初始化

This commit is contained in:
雅诺狐
2025-08-11 19:34:18 +08:00
parent ff7d1177fa
commit 2d4745cd58
257 changed files with 69069 additions and 0 deletions

View File

@@ -0,0 +1,451 @@
import time
import traceback
import json
import random
from typing import List, Dict, Any
from json_repair import repair_json
from src.common.logger import get_logger
from src.config.config import global_config, model_config
from src.llm_models.utils_model import LLMRequest
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from src.person_info.person_info import get_person_info_manager
logger = get_logger("relationship_fetcher")
def init_real_time_info_prompts():
"""初始化实时信息提取相关的提示词"""
relationship_prompt = """
<聊天记录>
{chat_observe_info}
</聊天记录>
{name_block}
现在,你想要回复{person_name}的消息,消息内容是:{target_message}。请根据聊天记录和你要回复的消息,从你对{person_name}的了解中提取有关的信息:
1.你需要提供你想要提取的信息具体是哪方面的信息,例如:年龄,性别,你们之间的交流方式,最近发生的事等等。
2.请注意,请不要重复调取相同的信息,已经调取的信息如下:
{info_cache_block}
3.如果当前聊天记录中没有需要查询的信息,或者现有信息已经足够回复,请返回{{"none": "不需要查询"}}
请以json格式输出例如
{{
"info_type": "信息类型",
}}
请严格按照json输出格式不要输出多余内容
"""
Prompt(relationship_prompt, "real_time_info_identify_prompt")
fetch_info_prompt = """
{name_block}
以下是你在之前与{person_name}的交流中,产生的对{person_name}的了解:
{person_impression_block}
{points_text_block}
请从中提取用户"{person_name}"的有关"{info_type}"信息
请以json格式输出例如
{{
{info_json_str}
}}
请严格按照json输出格式不要输出多余内容
"""
Prompt(fetch_info_prompt, "real_time_fetch_person_info_prompt")
class RelationshipFetcher:
def __init__(self, chat_id):
self.chat_id = chat_id
# 信息获取缓存:记录正在获取的信息请求
self.info_fetching_cache: List[Dict[str, Any]] = []
# 信息结果缓存存储已获取的信息结果带TTL
self.info_fetched_cache: Dict[str, Dict[str, Any]] = {}
# 结构:{person_id: {info_type: {"info": str, "ttl": int, "start_time": float, "person_name": str, "unknown": bool}}}
# LLM模型配置
self.llm_model = LLMRequest(
model_set=model_config.model_task_config.utils_small, request_type="relation.fetcher"
)
# 小模型用于即时信息提取
self.instant_llm_model = LLMRequest(
model_set=model_config.model_task_config.utils_small, request_type="relation.fetch"
)
name = get_chat_manager().get_stream_name(self.chat_id)
self.log_prefix = f"[{name}] 实时信息"
def _cleanup_expired_cache(self):
"""清理过期的信息缓存"""
for person_id in list(self.info_fetched_cache.keys()):
for info_type in list(self.info_fetched_cache[person_id].keys()):
self.info_fetched_cache[person_id][info_type]["ttl"] -= 1
if self.info_fetched_cache[person_id][info_type]["ttl"] <= 0:
del self.info_fetched_cache[person_id][info_type]
if not self.info_fetched_cache[person_id]:
del self.info_fetched_cache[person_id]
async def build_relation_info(self, person_id, points_num=3):
# 清理过期的信息缓存
self._cleanup_expired_cache()
person_info_manager = get_person_info_manager()
person_name = await person_info_manager.get_value(person_id, "person_name")
short_impression = await person_info_manager.get_value(person_id, "short_impression")
nickname_str = await person_info_manager.get_value(person_id, "nickname")
platform = await person_info_manager.get_value(person_id, "platform")
if person_name == nickname_str and not short_impression:
return ""
current_points = await person_info_manager.get_value(person_id, "points") or []
# 按时间排序forgotten_points
current_points.sort(key=lambda x: x[2])
# 按权重加权随机抽取最多3个不重复的pointspoint[1]的值在1-10之间权重越高被抽到概率越大
if len(current_points) > points_num:
# point[1] 取值范围1-10直接作为权重
weights = [max(1, min(10, int(point[1]))) for point in current_points]
# 使用加权采样不放回,保证不重复
indices = list(range(len(current_points)))
points = []
for _ in range(points_num):
if not indices:
break
sub_weights = [weights[i] for i in indices]
chosen_idx = random.choices(indices, weights=sub_weights, k=1)[0]
