初始化

This commit is contained in:
雅诺狐
2025-08-11 19:34:18 +08:00
parent ff7d1177fa
commit 2d4745cd58
257 changed files with 69069 additions and 0 deletions

View File

@@ -0,0 +1,41 @@
"""
插件系统API模块
提供了插件开发所需的各种API
"""
# 导入所有API模块
from src.plugin_system.apis import (
chat_api,
component_manage_api,
config_api,
database_api,
emoji_api,
generator_api,
llm_api,
message_api,
person_api,
plugin_manage_api,
send_api,
tool_api,
)
from .logging_api import get_logger
from .plugin_register_api import register_plugin
# 导出所有API模块使它们可以通过 apis.xxx 方式访问
__all__ = [
"chat_api",
"component_manage_api",
"config_api",
"database_api",
"emoji_api",
"generator_api",
"llm_api",
"message_api",
"person_api",
"plugin_manage_api",
"send_api",
"get_logger",
"register_plugin",
"tool_api",
]

View File

@@ -0,0 +1,325 @@
"""
聊天API模块
专门负责聊天信息的查询和管理采用标准Python包设计模式
使用方式:
from src.plugin_system.apis import chat_api
streams = chat_api.get_all_group_streams()
chat_type = chat_api.get_stream_type(stream)
或者:
from src.plugin_system.apis.chat_api import ChatManager as chat
streams = chat.get_all_group_streams()
"""
from typing import List, Dict, Any, Optional
from enum import Enum
from src.common.logger import get_logger
from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager
logger = get_logger("chat_api")
class SpecialTypes(Enum):
"""特殊枚举类型"""
ALL_PLATFORMS = "all_platforms"
class ChatManager:
"""聊天管理器 - 专门负责聊天信息的查询和管理"""
@staticmethod
def get_all_streams(platform: Optional[str] | SpecialTypes = "qq") -> List[ChatStream]:
# sourcery skip: for-append-to-extend
"""获取所有聊天流
Args:
platform: 平台筛选,默认为"qq", 可以使用 SpecialTypes.ALL_PLATFORMS 获取所有平台的群聊流
Returns:
List[ChatStream]: 聊天流列表
Raises:
TypeError: 如果 platform 不是字符串或 SpecialTypes 枚举类型
"""
if not isinstance(platform, (str, SpecialTypes)):
raise TypeError("platform 必须是字符串或是 SpecialTypes 枚举")
streams = []
try:
for _, stream in get_chat_manager().streams.items():
if platform == SpecialTypes.ALL_PLATFORMS or stream.platform == platform:
streams.append(stream)
logger.debug(f"[ChatAPI] 获取到 {len(streams)}{platform} 平台的聊天流")
except Exception as e:
logger.error(f"[ChatAPI] 获取聊天流失败: {e}")
return streams
@staticmethod
def get_group_streams(platform: Optional[str] | SpecialTypes = "qq") -> List[ChatStream]:
# sourcery skip: for-append-to-extend
"""获取所有群聊聊天流
Args:
platform: 平台筛选,默认为"qq", 可以使用 SpecialTypes.ALL_PLATFORMS 获取所有平台的群聊流
Returns:
List[ChatStream]: 群聊聊天流列表
"""
if not isinstance(platform, (str, SpecialTypes)):
raise TypeError("platform 必须是字符串或是 SpecialTypes 枚举")
streams = []
try:
for _, stream in get_chat_manager().streams.items():
if (platform == SpecialTypes.ALL_PLATFORMS or stream.platform == platform) and stream.group_info:
streams.append(stream)
logger.debug(f"[ChatAPI] 获取到 {len(streams)}{platform} 平台的群聊流")
except Exception as e:
logger.error(f"[ChatAPI] 获取群聊流失败: {e}")
return streams
@staticmethod
def get_private_streams(platform: Optional[str] | SpecialTypes = "qq") -> List[ChatStream]:
# sourcery skip: for-append-to-extend
"""获取所有私聊聊天流
Args:
platform: 平台筛选,默认为"qq", 可以使用 SpecialTypes.ALL_PLATFORMS 获取所有平台的群聊流
Returns:
List[ChatStream]: 私聊聊天流列表
Raises:
TypeError: 如果 platform 不是字符串或 SpecialTypes 枚举类型
"""
if not isinstance(platform, (str, SpecialTypes)):
raise TypeError("platform 必须是字符串或是 SpecialTypes 枚举")
streams = []
try:
for _, stream in get_chat_manager().streams.items():
if (platform == SpecialTypes.ALL_PLATFORMS or stream.platform == platform) and not stream.group_info:
streams.append(stream)
logger.debug(f"[ChatAPI] 获取到 {len(streams)}{platform} 平台的私聊流")
except Exception as e:
logger.error(f"[ChatAPI] 获取私聊流失败: {e}")
return streams
@staticmethod
def get_group_stream_by_group_id(
group_id: str, platform: Optional[str] | SpecialTypes = "qq"
) -> Optional[ChatStream]: # sourcery skip: remove-unnecessary-cast
"""根据群ID获取聊天流
Args:
group_id: 群聊ID
platform: 平台筛选,默认为"qq", 可以使用 SpecialTypes.ALL_PLATFORMS 获取所有平台的群聊流
Returns:
Optional[ChatStream]: 聊天流对象如果未找到返回None
Raises:
ValueError: 如果 group_id 为空字符串
TypeError: 如果 group_id 不是字符串类型或 platform 不是字符串或 SpecialTypes
"""
if not isinstance(group_id, str):
raise TypeError("group_id 必须是字符串类型")
if not isinstance(platform, (str, SpecialTypes)):
raise TypeError("platform 必须是字符串或是 SpecialTypes 枚举")
if not group_id:
raise ValueError("group_id 不能为空")
try:
for _, stream in get_chat_manager().streams.items():
if (
stream.group_info
and str(stream.group_info.group_id) == str(group_id)
and stream.platform == platform
):
logger.debug(f"[ChatAPI] 找到群ID {group_id} 的聊天流")
return stream
logger.warning(f"[ChatAPI] 未找到群ID {group_id} 的聊天流")
except Exception as e:
logger.error(f"[ChatAPI] 查找群聊流失败: {e}")
return None
@staticmethod
def get_private_stream_by_user_id(
user_id: str, platform: Optional[str] | SpecialTypes = "qq"
) -> Optional[ChatStream]: # sourcery skip: remove-unnecessary-cast
"""根据用户ID获取私聊流
Args:
user_id: 用户ID
platform: 平台筛选,默认为"qq", 可以使用 SpecialTypes.ALL_PLATFORMS 获取所有平台的群聊流
Returns:
Optional[ChatStream]: 聊天流对象如果未找到返回None
Raises:
ValueError: 如果 user_id 为空字符串
TypeError: 如果 user_id 不是字符串类型或 platform 不是字符串或 SpecialTypes
"""
if not isinstance(user_id, str):
raise TypeError("user_id 必须是字符串类型")
if not isinstance(platform, (str, SpecialTypes)):
raise TypeError("platform 必须是字符串或是 SpecialTypes 枚举")
if not user_id:
raise ValueError("user_id 不能为空")
try:
for _, stream in get_chat_manager().streams.items():
if (
not stream.group_info
and str(stream.user_info.user_id) == str(user_id)
and stream.platform == platform
):
logger.debug(f"[ChatAPI] 找到用户ID {user_id} 的私聊流")
return stream
logger.warning(f"[ChatAPI] 未找到用户ID {user_id} 的私聊流")
except Exception as e:
logger.error(f"[ChatAPI] 查找私聊流失败: {e}")
return None
@staticmethod
def get_stream_type(chat_stream: ChatStream) -> str:
"""获取聊天流类型
Args:
chat_stream: 聊天流对象
Returns:
str: 聊天类型 ("group", "private", "unknown")
Raises:
TypeError: 如果 chat_stream 不是 ChatStream 类型
ValueError: 如果 chat_stream 为空
"""
if not isinstance(chat_stream, ChatStream):
raise TypeError("chat_stream 必须是 ChatStream 类型")
if not chat_stream:
raise ValueError("chat_stream 不能为 None")
if hasattr(chat_stream, "group_info"):
return "group" if chat_stream.group_info else "private"
return "unknown"
@staticmethod
def get_stream_info(chat_stream: ChatStream) -> Dict[str, Any]:
"""获取聊天流详细信息
Args:
chat_stream: 聊天流对象
Returns:
Dict ({str: Any}): 聊天流信息字典
Raises:
TypeError: 如果 chat_stream 不是 ChatStream 类型
ValueError: 如果 chat_stream 为空
"""
if not chat_stream:
raise ValueError("chat_stream 不能为 None")
if not isinstance(chat_stream, ChatStream):
raise TypeError("chat_stream 必须是 ChatStream 类型")
try:
info: Dict[str, Any] = {
"stream_id": chat_stream.stream_id,
"platform": chat_stream.platform,
"type": ChatManager.get_stream_type(chat_stream),
}
if chat_stream.group_info:
info.update(
{
"group_id": chat_stream.group_info.group_id,
"group_name": getattr(chat_stream.group_info, "group_name", "未知群聊"),
}
)
if chat_stream.user_info:
info.update(
{
"user_id": chat_stream.user_info.user_id,
"user_name": chat_stream.user_info.user_nickname,
}
)
return info
except Exception as e:
logger.error(f"[ChatAPI] 获取聊天流信息失败: {e}")
return {}
@staticmethod
def get_streams_summary() -> Dict[str, int]:
"""获取聊天流统计摘要
Returns:
Dict[str, int]: 包含各种统计信息的字典
"""
try:
all_streams = ChatManager.get_all_streams(SpecialTypes.ALL_PLATFORMS)
group_streams = ChatManager.get_group_streams(SpecialTypes.ALL_PLATFORMS)
private_streams = ChatManager.get_private_streams(SpecialTypes.ALL_PLATFORMS)
summary = {
"total_streams": len(all_streams),
"group_streams": len(group_streams),
"private_streams": len(private_streams),
"qq_streams": len([s for s in all_streams if s.platform == "qq"]),
}
logger.debug(f"[ChatAPI] 聊天流统计: {summary}")
return summary
except Exception as e:
logger.error(f"[ChatAPI] 获取聊天流统计失败: {e}")
return {
"total_streams": 0,
"group_streams": 0,
"private_streams": 0,
"qq_streams": 0,
}
# =============================================================================
# 模块级别的便捷函数 - 类似 requests.get(), requests.post() 的设计
# =============================================================================
def get_all_streams(platform: Optional[str] | SpecialTypes = "qq") -> List[ChatStream]:
"""获取所有聊天流的便捷函数"""
return ChatManager.get_all_streams(platform)
def get_group_streams(platform: Optional[str] | SpecialTypes = "qq") -> List[ChatStream]:
"""获取群聊聊天流的便捷函数"""
return ChatManager.get_group_streams(platform)
def get_private_streams(platform: Optional[str] | SpecialTypes = "qq") -> List[ChatStream]:
"""获取私聊聊天流的便捷函数"""
return ChatManager.get_private_streams(platform)
def get_stream_by_group_id(group_id: str, platform: Optional[str] | SpecialTypes = "qq") -> Optional[ChatStream]:
"""根据群ID获取聊天流的便捷函数"""
return ChatManager.get_group_stream_by_group_id(group_id, platform)
def get_stream_by_user_id(user_id: str, platform: Optional[str] | SpecialTypes = "qq") -> Optional[ChatStream]:
"""根据用户ID获取私聊流的便捷函数"""
return ChatManager.get_private_stream_by_user_id(user_id, platform)
def get_stream_type(chat_stream: ChatStream) -> str:
"""获取聊天流类型的便捷函数"""
return ChatManager.get_stream_type(chat_stream)
def get_stream_info(chat_stream: ChatStream) -> Dict[str, Any]:
"""获取聊天流信息的便捷函数"""
return ChatManager.get_stream_info(chat_stream)
def get_streams_summary() -> Dict[str, int]:
"""获取聊天流统计摘要的便捷函数"""
return ChatManager.get_streams_summary()

