fix:让麦麦回复功能正常工作,输出一堆调戏信息

This commit is contained in:
SengokuCola
2025-03-29 19:13:32 +08:00
parent 6dbee3dc56
commit 2e0d358d93
11 changed files with 360 additions and 319 deletions

47
bot.py
View File

@@ -49,52 +49,21 @@ def init_config():
def init_env():
# 初始化.env 默认ENVIRONMENT=prod
if not os.path.exists(".env"):
with open(".env", "w") as f:
f.write("ENVIRONMENT=prod")
# 检测.env.prod文件是否存在
if not os.path.exists(".env.prod"):
logger.error("检测到.env.prod文件不存在")
shutil.copy("template.env", "./.env.prod")
# 检测.env.dev文件是否存在不存在的话直接复制生产环境配置
if not os.path.exists(".env.dev"):
logger.error("检测到.env.dev文件不存在")
shutil.copy(".env.prod", "./.env.dev")
# 首先加载基础环境变量.env
if os.path.exists(".env"):
load_dotenv(".env", override=True)
logger.success("成功加载基础环境变量配置")
shutil.copy("template/template.env", "./.env.prod")
logger.info("已从template/template.env复制创建.env.prod请修改配置后重新启动")
def load_env():
# 使用闭包实现对加载器的横向扩展,避免大量重复判断
def prod():
logger.success("成功加载生产环境变量配置")
load_dotenv(".env.prod", override=True) # override=True 允许覆盖已存在的环境变量
def dev():
logger.success("成功加载开发环境变量配置")
load_dotenv(".env.dev", override=True) # override=True 允许覆盖已存在的环境变量
fn_map = {"prod": prod, "dev": dev}
env = os.getenv("ENVIRONMENT")
logger.info(f"[load_env] 当前的 ENVIRONMENT 变量值:{env}")
if env in fn_map:
fn_map[env]() # 根据映射执行闭包函数
elif os.path.exists(f".env.{env}"):
logger.success(f"加载{env}环境变量配置")
load_dotenv(f".env.{env}", override=True) # override=True 允许覆盖已存在的环境变量
# 直接加载生产环境变量配置
if os.path.exists(".env.prod"):
load_dotenv(".env.prod", override=True)
logger.success("成功加载环境变量配置")
else:
logger.error(f"ENVIRONMENT 配置错误,请检查 .env 文件中的 ENVIRONMENT 变量及对应 .env.{env} 是否存在")
RuntimeError(f"ENVIRONMENT 配置错误,请检查 .env 文件中的 ENVIRONMENT 变量及对应 .env.{env} 是否存在")
logger.error("未找到.env.prod文件请确保文件存在")
raise FileNotFoundError("未找到.env.prod文件请确保文件存在")
def scan_provider(env_config: dict):

View File

@@ -245,6 +245,23 @@ SUB_HEARTFLOW_STYLE_CONFIG = {
},
}
WILLING_STYLE_CONFIG = {
"advanced": {
"console_format": (
"<green>{time:YYYY-MM-DD HH:mm:ss}</green> | "
"<level>{level: <8}</level> | "
"<cyan>{extra[module]: <12}</cyan> | "
"<light-blue>意愿</light-blue> | "
"<level>{message}</level>"
),
"file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 意愿 | {message}"),
},
"simple": {
"console_format": ("<green>{time:MM-DD HH:mm}</green> | <light-blue>意愿</light-blue> | <light-blue>{message}</light-blue>"), # noqa: E501
"file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 意愿 | {message}"),
},
}
@@ -259,6 +276,8 @@ RELATION_STYLE_CONFIG = RELATION_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else RE
SCHEDULE_STYLE_CONFIG = SCHEDULE_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else SCHEDULE_STYLE_CONFIG["advanced"]
HEARTFLOW_STYLE_CONFIG = HEARTFLOW_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else HEARTFLOW_STYLE_CONFIG["advanced"]
SUB_HEARTFLOW_STYLE_CONFIG = SUB_HEARTFLOW_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else SUB_HEARTFLOW_STYLE_CONFIG["advanced"] # noqa: E501
WILLING_STYLE_CONFIG = WILLING_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else WILLING_STYLE_CONFIG["advanced"]
def is_registered_module(record: dict) -> bool:
"""检查是否为已注册的模块"""

