初始化

This commit is contained in:
雅诺狐
2025-08-11 19:34:18 +08:00
parent ff7d1177fa
commit 2d4745cd58
257 changed files with 69069 additions and 0 deletions

View File

@@ -0,0 +1,269 @@
[inner]
version = "6.2.3"
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
#如果你想要修改配置文件请递增version的值
#如果新增项目请阅读src/config/official_configs.py中的说明
#
# 版本格式:主版本号.次版本号.修订号,版本号递增规则如下:
# 主版本号MMC版本更新
# 次版本号:配置文件内容大更新
# 修订号:配置文件内容小更新
#----以上是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
[database]
# 数据库配置
database_type = "sqlite" # 数据库类型,支持 "sqlite" 或 "mysql"
# SQLite 配置(当 database_type = "sqlite" 时使用)
sqlite_path = "data/MaiBot.db" # SQLite数据库文件路径
# MySQL 配置(当 database_type = "mysql" 时使用)
mysql_host = "localhost" # MySQL服务器地址
mysql_port = 3306 # MySQL服务器端口
mysql_database = "maibot" # MySQL数据库名
mysql_user = "root" # MySQL用户名
mysql_password = "" # MySQL密码
mysql_charset = "utf8mb4" # MySQL字符集
mysql_unix_socket = "" # MySQL Unix套接字路径可选用于本地连接优先于host/port
# MySQL SSL 配置
mysql_ssl_mode = "DISABLED" # SSL模式: DISABLED, PREFERRED, REQUIRED, VERIFY_CA, VERIFY_IDENTITY
mysql_ssl_ca = "" # SSL CA证书路径
mysql_ssl_cert = "" # SSL客户端证书路径
mysql_ssl_key = "" # SSL客户端密钥路径
# MySQL 高级配置
mysql_autocommit = true # 自动提交事务
mysql_sql_mode = "TRADITIONAL" # SQL模式
# 连接池配置
connection_pool_size = 10 # 连接池大小仅MySQL有效
connection_timeout = 10 # 连接超时时间(秒)
[bot]
platform = "qq"
qq_account = 1145141919810 # 麦麦的QQ账号
nickname = "麦麦" # 麦麦的昵称
alias_names = ["麦叠", "牢麦"] # 麦麦的别名
[personality]
# 建议50字以内描述人格的核心特质
personality_core = "是一个积极向上的女大学生"
# 人格的细节,描述人格的一些侧面
personality_side = "用一句话或几句话描述人格的侧面特质"
#アイデンティティがない 生まれないらららら
# 可以描述外貌,性别,身高,职业,属性等等描述
identity = "年龄为19岁,是女孩子,身高为160cm,有黑色的短发"
# 描述麦麦说话的表达风格,表达习惯,如要修改,可以酌情新增内容
reply_style = "回复可以简短一些。可以参考贴吧,知乎和微博的回复风格,回复不要浮夸,不要用夸张修辞,平淡一些。"
compress_personality = false # 是否压缩人格压缩后会精简人格信息节省token消耗并提高回复性能但是会丢失一些信息如果人设不长可以关闭
compress_identity = true # 是否压缩身份压缩后会精简身份信息节省token消耗并提高回复性能但是会丢失一些信息如果不长可以关闭
[expression]
# 表达学习配置
expression_learning = [ # 表达学习配置列表,支持按聊天流配置
["", "enable", "enable", 1.0], # 全局配置使用表达启用学习学习强度1.0
["qq:1919810:group", "enable", "enable", 1.5], # 特定群聊配置使用表达启用学习学习强度1.5
["qq:114514:private", "enable", "disable", 0.5], # 特定私聊配置使用表达禁用学习学习强度0.5
# 格式说明:
# 第一位: chat_stream_id空字符串表示全局配置
# 第二位: 是否使用学到的表达 ("enable"/"disable")
# 第三位: 是否学习表达 ("enable"/"disable")
# 第四位: 学习强度(浮点数),影响学习频率,最短学习时间间隔 = 300/学习强度(秒)
# 学习强度越高,学习越频繁;学习强度越低,学习越少
]
expression_groups = [
["qq:1919810:private","qq:114514:private","qq:1111111:group"], # 在这里设置互通组相同组的chat_id会共享学习到的表达方式
# 格式:["qq:123456:private","qq:654321:group"]
# 注意如果为群聊则需要设置为group如果设置为私聊则需要设置为private
]