View File

@@ -0,0 +1,268 @@
from typing import Optional, Union, Dict
from src.plugin_system.base.component_types import (
CommandInfo,
ActionInfo,
EventHandlerInfo,
PluginInfo,
ComponentType,
ToolInfo,
)
# === 插件信息查询 ===
def get_all_plugin_info() -> Dict[str, PluginInfo]:
"""
获取所有插件的信息。
Returns:
dict: 包含所有插件信息的字典,键为插件名称,值为 PluginInfo 对象。
"""
from src.plugin_system.core.component_registry import component_registry
return component_registry.get_all_plugins()
def get_plugin_info(plugin_name: str) -> Optional[PluginInfo]:
"""
获取指定插件的信息。
Args:
plugin_name (str): 插件名称。
Returns:
PluginInfo: 插件信息对象,如果插件不存在则返回 None。
"""
from src.plugin_system.core.component_registry import component_registry
return component_registry.get_plugin_info(plugin_name)
# === 组件查询方法 ===
def get_component_info(
component_name: str, component_type: ComponentType
) -> Optional[Union[CommandInfo, ActionInfo, EventHandlerInfo]]:
"""
获取指定组件的信息。
Args:
component_name (str): 组件名称。
component_type (ComponentType): 组件类型。
Returns:
Union[CommandInfo, ActionInfo, EventHandlerInfo]: 组件信息对象,如果组件不存在则返回 None。
"""
from src.plugin_system.core.component_registry import component_registry
return component_registry.get_component_info(component_name, component_type) # type: ignore
def get_components_info_by_type(
component_type: ComponentType,
) -> Dict[str, Union[CommandInfo, ActionInfo, EventHandlerInfo]]:
"""
获取指定类型的所有组件信息。
Args:
component_type (ComponentType): 组件类型。
Returns:
dict: 包含指定类型组件信息的字典,键为组件名称,值为对应的组件信息对象。
"""
from src.plugin_system.core.component_registry import component_registry
return component_registry.get_components_by_type(component_type) # type: ignore
def get_enabled_components_info_by_type(
component_type: ComponentType,
) -> Dict[str, Union[CommandInfo, ActionInfo, EventHandlerInfo]]:
"""
获取指定类型的所有启用的组件信息。
Args:
component_type (ComponentType): 组件类型。
Returns:
dict: 包含指定类型启用组件信息的字典,键为组件名称,值为对应的组件信息对象。
"""
from src.plugin_system.core.component_registry import component_registry
return component_registry.get_enabled_components_by_type(component_type) # type: ignore
# === Action 查询方法 ===
def get_registered_action_info(action_name: str) -> Optional[ActionInfo]:
"""
获取指定 Action 的注册信息。
Args:
action_name (str): Action 名称。
Returns:
ActionInfo: Action 信息对象,如果 Action 不存在则返回 None。
"""
from src.plugin_system.core.component_registry import component_registry
return component_registry.get_registered_action_info(action_name)
def get_registered_command_info(command_name: str) -> Optional[CommandInfo]:
"""
获取指定 Command 的注册信息。
Args:
command_name (str): Command 名称。
Returns:
CommandInfo: Command 信息对象,如果 Command 不存在则返回 None。
"""
from src.plugin_system.core.component_registry import component_registry
return component_registry.get_registered_command_info(command_name)
def get_registered_tool_info(tool_name: str) -> Optional[ToolInfo]:
"""
获取指定 Tool 的注册信息。
Args:
tool_name (str): Tool 名称。
Returns:
ToolInfo: Tool 信息对象,如果 Tool 不存在则返回 None。
"""
from src.plugin_system.core.component_registry import component_registry
return component_registry.get_registered_tool_info(tool_name)
# === EventHandler 特定查询方法 ===
def get_registered_event_handler_info(
event_handler_name: str,
) -> Optional[EventHandlerInfo]:
"""
获取指定 EventHandler 的注册信息。
Args:
event_handler_name (str): EventHandler 名称。
Returns:
EventHandlerInfo: EventHandler 信息对象,如果 EventHandler 不存在则返回 None。
"""
from src.plugin_system.core.component_registry import component_registry
return component_registry.get_registered_event_handler_info(event_handler_name)
# === 组件管理方法 ===
def globally_enable_component(component_name: str, component_type: ComponentType) -> bool:
"""
全局启用指定组件。
Args:
component_name (str): 组件名称。
component_type (ComponentType): 组件类型。
Returns:
bool: 启用成功返回 True否则返回 False。
"""
from src.plugin_system.core.component_registry import component_registry
return component_registry.enable_component(component_name, component_type)
async def globally_disable_component(component_name: str, component_type: ComponentType) -> bool:
"""
全局禁用指定组件。
**此函数是异步的,确保在异步环境中调用。**
Args:
component_name (str): 组件名称。
component_type (ComponentType): 组件类型。
Returns:
bool: 禁用成功返回 True否则返回 False。
"""
from src.plugin_system.core.component_registry import component_registry
return await component_registry.disable_component(component_name, component_type)
def locally_enable_component(component_name: str, component_type: ComponentType, stream_id: str) -> bool:
"""
局部启用指定组件。
Args:
component_name (str): 组件名称。
component_type (ComponentType): 组件类型。
stream_id (str): 消息流 ID。
Returns:
bool: 启用成功返回 True否则返回 False。
"""
from src.plugin_system.core.global_announcement_manager import global_announcement_manager
match component_type:
case ComponentType.ACTION:
return global_announcement_manager.enable_specific_chat_action(stream_id, component_name)
case ComponentType.COMMAND:
return global_announcement_manager.enable_specific_chat_command(stream_id, component_name)
case ComponentType.TOOL:
return global_announcement_manager.enable_specific_chat_tool(stream_id, component_name)
case ComponentType.EVENT_HANDLER:
return global_announcement_manager.enable_specific_chat_event_handler(stream_id, component_name)
case _:
raise ValueError(f"未知 component type: {component_type}")
def locally_disable_component(component_name: str, component_type: ComponentType, stream_id: str) -> bool:
"""
局部禁用指定组件。
Args:
component_name (str): 组件名称。
component_type (ComponentType): 组件类型。
stream_id (str): 消息流 ID。
Returns:
bool: 禁用成功返回 True否则返回 False。
"""
from src.plugin_system.core.global_announcement_manager import global_announcement_manager
match component_type:
case ComponentType.ACTION:
return global_announcement_manager.disable_specific_chat_action(stream_id, component_name)
case ComponentType.COMMAND:
return global_announcement_manager.disable_specific_chat_command(stream_id, component_name)
case ComponentType.TOOL:
return global_announcement_manager.disable_specific_chat_tool(stream_id, component_name)
case ComponentType.EVENT_HANDLER:
return global_announcement_manager.disable_specific_chat_event_handler(stream_id, component_name)
case _:
raise ValueError(f"未知 component type: {component_type}")
def get_locally_disabled_components(stream_id: str, component_type: ComponentType) -> list[str]:
"""
获取指定消息流中禁用的组件列表。
Args:
stream_id (str): 消息流 ID。
component_type (ComponentType): 组件类型。
Returns:
list[str]: 禁用的组件名称列表。
"""
from src.plugin_system.core.global_announcement_manager import global_announcement_manager
match component_type:
case ComponentType.ACTION:
return global_announcement_manager.get_disabled_chat_actions(stream_id)
case ComponentType.COMMAND:
return global_announcement_manager.get_disabled_chat_commands(stream_id)
case ComponentType.TOOL:
return global_announcement_manager.get_disabled_chat_tools(stream_id)
case ComponentType.EVENT_HANDLER:
return global_announcement_manager.get_disabled_chat_event_handlers(stream_id)
case _:
raise ValueError(f"未知 component type: {component_type}")