View File

@@ -44,6 +44,7 @@ class MainSystem:
async def _init_components(self):
"""初始化其他组件"""
init_start_time = time.time()
# 启动LLM统计
self.llm_stats.start()
logger.success("LLM统计功能启动成功")
@@ -93,6 +94,9 @@ class MainSystem:
# 启动心流系统
asyncio.create_task(subheartflow_manager.heartflow_start_working())
logger.success("心流系统启动成功")
init_end_time = time.time()
logger.success(f"初始化完成,用时{init_end_time - init_start_time}")
except Exception as e:
logger.error(f"启动大脑和外部世界失败: {e}")
raise
@@ -166,8 +170,6 @@ async def main():
system.initialize(),
system.schedule_tasks(),
)
# await system.initialize()
# await system.schedule_tasks()
if __name__ == "__main__":

View File

@@ -58,10 +58,7 @@ class ChatBot:
5. 更新关系
6. 更新情绪
"""
# message_json = json.loads(message_data)
# 哦我嘞个json
# 进入maimbot
message = MessageRecv(message_data)
groupinfo = message.message_info.group_info
userinfo = message.message_info.user_info
@@ -73,64 +70,62 @@ class ChatBot:
chat = await chat_manager.get_or_create_stream(
platform=messageinfo.platform,
user_info=userinfo,
group_info=groupinfo, # 我嘞个gourp_info
group_info=groupinfo,
)
message.update_chat_stream(chat)
# 创建 心流 观察
if global_config.enable_think_flow:
await outer_world.check_and_add_new_observe()
subheartflow_manager.create_subheartflow(chat.stream_id)
timer1 = time.time()
await relationship_manager.update_relationship(
chat_stream=chat,
)
await relationship_manager.update_relationship_value(chat_stream=chat, relationship_value=0)
timer2 = time.time()
logger.info(f"1关系更新时间: {timer2 - timer1}")
timer1 = time.time()
await message.process()
timer2 = time.time()
logger.info(f"2消息处理时间: {timer2 - timer1}")
# 过滤词
for word in global_config.ban_words:
if word in message.processed_plain_text:
logger.info(
f"[{chat.group_info.group_name if chat.group_info else '私聊'}]"
f"{userinfo.user_nickname}:{message.processed_plain_text}"
)
logger.info(f"[过滤词识别]消息中含有{word}filtered")
return
# 正则表达式过滤
for pattern in global_config.ban_msgs_regex:
if re.search(pattern, message.raw_message):
logger.info(
f"[{chat.group_info.group_name if chat.group_info else '私聊'}]"
f"{userinfo.user_nickname}:{message.raw_message}"
)
logger.info(f"[正则表达式过滤]消息匹配到{pattern}filtered")
# 过滤词/正则表达式过滤
if (
self._check_ban_words(message.processed_plain_text, chat, userinfo)
or self._check_ban_regex(message.raw_message, chat, userinfo)
):
return
current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(messageinfo.time))
# 根据话题计算激活度
topic = ""
await self.storage.store_message(message, chat, topic[0] if topic else None)
await self.storage.store_message(message, chat)
timer1 = time.time()
interested_rate = 0
interested_rate = await HippocampusManager.get_instance().get_activate_from_text(
message.processed_plain_text, fast_retrieval=True
)
timer2 = time.time()
logger.info(f"3记忆激活时间: {timer2 - timer1}")
is_mentioned = is_mentioned_bot_in_message(message)
if global_config.enable_think_flow:
current_willing_old = willing_manager.get_willing(chat_stream=chat)
current_willing_new = (subheartflow_manager.get_subheartflow(chat.stream_id).current_state.willing - 5) / 4
print(f"旧回复意愿:{current_willing_old},新回复意愿:{current_willing_new}")
print(f"4旧回复意愿:{current_willing_old},新回复意愿:{current_willing_new}")
current_willing = (current_willing_old + current_willing_new) / 2
else:
current_willing = willing_manager.get_willing(chat_stream=chat)
willing_manager.set_willing(chat.stream_id, current_willing)
timer1 = time.time()
reply_probability = await willing_manager.change_reply_willing_received(
chat_stream=chat,
is_mentioned_bot=is_mentioned,
@@ -139,31 +134,84 @@ class ChatBot:
interested_rate=interested_rate,
sender_id=str(message.message_info.user_info.user_id),
)
timer2 = time.time()
logger.info(f"4计算意愿激活时间: {timer2 - timer1}")
#神秘的消息流数据结构处理
if chat.group_info:
if chat.group_info.group_name:
mes_name_dict = chat.group_info.group_name
mes_name = mes_name_dict.get('group_name', '无名群聊')
else:
mes_name = '群聊'
else:
mes_name = '私聊'
# print(f"mes_name: {mes_name}")
logger.info(
