||
|
||||
logger.debug(f"focus_chat_prompt: \n{prompt}")
|
||||
|
||||
return prompt
|
||||
|
||||
async def _build_prompt_normal(self, chat_stream, message_txt: str, sender_name: str = "某人") -> tuple[str, str]:
|
||||
individuality = Individuality.get_instance()
|
||||
prompt_personality = individuality.get_prompt(x_person=2, level=2)
|
||||
|
||||
@@ -27,7 +27,7 @@ class QAManager:
|
||||
self.kg_manager = kg_manager
|
||||
self.llm_client_list = {
|
||||
"embedding": llm_client_embedding,
|
||||
"filter": llm_client_filter,
|
||||
"message_filter": llm_client_filter,
|
||||
"qa": llm_client_qa,
|
||||
}
|
||||
|
||||
|
||||
@@ -185,32 +185,24 @@ class InfoCatcher:
|
||||
try:
|
||||
# 将消息对象转换为可序列化的字典喵~
|
||||
|
||||
thinking_log_data = {
|
||||
"chat_id": self.chat_id,
|
||||
# "response_mode": self.response_mode, # 这个也删掉喵~
|
||||
"trigger_text": self.trigger_response_text,
|
||||
"response_text": self.response_text,
|
||||
"trigger_info": {
|
||||
thinking_log_data = {"chat_id": self.chat_id, "trigger_text": self.trigger_response_text,
|
||||
"response_text": self.response_text, "trigger_info": {
|
||||
"time": self.trigger_response_time,
|
||||
"message": self.message_to_dict(self.trigger_response_message),
|
||||
},
|
||||
"response_info": {
|
||||
}, "response_info": {
|
||||
"time": self.response_time,
|
||||
"message": self.response_messages,
|
||||
},
|
||||
"timing_results": self.timing_results,
|
||||
"chat_history": self.message_list_to_dict(self.chat_history),
|
||||
"chat_history_in_thinking": self.message_list_to_dict(self.chat_history_in_thinking),
|
||||
"chat_history_after_response": self.message_list_to_dict(self.chat_history_after_response),
|
||||
}
|
||||
}, "timing_results": self.timing_results, "chat_history": self.message_list_to_dict(self.chat_history),
|
||||
"chat_history_in_thinking": self.message_list_to_dict(self.chat_history_in_thinking),
|
||||
"chat_history_after_response": self.message_list_to_dict(
|
||||
self.chat_history_after_response), "heartflow_data": self.heartflow_data,
|
||||
"reasoning_data": self.reasoning_data}
|
||||
|
||||
# 根据不同的响应模式添加相应的数据喵~ # 现在直接都加上去好了喵~
|
||||
# if self.response_mode == "heart_flow":
|
||||
# thinking_log_data["mode_specific_data"] = self.heartflow_data
|
||||
# elif self.response_mode == "reasoning":
|
||||
# thinking_log_data["mode_specific_data"] = self.reasoning_data
|
||||
thinking_log_data["heartflow_data"] = self.heartflow_data
|
||||
thinking_log_data["reasoning_data"] = self.reasoning_data
|
||||
|
||||
# 将数据插入到 thinking_log 集合中喵~
|
||||
db.thinking_log.insert_one(thinking_log_data)
|
||||
|
||||
@@ -30,6 +30,7 @@ class ScheduleGenerator:
|
||||
|
||||
def __init__(self):
|
||||
# 使用离线LLM模型
|
||||
self.enable_output = None
|
||||
self.llm_scheduler_all = LLMRequest(
|
||||
model=global_config.llm_reasoning,
|
||||
temperature=global_config.SCHEDULE_TEMPERATURE + 0.3,
|
||||
|
||||
@@ -123,7 +123,7 @@ def num_new_messages_since(chat_id: str, timestamp_start: float = 0.0, timestamp
|
||||
return 0 # 起始时间大于等于结束时间,没有新消息
|
||||
|
||||
filter_query = {"chat_id": chat_id, "time": {"$gt": timestamp_start, "$lt": _timestamp_end}}
|
||||
return count_messages(filter=filter_query)
|
||||
return count_messages(message_filter=filter_query)
|
||||
|
||||
|
||||
def num_new_messages_since_with_users(
|
||||
@@ -137,7 +137,7 @@ def num_new_messages_since_with_users(
|
||||
"time": {"$gt": timestamp_start, "$lt": timestamp_end},
|
||||
"user_id": {"$in": person_ids},
|
||||
}
|
||||
return count_messages(filter=filter_query)
|
||||
return count_messages(message_filter=filter_query)
|
||||
|
||||
|
||||
async def _build_readable_messages_internal(
|
||||
@@ -227,7 +227,7 @@ async def _build_readable_messages_internal(
|
||||
replace_content = "......(太长了)"
|
||||
|
||||
truncated_content = content
|
||||
if limit > 0 and original_len > limit:
|
||||
if 0 < limit < original_len:
|
||||
truncated_content = f"{content[:limit]}{replace_content}"
|
||||
|
||||
message_details.append((timestamp, name, truncated_content))
|
||||
|
||||
@@ -2,5 +2,23 @@ from .willing_manager import BaseWillingManager
|
||||
|
||||
|
||||
class CustomWillingManager(BaseWillingManager):
|
||||
async def async_task_starter(self) -> None:
|
||||
pass
|
||||
|
||||
async def before_generate_reply_handle(self, message_id: str):
|
||||
pass
|
||||
|
||||
async def after_generate_reply_handle(self, message_id: str):
|
||||
pass
|
||||
|
||||
async def not_reply_handle(self, message_id: str):
|
||||
pass
|
||||
|
||||
async def get_reply_probability(self, message_id: str):
|
||||
pass
|
||||
|
||||
async def bombing_buffer_message_handle(self, message_id: str):
|
||||
pass
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
Reference in New Issue
Block a user