View File

@@ -0,0 +1,77 @@
"""配置API模块
提供了配置读取和用户信息获取等功能
使用方式:
from src.plugin_system.apis import config_api
value = config_api.get_global_config("section.key")
platform, user_id = await config_api.get_user_id_by_person_name("用户名")
"""
from typing import Any
from src.common.logger import get_logger
from src.config.config import global_config
logger = get_logger("config_api")
# =============================================================================
# 配置访问API函数
# =============================================================================
def get_global_config(key: str, default: Any = None) -> Any:
"""
安全地从全局配置中获取一个值。
插件应使用此方法读取全局配置,以保证只读和隔离性。
Args:
key: 命名空间式配置键名,使用嵌套访问,如 "section.subsection.key",大小写敏感
default: 如果配置不存在时返回的默认值
Returns:
Any: 配置值或默认值
"""
# 支持嵌套键访问
keys = key.split(".")
current = global_config
try:
for k in keys:
if hasattr(current, k):
current = getattr(current, k)
else:
raise KeyError(f"配置中不存在子空间或键 '{k}'")
return current
except Exception as e:
logger.warning(f"[ConfigAPI] 获取全局配置 {key} 失败: {e}")
return default
def get_plugin_config(plugin_config: dict, key: str, default: Any = None) -> Any:
"""
从插件配置中获取值,支持嵌套键访问
Args:
plugin_config: 插件配置字典
key: 配置键名,支持嵌套访问如 "section.subsection.key",大小写敏感
default: 如果配置不存在时返回的默认值
Returns:
Any: 配置值或默认值
"""
# 支持嵌套键访问
keys = key.split(".")
current = plugin_config
try:
for k in keys:
if isinstance(current, dict) and k in current:
current = current[k]
elif hasattr(current, k):
current = getattr(current, k)
else:
raise KeyError(f"配置中不存在子空间或键 '{k}'")
return current
except Exception as e:
logger.warning(f"[ConfigAPI] 获取插件配置 {key} 失败: {e}")
return default

View File

@@ -0,0 +1,29 @@
"""数据库API模块
提供数据库操作相关功能采用标准Python包设计模式
使用方式:
from src.plugin_system.apis import database_api
records = await database_api.db_query(ActionRecords, query_type="get")
record = await database_api.db_save(ActionRecords, data={"action_id": "123"})
注意此模块现在使用SQLAlchemy实现提供更好的连接管理和错误处理
"""
from src.common.database.sqlalchemy_database_api import (
db_query,
db_save,
db_get,
store_action_info,
get_model_class,
MODEL_MAPPING
)
# 保持向后兼容性
__all__ = [
'db_query',
'db_save',
'db_get',
'store_action_info',
'get_model_class',
'MODEL_MAPPING'
]

View File

@@ -0,0 +1,268 @@
"""
表情API模块
提供表情包相关功能采用标准Python包设计模式
使用方式:
from src.plugin_system.apis import emoji_api
result = await emoji_api.get_by_description("开心")
count = emoji_api.get_count()
"""
import random
from typing import Optional, Tuple, List
from src.common.logger import get_logger
from src.chat.emoji_system.emoji_manager import get_emoji_manager
from src.chat.utils.utils_image import image_path_to_base64
logger = get_logger("emoji_api")
# =============================================================================
# 表情包获取API函数
# =============================================================================
async def get_by_description(description: str) -> Optional[Tuple[str, str, str]]:
"""根据描述选择表情包
Args:
description: 表情包的描述文本,例如"开心""难过""愤怒"
Returns:
Optional[Tuple[str, str, str]]: (base64编码, 表情包描述, 匹配的情感标签) 或 None
Raises:
ValueError: 如果描述为空字符串
TypeError: 如果描述不是字符串类型
"""
if not description:
raise ValueError("描述不能为空")
if not isinstance(description, str):
raise TypeError("描述必须是字符串类型")
try:
logger.debug(f"[EmojiAPI] 根据描述获取表情包: {description}")
emoji_manager = get_emoji_manager()
emoji_result = await emoji_manager.get_emoji_for_text(description)
if not emoji_result:
logger.warning(f"[EmojiAPI] 未找到匹配描述 '{description}' 的表情包")
return None
emoji_path, emoji_description, matched_emotion = emoji_result
emoji_base64 = image_path_to_base64(emoji_path)
if not emoji_base64:
logger.error(f"[EmojiAPI] 无法将表情包文件转换为base64: {emoji_path}")
return None
logger.debug(f"[EmojiAPI] 成功获取表情包: {emoji_description}, 匹配情感: {matched_emotion}")
return emoji_base64, emoji_description, matched_emotion
except Exception as e:
logger.error(f"[EmojiAPI] 获取表情包失败: {e}")
return None
async def get_random(count: Optional[int] = 1) -> List[Tuple[str, str, str]]:
"""随机获取指定数量的表情包
Args:
count: 要获取的表情包数量默认为1
Returns:
List[Tuple[str, str, str]]: 包含(base64编码, 表情包描述, 随机情感标签)的元组列表,失败则返回空列表
Raises:
TypeError: 如果count不是整数类型
ValueError: 如果count为负数
"""
if not isinstance(count, int):
raise TypeError("count 必须是整数类型")
if count < 0:
raise ValueError("count 不能为负数")
if count == 0:
logger.warning("[EmojiAPI] count 为0返回空列表")
return []
try:
logger.info(f"[EmojiAPI] 随机获取 {count} 个表情包")
emoji_manager = get_emoji_manager()
all_emojis = emoji_manager.emoji_objects
if not all_emojis:
logger.warning("[EmojiAPI] 没有可用的表情包")
return []
# 过滤有效表情包
valid_emojis = [emoji for emoji in all_emojis if not emoji.is_deleted]
if not valid_emojis:
logger.warning("[EmojiAPI] 没有有效的表情包")
return []
if len(valid_emojis) < count:
logger.warning(
f"[EmojiAPI] 有效表情包数量 ({len(valid_emojis)}) 少于请求的数量 ({count}),将返回所有有效表情包"
)
count = len(valid_emojis)
# 随机选择
selected_emojis = random.sample(valid_emojis, count)
results = []
for selected_emoji in selected_emojis:
emoji_base64 = image_path_to_base64(selected_emoji.full_path)
if not emoji_base64:
logger.error(f"[EmojiAPI] 无法转换表情包为base64: {selected_emoji.full_path}")
continue
matched_emotion = random.choice(selected_emoji.emotion) if selected_emoji.emotion else "随机表情"
# 记录使用次数
emoji_manager.record_usage(selected_emoji.hash)
results.append((emoji_base64, selected_emoji.description, matched_emotion))
if not results and count > 0:
logger.warning("[EmojiAPI] 随机获取表情包失败,没有一个可以成功处理")
return []
logger.info(f"[EmojiAPI] 成功获取 {len(results)} 个随机表情包")
return results
except Exception as e:
logger.error(f"[EmojiAPI] 获取随机表情包失败: {e}")
return []
async def get_by_emotion(emotion: str) -> Optional[Tuple[str, str, str]]:
"""根据情感标签获取表情包
Args:
emotion: 情感标签,如"happy""sad""angry"
Returns:
Optional[Tuple[str, str, str]]: (base64编码, 表情包描述, 匹配的情感标签) 或 None
Raises:
ValueError: 如果情感标签为空字符串
TypeError: 如果情感标签不是字符串类型
"""
if not emotion:
raise ValueError("情感标签不能为空")
if not isinstance(emotion, str):
raise TypeError("情感标签必须是字符串类型")
try:
logger.info(f"[EmojiAPI] 根据情感获取表情包: {emotion}")
emoji_manager = get_emoji_manager()
all_emojis = emoji_manager.emoji_objects
# 筛选匹配情感的表情包
matching_emojis = []
matching_emojis.extend(
emoji_obj
for emoji_obj in all_emojis
if not emoji_obj.is_deleted and emotion.lower() in [e.lower() for e in emoji_obj.emotion]
)
if not matching_emojis:
logger.warning(f"[EmojiAPI] 未找到匹配情感 '{emotion}' 的表情包")
return None
# 随机选择匹配的表情包
selected_emoji = random.choice(matching_emojis)
emoji_base64 = image_path_to_base64(selected_emoji.full_path)
if not emoji_base64:
logger.error(f"[EmojiAPI] 无法转换表情包为base64: {selected_emoji.full_path}")
return None
# 记录使用次数
emoji_manager.record_usage(selected_emoji.hash)
logger.info(f"[EmojiAPI] 成功获取情感表情包: {selected_emoji.description}")
return emoji_base64, selected_emoji.description, emotion
except Exception as e:
logger.error(f"[EmojiAPI] 根据情感获取表情包失败: {e}")
return None
# =============================================================================
# 表情包信息查询API函数
# =============================================================================
def get_count() -> int:
"""获取表情包数量
Returns:
int: 当前可用的表情包数量
"""
try:
emoji_manager = get_emoji_manager()
return emoji_manager.emoji_num
except Exception as e:
logger.error(f"[EmojiAPI] 获取表情包数量失败: {e}")
return 0
def get_info():
"""获取表情包系统信息
Returns:
dict: 包含表情包数量、最大数量、可用数量信息
"""
try:
emoji_manager = get_emoji_manager()
return {
"current_count": emoji_manager.emoji_num,
"max_count": emoji_manager.emoji_num_max,
"available_emojis": len([e for e in emoji_manager.emoji_objects if not e.is_deleted]),
}
except Exception as e:
logger.error(f"[EmojiAPI] 获取表情包信息失败: {e}")
return {"current_count": 0, "max_count": 0, "available_emojis": 0}
def get_emotions() -> List[str]:
"""获取所有可用的情感标签
Returns:
list: 所有表情包的情感标签列表(去重)
"""
try:
emoji_manager = get_emoji_manager()
emotions = set()
for emoji_obj in emoji_manager.emoji_objects:
if not emoji_obj.is_deleted and emoji_obj.emotion:
emotions.update(emoji_obj.emotion)
return sorted(list(emotions))
except Exception as e:
logger.error(f"[EmojiAPI] 获取情感标签失败: {e}")
return []
def get_descriptions() -> List[str]:
"""获取所有表情包描述
Returns:
list: 所有可用表情包的描述列表
"""
try:
emoji_manager = get_emoji_manager()
descriptions = []
descriptions.extend(
emoji_obj.description
for emoji_obj in emoji_manager.emoji_objects
if not emoji_obj.is_deleted and emoji_obj.description
)
return descriptions
except Exception as e:
logger.error(f"[EmojiAPI] 获取表情包描述失败: {e}")
return []