[chat] #麦麦的聊天通用设置
focus_value = 1
# 麦麦的专注思考能力越高越容易专注可能消耗更多token
# 专注时能更好把握发言时机,能够进行持久的连续对话
talk_frequency = 1 # 麦麦活跃度,越高,麦麦回复越频繁
max_context_size = 25 # 上下文长度
thinking_timeout = 40 # 麦麦一次回复最长思考规划时间超过这个时间的思考会放弃往往是api反应太慢
replyer_random_probability = 0.5 # 首要replyer模型被选择的概率
mentioned_bot_inevitable_reply = true # 提及 bot 大概率回复
at_bot_inevitable_reply = true # @bot 或 提及bot 大概率回复
talk_frequency_adjust = [
["", "8:00,1", "12:00,1.2", "18:00,1.5", "01:00,0.6"],
["qq:114514:group", "12:20,1", "16:10,2", "20:10,1", "00:10,0.3"],
["qq:1919810:private", "8:20,1", "12:10,2", "20:10,1.5", "00:10,0.2"]
]
# 基于聊天流的个性化活跃度配置
# 格式:[["platform:chat_id:type", "HH:MM,frequency", "HH:MM,frequency", ...], ...]
# 全局配置示例:
# [["", "8:00,1", "12:00,2", "18:00,1.5", "00:00,0.5"]]
# 特定聊天流配置示例:
# [
# ["", "8:00,1", "12:00,1.2", "18:00,1.5", "01:00,0.6"], # 全局默认配置
# ["qq:1026294844:group", "12:20,1", "16:10,2", "20:10,1", "00:10,0.3"], # 特定群聊配置
# ["qq:729957033:private", "8:20,1", "12:10,2", "20:10,1.5", "00:10,0.2"] # 特定私聊配置
# ]
# 说明:
# - 当第一个元素为空字符串""时,表示全局默认配置
# - 当第一个元素为"platform:id:type"格式时,表示特定聊天流配置
# - 后续元素是"时间,频率"格式,表示从该时间开始使用该活跃度,直到下一个时间点
# - 优先级:特定聊天流配置 > 全局配置 > 默认 talk_frequency
[relationship]
enable_relationship = true # 是否启用关系系统
relation_frequency = 1 # 关系频率,麦麦构建关系的频率
[message_receive]
# 以下是消息过滤,可以根据规则过滤特定消息,将不会读取这些消息
ban_words = [
# "403","张三"
]
ban_msgs_regex = [
# 需要过滤的消息(原始消息)匹配的正则表达式,匹配到的消息将被过滤,若不了解正则表达式请勿修改
#"https?://[^\\s]+", # 匹配https链接
#"\\d{4}-\\d{2}-\\d{2}", # 匹配日期
]
[normal_chat] #普通聊天
willing_mode = "classical" # 回复意愿模式 —— 经典模式classicalmxp模式mxp自定义模式custom需要你自己实现
[tool]
enable_tool = false # 是否在普通聊天中启用工具
[mood]
enable_mood = true # 是否启用情绪系统
mood_update_threshold = 1 # 情绪更新阈值,越高,更新越慢
[emoji]
emoji_chance = 0.6 # 麦麦激活表情包动作的概率
emoji_activate_type = "llm" # 表情包激活类型可选randomllm ; random下表情包动作随机启用llm下表情包动作根据llm判断是否启用
max_reg_num = 60 # 表情包最大注册数量
do_replace = true # 开启则在达到最大数量时删除(替换)表情包,关闭则达到最大数量时不会继续收集表情包
check_interval = 10 # 检查表情包(注册,破损,删除)的时间间隔(分钟)
steal_emoji = true # 是否偷取表情包,让麦麦可以将一些表情包据为己有
content_filtration = false # 是否启用表情包过滤,只有符合该要求的表情包才会被保存
filtration_prompt = "符合公序良俗" # 表情包过滤要求,只有符合该要求的表情包才会被保存
[memory]
enable_memory = true # 是否启用记忆系统
memory_build_interval = 600 # 记忆构建间隔 单位秒 间隔越低,麦麦学习越多,但是冗余信息也会增多
memory_build_distribution = [6.0, 3.0, 0.6, 32.0, 12.0, 0.4] # 记忆构建分布参数分布1均值标准差权重分布2均值标准差权重
memory_build_sample_num = 8 # 采样数量,数值越高记忆采样次数越多
memory_build_sample_length = 30 # 采样长度,数值越高一段记忆内容越丰富
memory_compress_rate = 0.1 # 记忆压缩率 控制记忆精简程度 建议保持默认,调高可以获得更多信息,但是冗余信息也会增多