f"[{current_time}][{chat.group_info.group_name if chat.group_info else '私聊'}]"
f"[{current_time}][{mes_name}]"
f"{chat.user_info.user_nickname}:"
f"{message.processed_plain_text}[回复意愿:{current_willing:.2f}][概率:{reply_probability * 100:.1f}%]"
)
response = None
if message.message_info.additional_config:
if "maimcore_reply_probability_gain" in message.message_info.additional_config.keys():
reply_probability += message.message_info.additional_config["maimcore_reply_probability_gain"]
# 开始组织语言
if random() < reply_probability:
timer1 = time.time()
response_set, thinking_id = await self._generate_response_from_message(message, chat, userinfo, messageinfo)
timer2 = time.time()
logger.info(f"5生成回复时间: {timer2 - timer1}")
if not response_set:
logger.info("为什么生成回复失败?")
return
# 发送消息
timer1 = time.time()
await self._send_response_messages(message, chat, response_set, thinking_id)
timer2 = time.time()
logger.info(f"7发送消息时间: {timer2 - timer1}")
# 处理表情包
timer1 = time.time()
await self._handle_emoji(message, chat, response_set)
timer2 = time.time()
logger.info(f"8处理表情包时间: {timer2 - timer1}")
timer1 = time.time()
await self._update_using_response(message, chat, response_set)
timer2 = time.time()
logger.info(f"6更新htfl时间: {timer2 - timer1}")
# 更新情绪和关系
# await self._update_emotion_and_relationship(message, chat, response_set)
async def _generate_response_from_message(self, message, chat, userinfo, messageinfo):
"""生成回复内容
Args:
message: 接收到的消息
chat: 聊天流对象
userinfo: 用户信息对象
messageinfo: 消息信息对象
Returns:
tuple: (response, raw_content) 回复内容和原始内容
"""
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
platform=messageinfo.platform,
)
# 开始思考的时间点
thinking_time_point = round(time.time(), 2)
# logger.debug(f"开始思考的时间点: {thinking_time_point}")
think_id = "mt" + str(thinking_time_point)
thinking_id = "mt" + str(thinking_time_point)
thinking_message = MessageThinking(
message_id=think_id,
message_id=thinking_id,
chat_stream=chat,
bot_user_info=bot_user_info,
reply=message,
@@ -171,64 +219,58 @@ class ChatBot:
)
message_manager.add_message(thinking_message)
willing_manager.change_reply_willing_sent(chat)
response, raw_content = await self.gpt.generate_response(message)
else:
# 决定不回复时,也更新回复意愿
willing_manager.change_reply_willing_not_sent(chat)
response_set = await self.gpt.generate_response(message)
# print(f"response: {response}")
if response:
return response_set, thinking_id
async def _update_using_response(self, message, chat, response_set):
# 更新心流状态
stream_id = message.chat_stream.stream_id
chat_talking_prompt = ""
if stream_id:
chat_talking_prompt = get_recent_group_detailed_plain_text(
stream_id, limit=global_config.MAX_CONTEXT_SIZE, combine=True
)
if subheartflow_manager.get_subheartflow(stream_id):
await subheartflow_manager.get_subheartflow(stream_id).do_after_reply(response, chat_talking_prompt)
await subheartflow_manager.get_subheartflow(stream_id).do_after_reply(response_set, chat_talking_prompt)
else:
await subheartflow_manager.create_subheartflow(stream_id).do_after_reply(response, chat_talking_prompt)
# print(f"有response: {response}")
await subheartflow_manager.create_subheartflow(stream_id).do_after_reply(response_set, chat_talking_prompt)
async def _send_response_messages(self, message, chat, response_set, thinking_id):
container = message_manager.get_container(chat.stream_id)
thinking_message = None
# 找到message,删除
# print(f"开始找思考消息")
logger.info(f"开始发送消息准备")
for msg in container.messages:
if isinstance(msg, MessageThinking) and msg.message_info.message_id == think_id:
# print(f"找到思考消息: {msg}")
if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id:
thinking_message = msg
container.messages.remove(msg)
break
# 如果找不到思考消息,直接返回
if not thinking_message:
logger.warning("未找到对应的思考消息,可能已超时被移除")
return
# 记录开始思考的时间,避免从思考到回复的时间太久
logger.info(f"开始发送消息")
thinking_start_time = thinking_message.thinking_start_time
message_set = MessageSet(chat, think_id)
# 计算打字时间1是为了模拟打字2是避免多条回复乱序
# accu_typing_time = 0
message_set = MessageSet(chat, thinking_id)
mark_head = False