View File

@@ -0,0 +1,280 @@
"""
回复器API模块
提供回复器相关功能采用标准Python包设计模式
使用方式:
from src.plugin_system.apis import generator_api
replyer = generator_api.get_replyer(chat_stream)
success, reply_set, _ = await generator_api.generate_reply(chat_stream, action_data, reasoning)
"""
import traceback
from typing import Tuple, Any, Dict, List, Optional
from rich.traceback import install
from src.common.logger import get_logger
from src.config.api_ada_configs import TaskConfig
from src.chat.replyer.default_generator import DefaultReplyer
from src.chat.message_receive.chat_stream import ChatStream
from src.chat.utils.utils import process_llm_response
from src.chat.replyer.replyer_manager import replyer_manager
from src.plugin_system.base.component_types import ActionInfo
install(extra_lines=3)
logger = get_logger("generator_api")
# =============================================================================
# 回复器获取API函数
# =============================================================================
def get_replyer(
chat_stream: Optional[ChatStream] = None,
chat_id: Optional[str] = None,
model_set_with_weight: Optional[List[Tuple[TaskConfig, float]]] = None,
request_type: str = "replyer",
) -> Optional[DefaultReplyer]:
"""获取回复器对象
优先使用chat_stream如果没有则使用chat_id直接查找。
使用 ReplyerManager 来管理实例,避免重复创建。
Args:
chat_stream: 聊天流对象(优先)
chat_id: 聊天ID实际上就是stream_id
model_set_with_weight: 模型配置列表,每个元素为 (TaskConfig, weight) 元组
request_type: 请求类型
Returns:
Optional[DefaultReplyer]: 回复器对象如果获取失败则返回None
Raises:
ValueError: chat_stream 和 chat_id 均为空
"""
if not chat_id and not chat_stream:
raise ValueError("chat_stream 和 chat_id 不可均为空")
try:
logger.debug(f"[GeneratorAPI] 正在获取回复器chat_id: {chat_id}, chat_stream: {'' if chat_stream else ''}")
return replyer_manager.get_replyer(
chat_stream=chat_stream,
chat_id=chat_id,
model_set_with_weight=model_set_with_weight,
request_type=request_type,
)
except Exception as e:
logger.error(f"[GeneratorAPI] 获取回复器时发生意外错误: {e}", exc_info=True)
traceback.print_exc()
return None
# =============================================================================
# 回复生成API函数
# =============================================================================
async def generate_reply(
chat_stream: Optional[ChatStream] = None,
chat_id: Optional[str] = None,
action_data: Optional[Dict[str, Any]] = None,
reply_to: str = "",
extra_info: str = "",
available_actions: Optional[Dict[str, ActionInfo]] = None,
enable_tool: bool = False,
enable_splitter: bool = True,
enable_chinese_typo: bool = True,
return_prompt: bool = False,
model_set_with_weight: Optional[List[Tuple[TaskConfig, float]]] = None,
request_type: str = "generator_api",
from_plugin: bool = True,
) -> Tuple[bool, List[Tuple[str, Any]], Optional[str]]:
"""生成回复
Args:
chat_stream: 聊天流对象(优先)
chat_id: 聊天ID备用
action_data: 动作数据向下兼容包含reply_to和extra_info
reply_to: 回复对象,格式为 "发送者:消息内容"
extra_info: 额外信息,用于补充上下文
available_actions: 可用动作
enable_tool: 是否启用工具调用
enable_splitter: 是否启用消息分割器
enable_chinese_typo: 是否启用错字生成器
return_prompt: 是否返回提示词
model_set_with_weight: 模型配置列表,每个元素为 (TaskConfig, weight) 元组
request_type: 请求类型可选记录LLM使用
from_plugin: 是否来自插件
Returns:
Tuple[bool, List[Tuple[str, Any]], Optional[str]]: (是否成功, 回复集合, 提示词)
"""
try:
# 获取回复器
replyer = get_replyer(
chat_stream, chat_id, model_set_with_weight=model_set_with_weight, request_type=request_type
)
if not replyer:
logger.error("[GeneratorAPI] 无法获取回复器")
return False, [], None
logger.debug("[GeneratorAPI] 开始生成回复")
if not reply_to and action_data:
reply_to = action_data.get("reply_to", "")
if not extra_info and action_data:
extra_info = action_data.get("extra_info", "")
# 调用回复器生成回复
success, llm_response_dict, prompt = await replyer.generate_reply_with_context(
reply_to=reply_to,
extra_info=extra_info,
available_actions=available_actions,
enable_tool=enable_tool,
from_plugin=from_plugin,
stream_id=chat_stream.stream_id if chat_stream else chat_id,
)
if not success:
logger.warning("[GeneratorAPI] 回复生成失败")
return False, [], None
assert llm_response_dict is not None, "llm_response_dict不应为None" # 虽然说不会出现llm_response为空的情况
if content := llm_response_dict.get("content", ""):
reply_set = process_human_text(content, enable_splitter, enable_chinese_typo)
else:
reply_set = []
logger.debug(f"[GeneratorAPI] 回复生成成功,生成了 {len(reply_set)} 个回复项")
if return_prompt:
return success, reply_set, prompt
else:
return success, reply_set, None
except ValueError as ve:
raise ve
except UserWarning as uw:
logger.warning(f"[GeneratorAPI] 中断了生成: {uw}")
return False, [], None
except Exception as e:
logger.error(f"[GeneratorAPI] 生成回复时出错: {e}")
logger.error(traceback.format_exc())
return False, [], None
async def rewrite_reply(
chat_stream: Optional[ChatStream] = None,
reply_data: Optional[Dict[str, Any]] = None,
chat_id: Optional[str] = None,
enable_splitter: bool = True,
enable_chinese_typo: bool = True,
model_set_with_weight: Optional[List[Tuple[TaskConfig, float]]] = None,
raw_reply: str = "",
reason: str = "",
reply_to: str = "",
return_prompt: bool = False,
) -> Tuple[bool, List[Tuple[str, Any]], Optional[str]]:
"""重写回复
Args:
chat_stream: 聊天流对象(优先)
reply_data: 回复数据字典(向下兼容备用,当其他参数缺失时从此获取)
chat_id: 聊天ID备用
enable_splitter: 是否启用消息分割器
enable_chinese_typo: 是否启用错字生成器
model_set_with_weight: 模型配置列表,每个元素为 (TaskConfig, weight) 元组
raw_reply: 原始回复内容
reason: 回复原因
reply_to: 回复对象
return_prompt: 是否返回提示词
Returns:
Tuple[bool, List[Tuple[str, Any]]]: (是否成功, 回复集合)
"""
try:
# 获取回复器
replyer = get_replyer(chat_stream, chat_id, model_set_with_weight=model_set_with_weight)
if not replyer:
logger.error("[GeneratorAPI] 无法获取回复器")
return False, [], None
logger.info("[GeneratorAPI] 开始重写回复")
# 如果参数缺失从reply_data中获取
if reply_data:
raw_reply = raw_reply or reply_data.get("raw_reply", "")
reason = reason or reply_data.get("reason", "")
reply_to = reply_to or reply_data.get("reply_to", "")
# 调用回复器重写回复
success, content, prompt = await replyer.rewrite_reply_with_context(
raw_reply=raw_reply,
reason=reason,
reply_to=reply_to,
return_prompt=return_prompt,
)
reply_set = []
if content:
reply_set = process_human_text(content, enable_splitter, enable_chinese_typo)
if success:
logger.info(f"[GeneratorAPI] 重写回复成功,生成了 {len(reply_set)} 个回复项")
else:
logger.warning("[GeneratorAPI] 重写回复失败")
return success, reply_set, prompt if return_prompt else None
except ValueError as ve:
raise ve
except Exception as e:
logger.error(f"[GeneratorAPI] 重写回复时出错: {e}")
return False, [], None
def process_human_text(content: str, enable_splitter: bool, enable_chinese_typo: bool) -> List[Tuple[str, Any]]:
"""将文本处理为更拟人化的文本
Args:
content: 文本内容
enable_splitter: 是否启用消息分割器
enable_chinese_typo: 是否启用错字生成器
"""
if not isinstance(content, str):
raise ValueError("content 必须是字符串类型")
try:
processed_response = process_llm_response(content, enable_splitter, enable_chinese_typo)
reply_set = []
for text in processed_response:
reply_seg = ("text", text)
reply_set.append(reply_seg)
return reply_set
except Exception as e:
logger.error(f"[GeneratorAPI] 处理人形文本时出错: {e}")
return []
async def generate_response_custom(
chat_stream: Optional[ChatStream] = None,
chat_id: Optional[str] = None,
model_set_with_weight: Optional[List[Tuple[TaskConfig, float]]] = None,
prompt: str = "",
) -> Optional[str]:
replyer = get_replyer(chat_stream, chat_id, model_set_with_weight=model_set_with_weight)
if not replyer:
logger.error("[GeneratorAPI] 无法获取回复器")
return None
try:
logger.debug("[GeneratorAPI] 开始生成自定义回复")
response, _, _, _ = await replyer.llm_generate_content(prompt)
if response:
logger.debug("[GeneratorAPI] 自定义回复生成成功")
return response
else:
logger.warning("[GeneratorAPI] 自定义回复生成失败")
return None
except Exception as e:
logger.error(f"[GeneratorAPI] 生成自定义回复时出错: {e}")
return None