forget_memory_interval = 3000 # 记忆遗忘间隔 单位秒 间隔越低,麦麦遗忘越频繁,记忆更精简,但更难学习
memory_forget_time = 48 #多长时间后的记忆会被遗忘 单位小时
memory_forget_percentage = 0.008 # 记忆遗忘比例 控制记忆遗忘程度 越大遗忘越多 建议保持默认
consolidate_memory_interval = 1000 # 记忆整合间隔 单位秒 间隔越低,麦麦整合越频繁,记忆更精简
consolidation_similarity_threshold = 0.7 # 相似度阈值
consolidation_check_percentage = 0.05 # 检查节点比例
enable_instant_memory = false # 是否启用即时记忆,测试功能,可能存在未知问题
#不希望记忆的词,已经记忆的不会受到影响,需要手动清理
memory_ban_words = [ "表情包", "图片", "回复", "聊天记录" ]
[voice]
enable_asr = false # 是否启用语音识别,启用后麦麦可以识别语音消息,启用该功能需要配置语音识别模型[model.voice]s
[lpmm_knowledge] # lpmm知识库配置
enable = false # 是否启用lpmm知识库
rag_synonym_search_top_k = 10 # 同义词搜索TopK
rag_synonym_threshold = 0.8 # 同义词阈值(相似度高于此阈值的词语会被认为是同义词)
info_extraction_workers = 3 # 实体提取同时执行线程数非Pro模型不要设置超过5
qa_relation_search_top_k = 10 # 关系搜索TopK
qa_relation_threshold = 0.5 # 关系阈值(相似度高于此阈值的关系会被认为是相关的关系)
qa_paragraph_search_top_k = 1000 # 段落搜索TopK不能过小可能影响搜索结果
qa_paragraph_node_weight = 0.05 # 段落节点权重(在图搜索&PPR计算中的权重当搜索仅使用DPR时此参数不起作用
qa_ent_filter_top_k = 10 # 实体过滤TopK
qa_ppr_damping = 0.8 # PPR阻尼系数
qa_res_top_k = 3 # 最终提供的文段TopK
embedding_dimension = 1024 # 嵌入向量维度,应该与模型的输出维度一致
# keyword_rules 用于设置关键词触发的额外回复知识
# 添加新规则方法:在 keyword_rules 数组中增加一项,格式如下:
# { keywords = ["关键词1", "关键词2"], reaction = "触发这些关键词时的回复内容" }
# 例如添加一个新规则当检测到“你好”或“hello”时回复“你好有什么可以帮你
# { keywords = ["你好", "hello"], reaction = "你好,有什么可以帮你?" }
[keyword_reaction]
keyword_rules = [
{ keywords = ["人机", "bot", "机器", "入机", "robot", "机器人", "ai", "AI"], reaction = "有人说你是人机或者机器人,否定这一事实,攻击或反问他。注意,只有认为你是机器人才回复,否则不要否认" },
{ keywords = ["测试关键词回复", "test"], reaction = "回答测试成功" },
#{ keywords = ["你好", "hello"], reaction = "你好,有什么可以帮你?" }
# 在此处添加更多规则,格式同上
]
regex_rules = [
{ regex = ["^(?P<n>\\S{1,20})是这样的$"], reaction = "请按照以下模板造句:[n]是这样的xx只要xx就可以可是[n]要考虑的事情就很多了比如什么时候xx什么时候xx什么时候xx。请自由发挥替换xx部分只需保持句式结构同时表达一种将[n]过度重视的反讽意味)" }
]
# 可以自定义部分提示词
[custom_prompt]
image_prompt = "请用中文描述这张图片的内容。如果有文字请把文字描述概括出来请留意其主题直观感受输出为一段平文本最多30字请注意不要分点就输出一段文本"
[response_post_process]
enable_response_post_process = true # 是否启用回复后处理,包括错别字生成器,回复分割器
[chinese_typo]
enable = true # 是否启用中文错别字生成器
error_rate=0.01 # 单字替换概率
min_freq=9 # 最小字频阈值
tone_error_rate=0.1 # 声调错误概率
word_replace_rate=0.006 # 整词替换概率
[response_splitter]
enable = true # 是否启用回复分割器
max_length = 512 # 回复允许的最大长度
max_sentence_num = 8 # 回复允许的最大句子数
enable_kaomoji_protection = false # 是否启用颜文字保护
[log]
date_style = "m-d H:i:s" # 日期格式
log_level_style = "lite" # 日志级别样式,可选FULLcompactlite
color_text = "full" # 日志文本颜色可选nonetitlefull
log_level = "INFO" # 全局日志级别(向下兼容,优先级低于下面的分别设置)