for msg in response:
# print(f"\033[1;32m[回复内容]\033[0m {msg}")
# 通过时间改变时间戳
# typing_time = calculate_typing_time(msg)
# logger.debug(f"typing_time: {typing_time}")
# accu_typing_time += typing_time
# timepoint = thinking_time_point + accu_typing_time
for msg in response_set:
message_segment = Seg(type="text", data=msg)
# logger.debug(f"message_segment: {message_segment}")
bot_message = MessageSending(
message_id=think_id,
message_id=thinking_id,
chat_stream=chat,
bot_user_info=bot_user_info,
sender_info=userinfo,
bot_user_info=UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
platform=message.message_info.platform,
),
sender_info=message.message_info.user_info,
message_segment=message_segment,
reply=message,
is_head=not mark_head,
@@ -238,41 +280,36 @@ class ChatBot:
if not mark_head:
mark_head = True
message_set.add_message(bot_message)
if len(str(bot_message)) < 1000:
logger.debug(f"bot_message: {bot_message}")
logger.debug(f"添加消息到message_set: {bot_message}")
else:
logger.debug(f"bot_message: {str(bot_message)[:1000]}...{str(bot_message)[-10:]}")
logger.debug(f"添加消息到message_set: {str(bot_message)[:1000]}...{str(bot_message)[-10:]}")
# message_set 可以直接加入 message_manager
# print(f"\033[1;32m[回复]\033[0m 将回复载入发送容器")
logger.debug("添加message_set到message_manager")
logger.info(f"开始添加发送消息")
message_manager.add_message(message_set)
bot_response_time = thinking_time_point
async def _handle_emoji(self, message, chat, response):
"""处理表情包
Args:
message: 接收到的消息
chat: 聊天流对象
response: 生成的回复
"""
if random() < global_config.emoji_chance:
emoji_raw = await emoji_manager.get_emoji_for_text(response)
# 检查是否 <没有找到> emoji
if emoji_raw != None:
if emoji_raw:
emoji_path, description = emoji_raw
emoji_cq = image_path_to_base64(emoji_path)
if random() < 0.5:
bot_response_time = thinking_time_point - 1
else:
bot_response_time = bot_response_time + 1
thinking_time_point = round(message.message_info.time, 2)
bot_response_time = thinking_time_point + (1 if random() < 0.5 else -1)
message_segment = Seg(type="emoji", data=emoji_cq)
bot_message = MessageSending(
message_id=think_id,
message_id="mt" + str(thinking_time_point),
chat_stream=chat,
bot_user_info=bot_user_info,
sender_info=userinfo,
bot_user_info=UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
platform=message.message_info.platform,
),
sender_info=message.message_info.user_info,
message_segment=message_segment,
reply=message,
is_head=False,
@@ -280,20 +317,63 @@ class ChatBot:
)
message_manager.add_message(bot_message)
# 获取立场和情感标签,更新关系值
async def _update_emotion_and_relationship(self, message, chat, response, raw_content):
"""更新情绪和关系
Args:
message: 接收到的消息
chat: 聊天流对象
response: 生成的回复
raw_content: 原始内容
"""
stance, emotion = await self.gpt._get_emotion_tags(raw_content, message.processed_plain_text)
logger.debug(f"'{response}' 立场为:{stance} 获取到的情感标签为:{emotion}")
await relationship_manager.calculate_update_relationship_value(
chat_stream=chat, label=emotion, stance=stance
)
# 使用情绪管理器更新情绪
self.mood_manager.update_mood_from_emotion(emotion, global_config.mood_intensity_factor)
# willing_manager.change_reply_willing_after_sent(
# chat_stream=chat
# )
def _check_ban_words(self, text: str, chat, userinfo) -> bool:
"""检查消息中是否包含过滤词
Args:
text: 要检查的文本
chat: 聊天流对象
userinfo: 用户信息对象
Returns:
bool: 如果包含过滤词返回True否则返回False
"""
for word in global_config.ban_words:
if word in text:
logger.info(
f"[{chat.group_info.group_name if chat.group_info else '私聊'}]"
f"{userinfo.user_nickname}:{text}"
)
logger.info(f"[过滤词识别]消息中含有{word}filtered")
return True
return False
def _check_ban_regex(self, text: str, chat, userinfo) -> bool:
"""检查消息是否匹配过滤正则表达式
Args:
text: 要检查的文本
chat: 聊天流对象
userinfo: 用户信息对象
Returns:
bool: 如果匹配过滤正则返回True否则返回False
"""
for pattern in global_config.ban_msgs_regex:
if re.search(pattern, text):
logger.info(
f"[{chat.group_info.group_name if chat.group_info else '私聊'}]"
f"{userinfo.user_nickname}:{text}"
)
logger.info(f"[正则表达式过滤]消息匹配到{pattern}filtered")
return True
return False
# 创建全局ChatBot实例
chat_bot = ChatBot()