View File

@@ -0,0 +1,122 @@
"""LLM API模块
提供了与LLM模型交互的功能
使用方式:
from src.plugin_system.apis import llm_api
models = llm_api.get_available_models()
success, response, reasoning, model_name = await llm_api.generate_with_model(prompt, model_config)
"""
from typing import Tuple, Dict, List, Any, Optional
from src.common.logger import get_logger
from src.llm_models.payload_content.tool_option import ToolCall
from src.llm_models.utils_model import LLMRequest
from src.config.config import model_config
from src.config.api_ada_configs import TaskConfig
logger = get_logger("llm_api")
# =============================================================================
# LLM模型API函数
# =============================================================================
def get_available_models() -> Dict[str, TaskConfig]:
"""获取所有可用的模型配置
Returns:
Dict[str, Any]: 模型配置字典key为模型名称value为模型配置
"""
try:
# 自动获取所有属性并转换为字典形式
models = model_config.model_task_config
attrs = dir(models)
rets: Dict[str, TaskConfig] = {}
for attr in attrs:
if not attr.startswith("__"):
try:
value = getattr(models, attr)
if not callable(value) and isinstance(value, TaskConfig):
rets[attr] = value
except Exception as e:
logger.debug(f"[LLMAPI] 获取属性 {attr} 失败: {e}")
continue
return rets
except Exception as e:
logger.error(f"[LLMAPI] 获取可用模型失败: {e}")
return {}
async def generate_with_model(
prompt: str,
model_config: TaskConfig,
request_type: str = "plugin.generate",
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
) -> Tuple[bool, str, str, str]:
"""使用指定模型生成内容
Args:
prompt: 提示词
model_config: 模型配置(从 get_available_models 获取的模型配置)
request_type: 请求类型标识
Returns:
Tuple[bool, str, str, str]: (是否成功, 生成的内容, 推理过程, 模型名称)
"""
try:
model_name_list = model_config.model_list
logger.info(f"[LLMAPI] 使用模型集合 {model_name_list} 生成内容")
logger.debug(f"[LLMAPI] 完整提示词: {prompt}")
llm_request = LLMRequest(model_set=model_config, request_type=request_type)
response, (reasoning_content, model_name, _) = await llm_request.generate_response_async(prompt, temperature=temperature, max_tokens=max_tokens)
return True, response, reasoning_content, model_name
except Exception as e:
error_msg = f"生成内容时出错: {str(e)}"
logger.error(f"[LLMAPI] {error_msg}")
return False, error_msg, "", ""
async def generate_with_model_with_tools(
prompt: str,
model_config: TaskConfig,
tool_options: List[Dict[str, Any]] | None = None,
request_type: str = "plugin.generate",
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
) -> Tuple[bool, str, str, str, List[ToolCall] | None]:
"""使用指定模型和工具生成内容
Args:
prompt: 提示词
model_config: 模型配置(从 get_available_models 获取的模型配置)
tool_options: 工具选项列表
request_type: 请求类型标识
temperature: 温度参数
max_tokens: 最大token数
Returns:
Tuple[bool, str, str, str]: (是否成功, 生成的内容, 推理过程, 模型名称)
"""
try:
model_name_list = model_config.model_list
logger.info(f"[LLMAPI] 使用模型集合 {model_name_list} 生成内容")
logger.debug(f"[LLMAPI] 完整提示词: {prompt}")
llm_request = LLMRequest(model_set=model_config, request_type=request_type)
response, (reasoning_content, model_name, tool_call) = await llm_request.generate_response_async(
prompt,
tools=tool_options,
temperature=temperature,
max_tokens=max_tokens
)
return True, response, reasoning_content, model_name, tool_call
except Exception as e:
error_msg = f"生成内容时出错: {str(e)}"
logger.error(f"[LLMAPI] {error_msg}")
return False, error_msg, "", "", None

View File

@@ -0,0 +1,3 @@
from src.common.logger import get_logger
__all__ = ["get_logger"]