console_log_level = "INFO" # 控制台日志级别,可选: DEBUG, INFO, WARNING, ERROR, CRITICAL
file_log_level = "DEBUG" # 文件日志级别,可选: DEBUG, INFO, WARNING, ERROR, CRITICAL
# 第三方库日志控制
suppress_libraries = ["faiss","httpx", "urllib3", "asyncio", "websockets", "httpcore", "requests", "peewee", "openai","uvicorn","jieba"] # 完全屏蔽的库
library_log_levels = { "aiohttp" = "WARNING"} # 设置特定库的日志级别
[debug]
show_prompt = false # 是否显示prompt
[maim_message]
auth_token = [] # 认证令牌用于API验证为空则不启用验证
# 以下项目若要使用需要打开use_custom并单独配置maim_message的服务器
use_custom = false # 是否启用自定义的maim_message服务器注意这需要设置新的端口不能与.env重复
host="127.0.0.1"
port=8090
mode="ws" # 支持ws和tcp两种模式
use_wss = false # 是否使用WSS安全连接只支持ws模式
cert_file = "" # SSL证书文件路径仅在use_wss=true时有效
key_file = "" # SSL密钥文件路径仅在use_wss=true时有效
[telemetry] #发送统计信息,主要是看全球有多少只麦麦
enable = true
[experimental] #实验性功能
enable_friend_chat = false # 是否启用好友聊天

View File

@@ -0,0 +1,166 @@
[inner]
version = "1.2.0"
# 配置文件版本号迭代规则同bot_config.toml
[[api_providers]] # API服务提供商可以配置多个
name = "DeepSeek" # API服务商名称可随意命名在models的api-provider中需使用这个命名
base_url = "https://api.deepseek.cn/v1" # API服务商的BaseURL
api_key = "your-api-key-here" # API密钥请替换为实际的API密钥
client_type = "openai" # 请求客户端(可选,默认值为"openai"使用gimini等Google系模型时请配置为"gemini"
max_retry = 2 # 最大重试次数单个模型API调用失败最多重试的次数
timeout = 30 # API请求超时时间单位
retry_interval = 10 # 重试间隔时间(单位:秒)
[[api_providers]] # SiliconFlow的API服务商配置
name = "SiliconFlow"
base_url = "https://api.siliconflow.cn/v1"
api_key = "your-siliconflow-api-key"
client_type = "openai"
max_retry = 2
timeout = 30
retry_interval = 10
[[api_providers]] # 特殊Google的Gimini使用特殊API与OpenAI格式不兼容需要配置client为"gemini"
name = "Google"
base_url = "https://api.google.com/v1"
api_key = "your-google-api-key-1"
client_type = "gemini"
max_retry = 2
timeout = 30
retry_interval = 10
[[models]] # 模型(可以配置多个)
model_identifier = "deepseek-chat" # 模型标识符API服务商提供的模型标识符
name = "deepseek-v3" # 模型名称(可随意命名,在后面中需使用这个命名)
api_provider = "DeepSeek" # API服务商名称对应在api_providers中配置的服务商名称
price_in = 2.0 # 输入价格用于API调用统计单位元/ M token可选若无该字段默认值为0
price_out = 8.0 # 输出价格用于API调用统计单位元/ M token可选若无该字段默认值为0
#force_stream_mode = true # 强制流式输出模式若模型不支持非流式输出请取消该注释启用强制流式输出若无该字段默认值为false
[[models]]
model_identifier = "Pro/deepseek-ai/DeepSeek-V3"
name = "siliconflow-deepseek-v3"
api_provider = "SiliconFlow"
price_in = 2.0
price_out = 8.0
[[models]]
model_identifier = "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
name = "deepseek-r1-distill-qwen-32b"
api_provider = "SiliconFlow"
price_in = 4.0
price_out = 16.0
[[models]]
model_identifier = "Qwen/Qwen3-8B"
name = "qwen3-8b"