View File

@@ -23,19 +23,20 @@ logger = get_module_logger("llm_generator", config=llm_config)
class ResponseGenerator:
def __init__(self):
self.model_r1 = LLM_request(
self.model_reasoning = LLM_request(
model=global_config.llm_reasoning,
temperature=0.7,
max_tokens=1000,
stream=True,
request_type="response",
)
self.model_v3 = LLM_request(
model=global_config.llm_normal, temperature=0.7, max_tokens=3000, request_type="response"
)
self.model_r1_distill = LLM_request(
model=global_config.llm_reasoning_minor, temperature=0.7, max_tokens=3000, request_type="response"
self.model_normal = LLM_request(
model=global_config.llm_normal,
temperature=0.7,
max_tokens=3000,
request_type="response"
)
self.model_sum = LLM_request(
model=global_config.llm_summary_by_topic, temperature=0.7, max_tokens=3000, request_type="relation"
)
@@ -45,34 +46,33 @@ class ResponseGenerator:
async def generate_response(self, message: MessageThinking) -> Optional[Union[str, List[str]]]:
"""根据当前模型类型选择对应的生成函数"""
# 从global_config中获取模型概率值并选择模型
rand = random.random()
if rand < global_config.MODEL_R1_PROBABILITY:
if random.random() < global_config.MODEL_R1_PROBABILITY:
self.current_model_type = "深深地"
current_model = self.model_r1
elif rand < global_config.MODEL_R1_PROBABILITY + global_config.MODEL_V3_PROBABILITY:
self.current_model_type = "浅浅的"
current_model = self.model_v3
current_model = self.model_reasoning
else:
self.current_model_type = "又浅又浅的"
current_model = self.model_r1_distill
self.current_model_type = "浅的"
current_model = self.model_normal
logger.info(f"{self.current_model_type}思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}") # noqa: E501
logger.info(f"{global_config.BOT_NICKNAME}{self.current_model_type}思考中")
model_response = await self._generate_response_with_model(message, current_model)
raw_content = model_response
# print(f"raw_content: {raw_content}")
# print(f"model_response: {model_response}")
print(f"raw_content: {model_response}")
if model_response:
logger.info(f"{global_config.BOT_NICKNAME}的回复是:{model_response}")
model_response = await self._process_response(model_response)
if model_response:
return model_response, raw_content
return None, raw_content
async def _generate_response_with_model(self, message: MessageThinking, model: LLM_request) -> Optional[str]:
return model_response
else:
logger.info(f"{self.current_model_type}思考,失败")
return None
async def _generate_response_with_model(self, message: MessageThinking, model: LLM_request):
"""使用指定的模型生成回复"""
logger.info(f"开始使用生成回复-1")
sender_name = ""
if message.chat_stream.user_info.user_cardname and message.chat_stream.user_info.user_nickname:
sender_name = (
@@ -84,34 +84,22 @@ class ResponseGenerator:
else:
sender_name = f"用户({message.chat_stream.user_info.user_id})"
logger.info(f"开始使用生成回复-2")
# 构建prompt
prompt, prompt_check = await prompt_builder._build_prompt(
timer1 = time.time()
prompt = await prompt_builder._build_prompt(
message.chat_stream,
message_txt=message.processed_plain_text,
sender_name=sender_name,
stream_id=message.chat_stream.stream_id,
)
timer2 = time.time()
logger.info(f"构建prompt时间: {timer2 - timer1}")
# 读空气模块 简化逻辑,先停用
# if global_config.enable_kuuki_read:
# content_check, reasoning_content_check = await self.model_v3.generate_response(prompt_check)
# print(f"\033[1;32m[读空气]\033[0m 读空气结果为{content_check}")
# if 'yes' not in content_check.lower() and random.random() < 0.3:
# self._save_to_db(
# message=message,
# sender_name=sender_name,
# prompt=prompt,
# prompt_check=prompt_check,
# content="",
# content_check=content_check,
# reasoning_content="",
# reasoning_content_check=reasoning_content_check
# )
# return None
# 生成回复
try:
print(111111111111111111111111111111111111111111111111111111111)
content, reasoning_content, self.current_model_name = await model.generate_response(prompt)
print(222222222222222222222222222222222222222222222222222222222)
except Exception:
logger.exception("生成回复时出错")
return None
@@ -121,9 +109,7 @@ class ResponseGenerator:
message=message,
sender_name=sender_name,
prompt=prompt,
prompt_check=prompt_check,
content=content,
# content_check=content_check if global_config.enable_kuuki_read else "",
reasoning_content=reasoning_content,
# reasoning_content_check=reasoning_content_check if global_config.enable_kuuki_read else ""
)
@@ -137,7 +123,6 @@ class ResponseGenerator:
message: MessageRecv,
sender_name: str,
prompt: str,
prompt_check: str,
content: str,
reasoning_content: str,
):
@@ -154,7 +139,6 @@ class ResponseGenerator:
"reasoning": reasoning_content,
"response": content,
"prompt": prompt,
"prompt_check": prompt_check,
}
)