View File

@@ -0,0 +1,483 @@
"""
消息API模块
提供消息查询和构建成字符串的功能采用标准Python包设计模式
使用方式:
from src.plugin_system.apis import message_api
messages = message_api.get_messages_by_time_in_chat(chat_id, start_time, end_time)
readable_text = message_api.build_readable_messages(messages)
"""
from typing import List, Dict, Any, Tuple, Optional
from src.config.config import global_config
import time
from src.chat.utils.chat_message_builder import (
get_raw_msg_by_timestamp,
get_raw_msg_by_timestamp_with_chat,
get_raw_msg_by_timestamp_with_chat_inclusive,
get_raw_msg_by_timestamp_with_chat_users,
get_raw_msg_by_timestamp_random,
get_raw_msg_by_timestamp_with_users,
get_raw_msg_before_timestamp,
get_raw_msg_before_timestamp_with_chat,
get_raw_msg_before_timestamp_with_users,
num_new_messages_since,
num_new_messages_since_with_users,
build_readable_messages,
build_readable_messages_with_list,
get_person_id_list,
)
# =============================================================================
# 消息查询API函数
# =============================================================================
def get_messages_by_time(
start_time: float, end_time: float, limit: int = 0, limit_mode: str = "latest", filter_mai: bool = False
) -> List[Dict[str, Any]]:
"""
获取指定时间范围内的消息
Args:
start_time: 开始时间戳
end_time: 结束时间戳
limit: 限制返回的消息数量0为不限制
limit_mode: 当limit>0时生效'earliest'表示获取最早的记录,'latest'表示获取最新的记录
filter_mai: 是否过滤麦麦自身的消息默认为False
Returns:
List[Dict[str, Any]]: 消息列表
Raises:
ValueError: 如果参数不合法
"""
if not isinstance(start_time, (int, float)) or not isinstance(end_time, (int, float)):
raise ValueError("start_time 和 end_time 必须是数字类型")
if limit < 0:
raise ValueError("limit 不能为负数")
if filter_mai:
return filter_mai_messages(get_raw_msg_by_timestamp(start_time, end_time, limit, limit_mode))
return get_raw_msg_by_timestamp(start_time, end_time, limit, limit_mode)
def get_messages_by_time_in_chat(
chat_id: str,
start_time: float,
end_time: float,
limit: int = 0,
limit_mode: str = "latest",
filter_mai: bool = False,
filter_command: bool = False,
) -> List[Dict[str, Any]]:
"""
获取指定聊天中指定时间范围内的消息
Args:
chat_id: 聊天ID
start_time: 开始时间戳
end_time: 结束时间戳
limit: 限制返回的消息数量0为不限制
limit_mode: 当limit>0时生效'earliest'表示获取最早的记录,'latest'表示获取最新的记录
filter_mai: 是否过滤麦麦自身的消息默认为False
filter_command: 是否过滤命令消息默认为False
Returns:
List[Dict[str, Any]]: 消息列表
Raises:
ValueError: 如果参数不合法
"""
if not isinstance(start_time, (int, float)) or not isinstance(end_time, (int, float)):
raise ValueError("start_time 和 end_time 必须是数字类型")
if limit < 0:
raise ValueError("limit 不能为负数")
if not chat_id:
raise ValueError("chat_id 不能为空")
if not isinstance(chat_id, str):
raise ValueError("chat_id 必须是字符串类型")
if filter_mai:
return filter_mai_messages(get_raw_msg_by_timestamp_with_chat(chat_id, start_time, end_time, limit, limit_mode, filter_command))
return get_raw_msg_by_timestamp_with_chat(chat_id, start_time, end_time, limit, limit_mode, filter_command)
def get_messages_by_time_in_chat_inclusive(
chat_id: str,
start_time: float,
end_time: float,
limit: int = 0,
limit_mode: str = "latest",
filter_mai: bool = False,
filter_command: bool = False,
) -> List[Dict[str, Any]]:
"""
获取指定聊天中指定时间范围内的消息(包含边界)
Args:
chat_id: 聊天ID
start_time: 开始时间戳(包含)
end_time: 结束时间戳(包含)
limit: 限制返回的消息数量0为不限制
limit_mode: 当limit>0时生效'earliest'表示获取最早的记录,'latest'表示获取最新的记录
filter_mai: 是否过滤麦麦自身的消息默认为False
Returns:
List[Dict[str, Any]]: 消息列表
Raises:
ValueError: 如果参数不合法
"""
if not isinstance(start_time, (int, float)) or not isinstance(end_time, (int, float)):
raise ValueError("start_time 和 end_time 必须是数字类型")
if limit < 0:
raise ValueError("limit 不能为负数")
if not chat_id:
raise ValueError("chat_id 不能为空")
if not isinstance(chat_id, str):
raise ValueError("chat_id 必须是字符串类型")
if filter_mai:
return filter_mai_messages(
get_raw_msg_by_timestamp_with_chat_inclusive(chat_id, start_time, end_time, limit, limit_mode, filter_command)
)
return get_raw_msg_by_timestamp_with_chat_inclusive(chat_id, start_time, end_time, limit, limit_mode, filter_command)
def get_messages_by_time_in_chat_for_users(
chat_id: str,
start_time: float,
end_time: float,
person_ids: List[str],
limit: int = 0,
limit_mode: str = "latest",
) -> List[Dict[str, Any]]:
"""
获取指定聊天中指定用户在指定时间范围内的消息
Args:
chat_id: 聊天ID
start_time: 开始时间戳
end_time: 结束时间戳
person_ids: 用户ID列表
limit: 限制返回的消息数量0为不限制
limit_mode: 当limit>0时生效'earliest'表示获取最早的记录,'latest'表示获取最新的记录
Returns:
List[Dict[str, Any]]: 消息列表
Raises:
ValueError: 如果参数不合法
"""
if not isinstance(start_time, (int, float)) or not isinstance(end_time, (int, float)):
raise ValueError("start_time 和 end_time 必须是数字类型")
if limit < 0:
raise ValueError("limit 不能为负数")
if not chat_id:
raise ValueError("chat_id 不能为空")
if not isinstance(chat_id, str):
raise ValueError("chat_id 必须是字符串类型")
return get_raw_msg_by_timestamp_with_chat_users(chat_id, start_time, end_time, person_ids, limit, limit_mode)
def get_random_chat_messages(
start_time: float, end_time: float, limit: int = 0, limit_mode: str = "latest", filter_mai: bool = False
) -> List[Dict[str, Any]]:
"""
随机选择一个聊天,返回该聊天在指定时间范围内的消息
Args:
start_time: 开始时间戳
end_time: 结束时间戳
limit: 限制返回的消息数量0为不限制
limit_mode: 当limit>0时生效'earliest'表示获取最早的记录,'latest'表示获取最新的记录
filter_mai: 是否过滤麦麦自身的消息默认为False
Returns:
List[Dict[str, Any]]: 消息列表
Raises:
ValueError: 如果参数不合法
"""
if not isinstance(start_time, (int, float)) or not isinstance(end_time, (int, float)):
raise ValueError("start_time 和 end_time 必须是数字类型")
if limit < 0:
raise ValueError("limit 不能为负数")
if filter_mai:
return filter_mai_messages(get_raw_msg_by_timestamp_random(start_time, end_time, limit, limit_mode))
return get_raw_msg_by_timestamp_random(start_time, end_time, limit, limit_mode)
def get_messages_by_time_for_users(
start_time: float, end_time: float, person_ids: List[str], limit: int = 0, limit_mode: str = "latest"
) -> List[Dict[str, Any]]:
"""
获取指定用户在所有聊天中指定时间范围内的消息
Args:
start_time: 开始时间戳
end_time: 结束时间戳
person_ids: 用户ID列表
limit: 限制返回的消息数量0为不限制
limit_mode: 当limit>0时生效'earliest'表示获取最早的记录,'latest'表示获取最新的记录
Returns:
List[Dict[str, Any]]: 消息列表
Raises:
ValueError: 如果参数不合法
"""
if not isinstance(start_time, (int, float)) or not isinstance(end_time, (int, float)):
raise ValueError("start_time 和 end_time 必须是数字类型")
if limit < 0:
raise ValueError("limit 不能为负数")
return get_raw_msg_by_timestamp_with_users(start_time, end_time, person_ids, limit, limit_mode)
def get_messages_before_time(timestamp: float, limit: int = 0, filter_mai: bool = False) -> List[Dict[str, Any]]:
"""
获取指定时间戳之前的消息
Args:
timestamp: 时间戳
limit: 限制返回的消息数量0为不限制
filter_mai: 是否过滤麦麦自身的消息默认为False
Returns:
List[Dict[str, Any]]: 消息列表
Raises:
ValueError: 如果参数不合法
"""
if not isinstance(timestamp, (int, float)):
raise ValueError("timestamp 必须是数字类型")
if limit < 0:
raise ValueError("limit 不能为负数")
if filter_mai:
return filter_mai_messages(get_raw_msg_before_timestamp(timestamp, limit))
return get_raw_msg_before_timestamp(timestamp, limit)
def get_messages_before_time_in_chat(
chat_id: str, timestamp: float, limit: int = 0, filter_mai: bool = False
) -> List[Dict[str, Any]]:
"""
获取指定聊天中指定时间戳之前的消息
Args:
chat_id: 聊天ID
timestamp: 时间戳
limit: 限制返回的消息数量0为不限制
filter_mai: 是否过滤麦麦自身的消息默认为False
Returns:
List[Dict[str, Any]]: 消息列表
Raises:
ValueError: 如果参数不合法
"""
if not isinstance(timestamp, (int, float)):
raise ValueError("timestamp 必须是数字类型")
if limit < 0:
raise ValueError("limit 不能为负数")
if not chat_id:
raise ValueError("chat_id 不能为空")
if not isinstance(chat_id, str):
raise ValueError("chat_id 必须是字符串类型")
if filter_mai:
return filter_mai_messages(get_raw_msg_before_timestamp_with_chat(chat_id, timestamp, limit))
return get_raw_msg_before_timestamp_with_chat(chat_id, timestamp, limit)
def get_messages_before_time_for_users(timestamp: float, person_ids: List[str], limit: int = 0) -> List[Dict[str, Any]]:
"""
获取指定用户在指定时间戳之前的消息
Args:
timestamp: 时间戳
person_ids: 用户ID列表
limit: 限制返回的消息数量0为不限制
Returns:
List[Dict[str, Any]]: 消息列表
Raises:
ValueError: 如果参数不合法
"""
if not isinstance(timestamp, (int, float)):
raise ValueError("timestamp 必须是数字类型")
if limit < 0:
raise ValueError("limit 不能为负数")
return get_raw_msg_before_timestamp_with_users(timestamp, person_ids, limit)
def get_recent_messages(
chat_id: str, hours: float = 24.0, limit: int = 100, limit_mode: str = "latest", filter_mai: bool = False
) -> List[Dict[str, Any]]:
"""
获取指定聊天中最近一段时间的消息
Args:
chat_id: 聊天ID
hours: 最近多少小时默认24小时
limit: 限制返回的消息数量默认100条
limit_mode: 当limit>0时生效'earliest'表示获取最早的记录,'latest'表示获取最新的记录
filter_mai: 是否过滤麦麦自身的消息默认为False
Returns:
List[Dict[str, Any]]: 消息列表
Raises:
ValueError: 如果参数不合法s
"""
if not isinstance(hours, (int, float)) or hours < 0:
raise ValueError("hours 不能是负数")
if not isinstance(limit, int) or limit < 0:
raise ValueError("limit 必须是非负整数")
if not chat_id:
raise ValueError("chat_id 不能为空")
if not isinstance(chat_id, str):
raise ValueError("chat_id 必须是字符串类型")
now = time.time()
start_time = now - hours * 3600
if filter_mai:
return filter_mai_messages(get_raw_msg_by_timestamp_with_chat(chat_id, start_time, now, limit, limit_mode))
return get_raw_msg_by_timestamp_with_chat(chat_id, start_time, now, limit, limit_mode)
# =============================================================================
# 消息计数API函数
# =============================================================================
def count_new_messages(chat_id: str, start_time: float = 0.0, end_time: Optional[float] = None) -> int:
"""
计算指定聊天中从开始时间到结束时间的新消息数量
Args:
chat_id: 聊天ID
start_time: 开始时间戳
end_time: 结束时间戳如果为None则使用当前时间
Returns:
int: 新消息数量
Raises:
ValueError: 如果参数不合法
"""
if not isinstance(start_time, (int, float)):
raise ValueError("start_time 必须是数字类型")
if not chat_id:
raise ValueError("chat_id 不能为空")
if not isinstance(chat_id, str):
raise ValueError("chat_id 必须是字符串类型")
return num_new_messages_since(chat_id, start_time, end_time)
def count_new_messages_for_users(chat_id: str, start_time: float, end_time: float, person_ids: List[str]) -> int:
"""
计算指定聊天中指定用户从开始时间到结束时间的新消息数量
Args:
chat_id: 聊天ID
start_time: 开始时间戳
end_time: 结束时间戳
person_ids: 用户ID列表
Returns:
int: 新消息数量
Raises:
ValueError: 如果参数不合法
"""
if not isinstance(start_time, (int, float)) or not isinstance(end_time, (int, float)):
raise ValueError("start_time 和 end_time 必须是数字类型")
if not chat_id:
raise ValueError("chat_id 不能为空")
if not isinstance(chat_id, str):
raise ValueError("chat_id 必须是字符串类型")
return num_new_messages_since_with_users(chat_id, start_time, end_time, person_ids)
# =============================================================================
# 消息格式化API函数
# =============================================================================
def build_readable_messages_to_str(
messages: List[Dict[str, Any]],
replace_bot_name: bool = True,
merge_messages: bool = False,
timestamp_mode: str = "relative",
read_mark: float = 0.0,
truncate: bool = False,
show_actions: bool = False,
) -> str:
"""
将消息列表构建成可读的字符串
Args:
messages: 消息列表
replace_bot_name: 是否将机器人的名称替换为""
merge_messages: 是否合并连续消息
timestamp_mode: 时间戳显示模式,'relative''absolute'
read_mark: 已读标记时间戳,用于分割已读和未读消息
truncate: 是否截断长消息
show_actions: 是否显示动作记录
Returns:
格式化后的可读字符串
"""
return build_readable_messages(
messages, replace_bot_name, merge_messages, timestamp_mode, read_mark, truncate, show_actions
)
async def build_readable_messages_with_details(
messages: List[Dict[str, Any]],
replace_bot_name: bool = True,
merge_messages: bool = False,
timestamp_mode: str = "relative",
truncate: bool = False,
) -> Tuple[str, List[Tuple[float, str, str]]]:
"""
将消息列表构建成可读的字符串,并返回详细信息
Args:
messages: 消息列表
replace_bot_name: 是否将机器人的名称替换为""
merge_messages: 是否合并连续消息
timestamp_mode: 时间戳显示模式,'relative''absolute'
truncate: 是否截断长消息
Returns:
格式化后的可读字符串和详细信息元组列表(时间戳, 昵称, 内容)
"""
return await build_readable_messages_with_list(messages, replace_bot_name, merge_messages, timestamp_mode, truncate)
async def get_person_ids_from_messages(messages: List[Dict[str, Any]]) -> List[str]:
"""
从消息列表中提取不重复的用户ID列表
Args:
messages: 消息列表
Returns:
用户ID列表
"""
return await get_person_id_list(messages)
# =============================================================================
# 消息过滤函数
# =============================================================================
def filter_mai_messages(messages: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
从消息列表中移除麦麦的消息
Args:
messages: 消息列表,每个元素是消息字典
Returns:
过滤后的消息列表
"""
return [msg for msg in messages if msg.get("user_id") != str(global_config.bot.qq_account)]