api_provider = "SiliconFlow"
price_in = 0
price_out = 0
[models.extra_params] # 可选的额外参数配置
enable_thinking = false # 不启用思考
[[models]]
model_identifier = "Qwen/Qwen3-14B"
name = "qwen3-14b"
api_provider = "SiliconFlow"
price_in = 0.5
price_out = 2.0
[models.extra_params] # 可选的额外参数配置
enable_thinking = false # 不启用思考
[[models]]
model_identifier = "Qwen/Qwen3-30B-A3B"
name = "qwen3-30b"
api_provider = "SiliconFlow"
price_in = 0.7
price_out = 2.8
[models.extra_params] # 可选的额外参数配置
enable_thinking = false # 不启用思考
[[models]]
model_identifier = "Qwen/Qwen2.5-VL-72B-Instruct"
name = "qwen2.5-vl-72b"
api_provider = "SiliconFlow"
price_in = 4.13
price_out = 4.13
[[models]]
model_identifier = "FunAudioLLM/SenseVoiceSmall"
name = "sensevoice-small"
api_provider = "SiliconFlow"
price_in = 0
price_out = 0
[[models]]
model_identifier = "BAAI/bge-m3"
name = "bge-m3"
api_provider = "SiliconFlow"
price_in = 0
price_out = 0
[model_task_config.utils] # 在麦麦的一些组件中使用的模型,例如表情包模块,取名模块,关系模块,是麦麦必须的模型
model_list = ["siliconflow-deepseek-v3"] # 使用的模型列表,每个子项对应上面的模型名称(name)
temperature = 0.2 # 模型温度新V3建议0.1-0.3
max_tokens = 800 # 最大输出token数
[model_task_config.utils_small] # 在麦麦的一些组件中使用的小模型,消耗量较大,建议使用速度较快的小模型
model_list = ["qwen3-8b"]
temperature = 0.7
max_tokens = 800
[model_task_config.replyer_1] # 首要回复模型,还用于表达器和表达方式学习
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.2 # 模型温度新V3建议0.1-0.3
max_tokens = 800
[model_task_config.replyer_2] # 次要回复模型
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.7
max_tokens = 800
[model_task_config.planner] #决策:负责决定麦麦该做什么的模型
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.3
max_tokens = 800
[model_task_config.emotion] #负责麦麦的情绪变化
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.3
max_tokens = 800
[model_task_config.vlm] # 图像识别模型
model_list = ["qwen2.5-vl-72b"]
max_tokens = 800
[model_task_config.voice] # 语音识别模型
model_list = ["sensevoice-small"]
[model_task_config.tool_use] #工具调用模型,需要使用支持工具调用的模型
model_list = ["qwen3-14b"]
temperature = 0.7
max_tokens = 800
#嵌入模型
[model_task_config.embedding]
model_list = ["bge-m3"]
#------------LPMM知识库模型------------
[model_task_config.lpmm_entity_extract] # 实体提取模型
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.2
max_tokens = 800
[model_task_config.lpmm_rdf_build] # RDF构建模型
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.2
max_tokens = 800
[model_task_config.lpmm_qa] # 问答模型
model_list = ["deepseek-r1-distill-qwen-32b"]
temperature = 0.7
max_tokens = 800

2
template/template.env Normal file
View File

@@ -0,0 +1,2 @@
HOST=127.0.0.1
PORT=8000