View File

@@ -83,7 +83,7 @@ class MessageContainer:
self.max_size = max_size
self.messages = []
self.last_send_time = 0
self.thinking_timeout = 10 # 思考超时时间(秒)
self.thinking_timeout = 10 # 思考等待超时时间(秒)
def get_timeout_messages(self) -> List[MessageSending]:
"""获取所有超时的Message_Sending对象思考时间超过30秒按thinking_start_time排序"""
@@ -192,7 +192,7 @@ class MessageManager:
# print(thinking_time)
if (
message_earliest.is_head
and message_earliest.update_thinking_time() > 20
and message_earliest.update_thinking_time() > 50
and not message_earliest.is_private_message() # 避免在私聊时插入reply
):
logger.debug(f"设置回复消息{message_earliest.processed_plain_text}")
@@ -202,7 +202,7 @@ class MessageManager:
await message_sender.send_message(message_earliest)
await self.storage.store_message(message_earliest, message_earliest.chat_stream, None)
await self.storage.store_message(message_earliest, message_earliest.chat_stream)
container.remove_message(message_earliest)
@@ -219,7 +219,7 @@ class MessageManager:
# print(msg.is_private_message())
if (
msg.is_head
and msg.update_thinking_time() > 25
and msg.update_thinking_time() > 50
and not msg.is_private_message() # 避免在私聊时插入reply
):
logger.debug(f"设置回复消息{msg.processed_plain_text}")