View File

@@ -0,0 +1,154 @@
"""个人信息API模块
提供个人信息查询功能,用于插件获取用户相关信息
使用方式:
from src.plugin_system.apis import person_api
person_id = person_api.get_person_id("qq", 123456)
value = await person_api.get_person_value(person_id, "nickname")
"""
from typing import Any, Optional
from src.common.logger import get_logger
from src.person_info.person_info import get_person_info_manager, PersonInfoManager
logger = get_logger("person_api")
# =============================================================================
# 个人信息API函数
# =============================================================================
def get_person_id(platform: str, user_id: int) -> str:
"""根据平台和用户ID获取person_id
Args:
platform: 平台名称,如 "qq", "telegram"
user_id: 用户ID
Returns:
str: 唯一的person_idMD5哈希值
示例:
person_id = person_api.get_person_id("qq", 123456)
"""
try:
return PersonInfoManager.get_person_id(platform, user_id)
except Exception as e:
logger.error(f"[PersonAPI] 获取person_id失败: platform={platform}, user_id={user_id}, error={e}")
return ""
async def get_person_value(person_id: str, field_name: str, default: Any = None) -> Any:
"""根据person_id和字段名获取某个值
Args:
person_id: 用户的唯一标识ID
field_name: 要获取的字段名,如 "nickname", "impression"
default: 当字段不存在或获取失败时返回的默认值
Returns:
Any: 字段值或默认值
示例:
nickname = await person_api.get_person_value(person_id, "nickname", "未知用户")
impression = await person_api.get_person_value(person_id, "impression")
"""
try:
person_info_manager = get_person_info_manager()
value = await person_info_manager.get_value(person_id, field_name)
return value if value is not None else default
except Exception as e:
logger.error(f"[PersonAPI] 获取用户信息失败: person_id={person_id}, field={field_name}, error={e}")
return default
async def get_person_values(person_id: str, field_names: list, default_dict: Optional[dict] = None) -> dict:
"""批量获取用户信息字段值
Args:
person_id: 用户的唯一标识ID
field_names: 要获取的字段名列表
default_dict: 默认值字典,键为字段名,值为默认值
Returns:
dict: 字段名到值的映射字典
示例:
values = await person_api.get_person_values(
person_id,
["nickname", "impression", "know_times"],
{"nickname": "未知用户", "know_times": 0}
)
"""
try:
person_info_manager = get_person_info_manager()
values = await person_info_manager.get_values(person_id, field_names)
# 如果获取成功,返回结果
if values:
return values
# 如果获取失败,构建默认值字典
result = {}
if default_dict:
for field in field_names:
result[field] = default_dict.get(field, None)
else:
for field in field_names:
result[field] = None
return result
except Exception as e:
logger.error(f"[PersonAPI] 批量获取用户信息失败: person_id={person_id}, fields={field_names}, error={e}")
# 返回默认值字典
result = {}
if default_dict:
for field in field_names:
result[field] = default_dict.get(field, None)
else:
for field in field_names:
result[field] = None
return result
async def is_person_known(platform: str, user_id: int) -> bool:
"""判断是否认识某个用户
Args:
platform: 平台名称
user_id: 用户ID
Returns:
bool: 是否认识该用户
示例:
known = await person_api.is_person_known("qq", 123456)
"""
try:
person_info_manager = get_person_info_manager()
return await person_info_manager.is_person_known(platform, user_id)
except Exception as e:
logger.error(f"[PersonAPI] 检查用户是否已知失败: platform={platform}, user_id={user_id}, error={e}")
return False
def get_person_id_by_name(person_name: str) -> str:
"""根据用户名获取person_id
Args:
person_name: 用户名
Returns:
str: person_id如果未找到返回空字符串
示例:
person_id = person_api.get_person_id_by_name("张三")
"""
try:
person_info_manager = get_person_info_manager()
return person_info_manager.get_person_id_by_person_name(person_name)
except Exception as e:
logger.error(f"[PersonAPI] 根据用户名获取person_id失败: person_name={person_name}, error={e}")
return ""

View File

@@ -0,0 +1,120 @@
from typing import Tuple, List
def list_loaded_plugins() -> List[str]:
"""
列出所有当前加载的插件。
Returns:
List[str]: 当前加载的插件名称列表。
"""
from src.plugin_system.core.plugin_manager import plugin_manager
return plugin_manager.list_loaded_plugins()
def list_registered_plugins() -> List[str]:
"""
列出所有已注册的插件。
Returns:
List[str]: 已注册的插件名称列表。
"""
from src.plugin_system.core.plugin_manager import plugin_manager
return plugin_manager.list_registered_plugins()
def get_plugin_path(plugin_name: str) -> str:
"""
获取指定插件的路径。
Args:
plugin_name (str): 插件名称。
Returns:
str: 插件目录的绝对路径。
Raises:
ValueError: 如果插件不存在。
"""
from src.plugin_system.core.plugin_manager import plugin_manager
if plugin_path := plugin_manager.get_plugin_path(plugin_name):
return plugin_path
else:
raise ValueError(f"插件 '{plugin_name}' 不存在。")
async def remove_plugin(plugin_name: str) -> bool:
"""
卸载指定的插件。
**此函数是异步的,确保在异步环境中调用。**
Args:
plugin_name (str): 要卸载的插件名称。
Returns:
bool: 卸载是否成功。
"""
from src.plugin_system.core.plugin_manager import plugin_manager
return await plugin_manager.remove_registered_plugin(plugin_name)
async def reload_plugin(plugin_name: str) -> bool:
"""
重新加载指定的插件。
**此函数是异步的,确保在异步环境中调用。**
Args:
plugin_name (str): 要重新加载的插件名称。
Returns:
bool: 重新加载是否成功。
"""
from src.plugin_system.core.plugin_manager import plugin_manager
return await plugin_manager.reload_registered_plugin(plugin_name)
def load_plugin(plugin_name: str) -> Tuple[bool, int]:
"""
加载指定的插件。
Args:
plugin_name (str): 要加载的插件名称。
Returns:
Tuple[bool, int]: 加载是否成功,成功或失败个数。
"""
from src.plugin_system.core.plugin_manager import plugin_manager
return plugin_manager.load_registered_plugin_classes(plugin_name)
def add_plugin_directory(plugin_directory: str) -> bool:
"""
添加插件目录。
Args:
plugin_directory (str): 要添加的插件目录路径。
Returns:
bool: 添加是否成功。
"""
from src.plugin_system.core.plugin_manager import plugin_manager
return plugin_manager.add_plugin_directory(plugin_directory)
def rescan_plugin_directory() -> Tuple[int, int]:
"""
重新扫描插件目录,加载新插件。
Returns:
Tuple[int, int]: 成功加载的插件数量和失败的插件数量。
"""
from src.plugin_system.core.plugin_manager import plugin_manager
return plugin_manager.rescan_plugin_directory()

View File

@@ -0,0 +1,46 @@
from pathlib import Path
from src.common.logger import get_logger
logger = get_logger("plugin_manager") # 复用plugin_manager名称
def register_plugin(cls):
from src.plugin_system.core.plugin_manager import plugin_manager
from src.plugin_system.base.base_plugin import BasePlugin
"""插件注册装饰器
用法:
@register_plugin
class MyPlugin(BasePlugin):
plugin_name = "my_plugin"
plugin_description = "我的插件"
...
"""
if not issubclass(cls, BasePlugin):
logger.error(f"{cls.__name__} 不是 BasePlugin 的子类")
return cls
# 只是注册插件类,不立即实例化
# 插件管理器会负责实例化和注册
plugin_name: str = cls.plugin_name # type: ignore
if "." in plugin_name:
logger.error(f"插件名称 '{plugin_name}' 包含非法字符 '.',请使用下划线替代")
raise ValueError(f"插件名称 '{plugin_name}' 包含非法字符 '.',请使用下划线替代")
splitted_name = cls.__module__.split(".")
root_path = Path(__file__)
# 查找项目根目录
while not (root_path / "pyproject.toml").exists() and root_path.parent != root_path:
root_path = root_path.parent
if not (root_path / "pyproject.toml").exists():
logger.error(f"注册 {plugin_name} 无法找到项目根目录")
return cls
plugin_manager.plugin_classes[plugin_name] = cls
plugin_manager.plugin_paths[plugin_name] = str(Path(root_path, *splitted_name).resolve())
logger.debug(f"插件类已注册: {plugin_name}, 路径: {plugin_manager.plugin_paths[plugin_name]}")
return cls

