初始化

This commit is contained in:
雅诺狐
2025-08-11 19:34:18 +08:00
parent ff7d1177fa
commit 2d4745cd58
257 changed files with 69069 additions and 0 deletions

View File

@@ -0,0 +1,122 @@
"""LLM API模块
提供了与LLM模型交互的功能
使用方式:
from src.plugin_system.apis import llm_api
models = llm_api.get_available_models()
success, response, reasoning, model_name = await llm_api.generate_with_model(prompt, model_config)
"""
from typing import Tuple, Dict, List, Any, Optional
from src.common.logger import get_logger
from src.llm_models.payload_content.tool_option import ToolCall
from src.llm_models.utils_model import LLMRequest
from src.config.config import model_config
from src.config.api_ada_configs import TaskConfig
logger = get_logger("llm_api")
# =============================================================================
# LLM模型API函数
# =============================================================================
def get_available_models() -> Dict[str, TaskConfig]:
"""获取所有可用的模型配置
Returns:
Dict[str, Any]: 模型配置字典key为模型名称value为模型配置
"""
try:
# 自动获取所有属性并转换为字典形式
models = model_config.model_task_config
attrs = dir(models)
rets: Dict[str, TaskConfig] = {}
for attr in attrs:
if not attr.startswith("__"):
try:
value = getattr(models, attr)
if not callable(value) and isinstance(value, TaskConfig):
rets[attr] = value
except Exception as e:
logger.debug(f"[LLMAPI] 获取属性 {attr} 失败: {e}")
continue
return rets
except Exception as e:
logger.error(f"[LLMAPI] 获取可用模型失败: {e}")
return {}
async def generate_with_model(
prompt: str,
model_config: TaskConfig,
request_type: str = "plugin.generate",
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
) -> Tuple[bool, str, str, str]:
"""使用指定模型生成内容
Args:
prompt: 提示词
model_config: 模型配置(从 get_available_models 获取的模型配置)
request_type: 请求类型标识
Returns:
Tuple[bool, str, str, str]: (是否成功, 生成的内容, 推理过程, 模型名称)
"""
try:
model_name_list = model_config.model_list
logger.info(f"[LLMAPI] 使用模型集合 {model_name_list} 生成内容")
logger.debug(f"[LLMAPI] 完整提示词: {prompt}")
llm_request = LLMRequest(model_set=model_config, request_type=request_type)
response, (reasoning_content, model_name, _) = await llm_request.generate_response_async(prompt, temperature=temperature, max_tokens=max_tokens)
return True, response, reasoning_content, model_name
except Exception as e:
error_msg = f"生成内容时出错: {str(e)}"
logger.error(f"[LLMAPI] {error_msg}")
return False, error_msg, "", ""
async def generate_with_model_with_tools(
prompt: str,
model_config: TaskConfig,
tool_options: List[Dict[str, Any]] | None = None,
request_type: str = "plugin.generate",
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
) -> Tuple[bool, str, str, str, List[ToolCall] | None]:
"""使用指定模型和工具生成内容
Args:
prompt: 提示词
model_config: 模型配置(从 get_available_models 获取的模型配置)
tool_options: 工具选项列表
request_type: 请求类型标识
temperature: 温度参数
max_tokens: 最大token数
Returns:
Tuple[bool, str, str, str]: (是否成功, 生成的内容, 推理过程, 模型名称)
"""
try:
model_name_list = model_config.model_list
logger.info(f"[LLMAPI] 使用模型集合 {model_name_list} 生成内容")
logger.debug(f"[LLMAPI] 完整提示词: {prompt}")
llm_request = LLMRequest(model_set=model_config, request_type=request_type)
response, (reasoning_content, model_name, tool_call) = await llm_request.generate_response_async(
prompt,
tools=tool_options,
temperature=temperature,
max_tokens=max_tokens
)
return True, response, reasoning_content, model_name, tool_call
except Exception as e:
error_msg = f"生成内容时出错: {str(e)}"
logger.error(f"[LLMAPI] {error_msg}")
return False, error_msg, "", "", None