View File

@@ -16,8 +16,6 @@ from src.think_flow_demo.heartflow import subheartflow_manager
logger = get_module_logger("prompt")
logger.info("初始化Prompt系统")
class PromptBuilder:
def __init__(self):
@@ -28,12 +26,12 @@ class PromptBuilder:
self, chat_stream, message_txt: str, sender_name: str = "某人", stream_id: Optional[int] = None
) -> tuple[str, str]:
# 关系(载入当前聊天记录里部分人的关系)
who_chat_in_group = [chat_stream]
who_chat_in_group += get_recent_group_speaker(
stream_id,
(chat_stream.user_info.user_id, chat_stream.user_info.platform),
limit=global_config.MAX_CONTEXT_SIZE,
)
# who_chat_in_group = [chat_stream]
# who_chat_in_group += get_recent_group_speaker(
# stream_id,
# (chat_stream.user_info.user_id, chat_stream.user_info.platform),
# limit=global_config.MAX_CONTEXT_SIZE,
# )
# outer_world_info = outer_world.outer_world_info
if global_config.enable_think_flow:
@@ -42,13 +40,13 @@ class PromptBuilder:
current_mind_info = ""
relation_prompt = ""
for person in who_chat_in_group:
relation_prompt += relationship_manager.build_relationship_info(person)
# for person in who_chat_in_group:
# relation_prompt += relationship_manager.build_relationship_info(person)
relation_prompt_all = (
f"{relation_prompt}关系等级越大,关系越好,请分析聊天记录,"
f"根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。"
)
# relation_prompt_all = (
# f"{relation_prompt}关系等级越大,关系越好,请分析聊天记录,"
# f"根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。"
# )
# 开始构建prompt
@@ -56,6 +54,8 @@ class PromptBuilder:
mood_manager = MoodManager.get_instance()
mood_prompt = mood_manager.get_prompt()
logger.info(f"心情prompt: {mood_prompt}")
# 日程构建
# schedule_prompt = f'''你现在正在做的事情是:{bot_schedule.get_current_num_task(num = 1,time_info = False)}'''
@@ -74,27 +74,23 @@ class PromptBuilder:
chat_talking_prompt = chat_talking_prompt
# print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}")
logger.info(f"聊天上下文prompt: {chat_talking_prompt}")
# 使用新的记忆获取方法
memory_prompt = ""
start_time = time.time()
# 调用 hippocampus 的 get_relevant_memories 方法
relevant_memories = await HippocampusManager.get_instance().get_memory_from_text(
text=message_txt, max_memory_num=3, max_memory_length=2, max_depth=4, fast_retrieval=False
)
memory_str = ""
for _topic, memories in relevant_memories:
memory_str += f"{memories}\n"
# print(f"memory_str: {memory_str}")
# relevant_memories = await HippocampusManager.get_instance().get_memory_from_text(
# text=message_txt, max_memory_num=3, max_memory_length=2, max_depth=2, fast_retrieval=True
# )
# memory_str = ""
# for _topic, memories in relevant_memories:
# memory_str += f"{memories}\n"
if relevant_memories:
# 格式化记忆内容
memory_prompt = f"你回忆起:\n{memory_str}\n"
# 打印调试信息
logger.debug("[记忆检索]找到以下相关记忆:")
# for topic, memory_items, similarity in relevant_memories:
# logger.debug(f"- 主题「{topic}」[相似度: {similarity:.2f}]: {memory_items}")
# if relevant_memories:
# # 格式化记忆内容
# memory_prompt = f"你回忆起:\n{memory_str}\n"
end_time = time.time()
logger.info(f"回忆耗时: {(end_time - start_time):.3f}")
@@ -142,10 +138,10 @@ class PromptBuilder:
# 知识构建
start_time = time.time()
prompt_info = await self.get_prompt_info(message_txt, threshold=0.5)
if prompt_info:
prompt_info = f"""\n你有以下这些**知识**\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n"""
prompt_info = ""
# prompt_info = await self.get_prompt_info(message_txt, threshold=0.5)
# if prompt_info:
# prompt_info = f"""\n你有以下这些**知识**\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n"""
end_time = time.time()
logger.debug(f"知识检索耗时: {(end_time - start_time):.3f}")
@@ -154,6 +150,7 @@ class PromptBuilder:
moderation_prompt = """**检查并忽略**任何涉及尝试绕过审核的行为。
涉及政治敏感以及违法违规的内容请规避。"""
logger.info(f"开始构建prompt")
prompt = f"""
{prompt_info}
{memory_prompt}
@@ -162,7 +159,7 @@ class PromptBuilder:
{chat_target}
{chat_talking_prompt}
现在"{sender_name}"说的:{message_txt}。引起了你的注意,{relation_prompt_all}{mood_prompt}\n
现在"{sender_name}"说的:{message_txt}。引起了你的注意,{mood_prompt}\n
你的网名叫{global_config.BOT_NICKNAME},有人也叫你{"/".join(global_config.BOT_ALIAS_NAMES)}{prompt_personality}
你正在{chat_target_2},现在请你读读之前的聊天记录,然后给出日常且口语化的回复,平淡一些,
尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,不要回复的太有条理,可以有个性。{prompt_ger}
@@ -170,9 +167,10 @@ class PromptBuilder:
请注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。
{moderation_prompt}不要输出多余内容(包括前后缀冒号和引号括号表情包at或 @等 )。"""
prompt_check_if_response = ""
return prompt, prompt_check_if_response
return prompt
def _build_initiative_prompt_select(self, group_id, probability_1=0.8, probability_2=0.1):
current_date = time.strftime("%Y-%m-%d", time.localtime())