View File

@@ -0,0 +1,369 @@
"""
发送API模块
专门负责发送各种类型的消息采用标准Python包设计模式
使用方式:
from src.plugin_system.apis import send_api
# 方式1直接使用stream_id推荐
await send_api.text_to_stream("hello", stream_id)
await send_api.emoji_to_stream(emoji_base64, stream_id)
await send_api.custom_to_stream("video", video_data, stream_id)
# 方式2使用群聊/私聊指定函数
await send_api.text_to_group("hello", "123456")
await send_api.text_to_user("hello", "987654")
# 方式3使用通用custom_message函数
await send_api.custom_message("video", video_data, "123456", True)
"""
import traceback
import time
import difflib
from typing import Optional, Union
from src.common.logger import get_logger
# 导入依赖
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.message_receive.uni_message_sender import HeartFCSender
from src.chat.message_receive.message import MessageSending, MessageRecv
from src.chat.utils.chat_message_builder import get_raw_msg_before_timestamp_with_chat, replace_user_references_async
from src.person_info.person_info import get_person_info_manager
from maim_message import Seg, UserInfo
from src.config.config import global_config
logger = get_logger("send_api")
# =============================================================================
# 内部实现函数(不暴露给外部)
# =============================================================================
async def _send_to_target(
message_type: str,
content: Union[str, dict],
stream_id: str,
display_message: str = "",
typing: bool = False,
reply_to: str = "",
reply_to_platform_id: Optional[str] = None,
storage_message: bool = True,
show_log: bool = True,
) -> bool:
"""向指定目标发送消息的内部实现
Args:
message_type: 消息类型,如"text""image""emoji"
content: 消息内容
stream_id: 目标流ID
display_message: 显示消息
typing: 是否模拟打字等待。
reply_to: 回复消息,格式为"发送者:消息内容"
reply_to_platform_id: 回复消息,格式为"平台:用户ID",如果不提供则自动查找(插件开发者禁用!)
storage_message: 是否存储消息到数据库
show_log: 发送是否显示日志
Returns:
bool: 是否发送成功
"""
try:
if show_log:
logger.debug(f"[SendAPI] 发送{message_type}消息到 {stream_id}")
# 查找目标聊天流
target_stream = get_chat_manager().get_stream(stream_id)
if not target_stream:
logger.error(f"[SendAPI] 未找到聊天流: {stream_id}")
return False
# 创建发送器
heart_fc_sender = HeartFCSender()
# 生成消息ID
current_time = time.time()
message_id = f"send_api_{int(current_time * 1000)}"
# 构建机器人用户信息
bot_user_info = UserInfo(
user_id=global_config.bot.qq_account,
user_nickname=global_config.bot.nickname,
platform=target_stream.platform,
)
# 创建消息段
message_segment = Seg(type=message_type, data=content) # type: ignore
# 处理回复消息
anchor_message = None
if reply_to:
anchor_message = await _find_reply_message(target_stream, reply_to)
if anchor_message and anchor_message.message_info.user_info and not reply_to_platform_id:
reply_to_platform_id = (
f"{anchor_message.message_info.platform}:{anchor_message.message_info.user_info.user_id}"
)
# 构建发送消息对象
bot_message = MessageSending(
message_id=message_id,
chat_stream=target_stream,
bot_user_info=bot_user_info,
sender_info=target_stream.user_info,
message_segment=message_segment,
display_message=display_message,
reply=anchor_message,
is_head=True,
is_emoji=(message_type == "emoji"),
thinking_start_time=current_time,
reply_to=reply_to_platform_id,
)
# 发送消息
sent_msg = await heart_fc_sender.send_message(
bot_message,
typing=typing,
set_reply=(anchor_message is not None),
storage_message=storage_message,
show_log=show_log,
)
if sent_msg:
logger.debug(f"[SendAPI] 成功发送消息到 {stream_id}")
return True
else:
logger.error("[SendAPI] 发送消息失败")
return False
except Exception as e:
logger.error(f"[SendAPI] 发送消息时出错: {e}")
traceback.print_exc()
return False
async def _find_reply_message(target_stream, reply_to: str) -> Optional[MessageRecv]:
# sourcery skip: inline-variable, use-named-expression
"""查找要回复的消息
Args:
target_stream: 目标聊天流
reply_to: 回复格式,如"发送者:消息内容""发送者:消息内容"
Returns:
Optional[MessageRecv]: 找到的消息如果没找到则返回None
"""
try:
# 解析reply_to参数
if ":" in reply_to:
parts = reply_to.split(":", 1)
elif "" in reply_to:
parts = reply_to.split("", 1)
else:
logger.warning(f"[SendAPI] reply_to格式不正确: {reply_to}")
return None
if len(parts) != 2:
logger.warning(f"[SendAPI] reply_to格式不正确: {reply_to}")
return None
sender = parts[0].strip()
text = parts[1].strip()
# 获取聊天流的最新20条消息
reverse_talking_message = get_raw_msg_before_timestamp_with_chat(
target_stream.stream_id,
time.time(), # 当前时间之前的消息
20, # 最新的20条消息
)
# 反转列表,使最新的消息在前面
reverse_talking_message = list(reversed(reverse_talking_message))
find_msg = None
for message in reverse_talking_message:
user_id = message["user_id"]
platform = message["chat_info_platform"]
person_id = get_person_info_manager().get_person_id(platform, user_id)
person_name = await get_person_info_manager().get_value(person_id, "person_name")
if person_name == sender:
translate_text = message["processed_plain_text"]
# 使用独立函数处理用户引用格式
translate_text = await replace_user_references_async(translate_text, platform)
similarity = difflib.SequenceMatcher(None, text, translate_text).ratio()
if similarity >= 0.9:
find_msg = message
break
if not find_msg:
logger.info("[SendAPI] 未找到匹配的回复消息")
return None
# 构建MessageRecv对象
user_info = {
"platform": find_msg.get("user_platform", ""),
"user_id": find_msg.get("user_id", ""),
"user_nickname": find_msg.get("user_nickname", ""),
"user_cardname": find_msg.get("user_cardname", ""),
}
group_info = {}
if find_msg.get("chat_info_group_id"):
group_info = {
"platform": find_msg.get("chat_info_group_platform", ""),
"group_id": find_msg.get("chat_info_group_id", ""),
"group_name": find_msg.get("chat_info_group_name", ""),
}
format_info = {"content_format": "", "accept_format": ""}
template_info = {"template_items": {}}
message_info = {
"platform": target_stream.platform,
"message_id": find_msg.get("message_id"),
"time": find_msg.get("time"),
"group_info": group_info,
"user_info": user_info,
"additional_config": find_msg.get("additional_config"),
"format_info": format_info,
"template_info": template_info,
}
message_dict = {
"message_info": message_info,
"raw_message": find_msg.get("processed_plain_text"),
"processed_plain_text": find_msg.get("processed_plain_text"),
}
find_rec_msg = MessageRecv(message_dict)
find_rec_msg.update_chat_stream(target_stream)
logger.info(f"[SendAPI] 找到匹配的回复消息,发送者: {sender}")
return find_rec_msg
except Exception as e:
logger.error(f"[SendAPI] 查找回复消息时出错: {e}")
traceback.print_exc()
return None
# =============================================================================
# 公共API函数 - 预定义类型的发送函数
# =============================================================================
async def text_to_stream(
text: str,
stream_id: str,
typing: bool = False,
reply_to: str = "",
reply_to_platform_id: str = "",
storage_message: bool = True,
) -> bool:
"""向指定流发送文本消息
Args:
text: 要发送的文本内容
stream_id: 聊天流ID
typing: 是否显示正在输入
reply_to: 回复消息,格式为"发送者:消息内容"
reply_to_platform_id: 回复消息,格式为"平台:用户ID",如果不提供则自动查找(插件开发者禁用!)
storage_message: 是否存储消息到数据库
Returns:
bool: 是否发送成功
"""
return await _send_to_target(
"text",
text,
stream_id,
"",
typing,
reply_to,
reply_to_platform_id=reply_to_platform_id,
storage_message=storage_message,
)
async def emoji_to_stream(emoji_base64: str, stream_id: str, storage_message: bool = True) -> bool:
"""向指定流发送表情包
Args:
emoji_base64: 表情包的base64编码
stream_id: 聊天流ID
storage_message: 是否存储消息到数据库
Returns:
bool: 是否发送成功
"""
return await _send_to_target("emoji", emoji_base64, stream_id, "", typing=False, storage_message=storage_message)
async def image_to_stream(image_base64: str, stream_id: str, storage_message: bool = True) -> bool:
"""向指定流发送图片
Args:
image_base64: 图片的base64编码
stream_id: 聊天流ID
storage_message: 是否存储消息到数据库
Returns:
bool: 是否发送成功
"""
return await _send_to_target("image", image_base64, stream_id, "", typing=False, storage_message=storage_message)
async def command_to_stream(
command: Union[str, dict], stream_id: str, storage_message: bool = True, display_message: str = ""
) -> bool:
"""向指定流发送命令
Args:
command: 命令
stream_id: 聊天流ID
storage_message: 是否存储消息到数据库
Returns:
bool: 是否发送成功
"""
return await _send_to_target(
"command", command, stream_id, display_message, typing=False, storage_message=storage_message
)
async def custom_to_stream(
message_type: str,
content: str | dict,
stream_id: str,
display_message: str = "",
typing: bool = False,
reply_to: str = "",
storage_message: bool = True,
show_log: bool = True,
) -> bool:
"""向指定流发送自定义类型消息
Args:
message_type: 消息类型,如"text""image""emoji""video""file"
content: 消息内容通常是base64编码或文本
stream_id: 聊天流ID
display_message: 显示消息
typing: 是否显示正在输入
reply_to: 回复消息,格式为"发送者:消息内容"
storage_message: 是否存储消息到数据库
show_log: 是否显示日志
Returns:
bool: 是否发送成功
"""
return await _send_to_target(
message_type=message_type,
content=content,
stream_id=stream_id,
display_message=display_message,
typing=typing,
reply_to=reply_to,
storage_message=storage_message,
show_log=show_log,
)

View File

@@ -0,0 +1,34 @@
from typing import Optional, Type
from src.plugin_system.base.base_tool import BaseTool
from src.plugin_system.base.component_types import ComponentType
from src.common.logger import get_logger
logger = get_logger("tool_api")
def get_tool_instance(tool_name: str) -> Optional[BaseTool]:
"""获取公开工具实例"""
from src.plugin_system.core import component_registry
# 获取插件配置
tool_info = component_registry.get_component_info(tool_name, ComponentType.TOOL)
if tool_info:
plugin_config = component_registry.get_plugin_config(tool_info.plugin_name)
else:
plugin_config = None
tool_class: Type[BaseTool] = component_registry.get_component_class(tool_name, ComponentType.TOOL) # type: ignore
return tool_class(plugin_config) if tool_class else None
def get_llm_available_tool_definitions():
"""获取LLM可用的工具定义列表
Returns:
List[Tuple[str, Dict[str, Any]]]: 工具定义列表,为[("tool_name", 定义)]
"""
from src.plugin_system.core import component_registry
llm_available_tools = component_registry.get_llm_available_tools()
return [(name, tool_class.get_tool_definition()) for name, tool_class in llm_available_tools.items()]