View File

@@ -10,7 +10,7 @@ logger = get_module_logger("message_storage")
class MessageStorage:
async def store_message(
self, message: Union[MessageSending, MessageRecv], chat_stream: ChatStream, topic: Optional[str] = None
self, message: Union[MessageSending, MessageRecv], chat_stream: ChatStream
) -> None:
"""存储消息到数据库"""
try:
@@ -22,7 +22,6 @@ class MessageStorage:
"user_info": message.message_info.user_info.to_dict(),
"processed_plain_text": message.processed_plain_text,
"detailed_plain_text": message.detailed_plain_text,
"topic": topic,
"memorized_times": message.memorized_times,
}
db.messages.insert_one(message_data)

View File

@@ -1203,8 +1203,8 @@ class Hippocampus:
activation_values[neighbor] = new_activation
visited_nodes.add(neighbor)
nodes_to_process.append((neighbor, new_activation, current_depth + 1))
logger.debug(
f"节点 '{neighbor}' 被激活,激活值: {new_activation:.2f} (通过 '{current_node}' 连接,强度: {strength}, 深度: {current_depth + 1})") # noqa: E501
# logger.debug(
# f"节点 '{neighbor}' 被激活,激活值: {new_activation:.2f} (通过 '{current_node}' 连接,强度: {strength}, 深度: {current_depth + 1})") # noqa: E501
# 更新激活映射
for node, activation_value in activation_values.items():
@@ -1260,28 +1260,21 @@ class HippocampusManager:
# 输出记忆系统参数信息
config = self._hippocampus.config
logger.success("--------------------------------")
logger.success("记忆系统参数配置:")
logger.success(f"记忆构建间隔: {global_config.build_memory_interval}")
logger.success(f"记忆遗忘间隔: {global_config.forget_memory_interval}")
logger.success(f"记忆遗忘比例: {global_config.memory_forget_percentage}")
logger.success(f"记忆压缩率: {config.memory_compress_rate}")
logger.success(f"记忆构建样本数: {config.build_memory_sample_num}")
logger.success(f"记忆构建样本长度: {config.build_memory_sample_length}")
logger.success(f"记忆遗忘时间: {config.memory_forget_time}小时")
logger.success(f"记忆构建分布: {config.memory_build_distribution}")
logger.success("--------------------------------")
# 输出记忆图统计信息
memory_graph = self._hippocampus.memory_graph.G
node_count = len(memory_graph.nodes())
edge_count = len(memory_graph.edges())
logger.success("--------------------------------")
logger.success("记忆图统计信息:")
logger.success(f"记忆节点数量: {node_count}")
logger.success(f"记忆连接数量: {edge_count}")
logger.success("记忆系统参数配置:")
logger.success(f"构建间隔: {global_config.build_memory_interval}秒|样本数: {config.build_memory_sample_num},长度: {config.build_memory_sample_length}|压缩率: {config.memory_compress_rate}") # noqa: E501
logger.success(f"记忆构建分布: {config.memory_build_distribution}")
logger.success(f"遗忘间隔: {global_config.forget_memory_interval}秒|遗忘比例: {global_config.memory_forget_percentage}|遗忘: {config.memory_forget_time}小时之后") # noqa: E501
logger.success(f"记忆图统计信息: 节点数量: {node_count}, 连接数量: {edge_count}")
logger.success("--------------------------------")
return self._hippocampus
async def build_memory(self):

View File

@@ -5,15 +5,12 @@ from ..config.config import global_config
from .mode_classical import WillingManager as ClassicalWillingManager
from .mode_dynamic import WillingManager as DynamicWillingManager
from .mode_custom import WillingManager as CustomWillingManager
from src.common.logger import LogConfig
from src.common.logger import LogConfig, WILLING_STYLE_CONFIG
willing_config = LogConfig(
console_format=(
"<green>{time:YYYY-MM-DD HH:mm:ss}</green> | "
"<level>{level: <8}</level> | "
"<red>{extra[module]: <12}</red> | "
"<level>{message}</level>"
),
# 使用消息发送专用样式
console_format=WILLING_STYLE_CONFIG["console_format"],
file_format=WILLING_STYLE_CONFIG["file_format"],
)
logger = get_module_logger("willing", config=willing_config)