points.append(current_points[chosen_idx])
indices.remove(chosen_idx)
else:
points = current_points
# 构建points文本
points_text = "\n".join([f"{point[2]}{point[0]}" for point in points])
nickname_str = ""
if person_name != nickname_str:
nickname_str = f"(ta在{platform}上的昵称是{nickname_str})"
relation_info = ""
if short_impression and relation_info:
if points_text:
relation_info = f"你对{person_name}的印象是{nickname_str}{short_impression}。具体来说:{relation_info}。你还记得ta最近做的事{points_text}"
else:
relation_info = (
f"你对{person_name}的印象是{nickname_str}{short_impression}。具体来说:{relation_info}"
)
elif short_impression:
if points_text:
relation_info = (
f"你对{person_name}的印象是{nickname_str}{short_impression}。你还记得ta最近做的事{points_text}"
)
else:
relation_info = f"你对{person_name}的印象是{nickname_str}{short_impression}"
elif relation_info:
if points_text:
relation_info = (
f"你对{person_name}的了解{nickname_str}{relation_info}。你还记得ta最近做的事{points_text}"
)
else:
relation_info = f"你对{person_name}的了解{nickname_str}{relation_info}"
elif points_text:
relation_info = f"你记得{person_name}{nickname_str}最近做的事:{points_text}"
else:
relation_info = ""
return relation_info
async def _build_fetch_query(self, person_id, target_message, chat_history):
nickname_str = ",".join(global_config.bot.alias_names)
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
person_info_manager = get_person_info_manager()
person_name: str = await person_info_manager.get_value(person_id, "person_name") # type: ignore
info_cache_block = self._build_info_cache_block()
prompt = (await global_prompt_manager.get_prompt_async("real_time_info_identify_prompt")).format(
chat_observe_info=chat_history,
name_block=name_block,
info_cache_block=info_cache_block,
person_name=person_name,
target_message=target_message,
)
try:
logger.debug(f"{self.log_prefix} 信息识别prompt: \n{prompt}\n")
content, _ = await self.llm_model.generate_response_async(prompt=prompt)
if content:
content_json = json.loads(repair_json(content))
# 检查是否返回了不需要查询的标志
if "none" in content_json:
logger.debug(f"{self.log_prefix} LLM判断当前不需要查询任何信息{content_json.get('none', '')}")
return None
if info_type := content_json.get("info_type"):
# 记录信息获取请求
self.info_fetching_cache.append(
{
"person_id": get_person_info_manager().get_person_id_by_person_name(person_name),
"person_name": person_name,
"info_type": info_type,
"start_time": time.time(),
"forget": False,
}
)
# 限制缓存大小
if len(self.info_fetching_cache) > 10:
self.info_fetching_cache.pop(0)
logger.info(f"{self.log_prefix} 识别到需要调取用户 {person_name} 的[{info_type}]信息")
return info_type
else:
logger.warning(f"{self.log_prefix} LLM未返回有效的info_type。响应: {content}")
except Exception as e:
logger.error(f"{self.log_prefix} 执行信息识别LLM请求时出错: {e}")
logger.error(traceback.format_exc())
return None
def _build_info_cache_block(self) -> str:
"""构建已获取信息的缓存块"""
info_cache_block = ""
if self.info_fetching_cache:
# 对于每个(person_id, info_type)组合,只保留最新的记录
latest_records = {}
for info_fetching in self.info_fetching_cache:
key = (info_fetching["person_id"], info_fetching["info_type"])
if key not in latest_records or info_fetching["start_time"] > latest_records[key]["start_time"]:
latest_records[key] = info_fetching
# 按时间排序并生成显示文本
sorted_records = sorted(latest_records.values(), key=lambda x: x["start_time"])
for info_fetching in sorted_records:
info_cache_block += (
f"你已经调取了[{info_fetching['person_name']}]的[{info_fetching['info_type']}]信息\n"
)
return info_cache_block
async def _extract_single_info(self, person_id: str, info_type: str, person_name: str):
"""提取单个信息类型
Args:
person_id: 用户ID
info_type: 信息类型
person_name: 用户名
"""
start_time = time.time()
person_info_manager = get_person_info_manager()
# 首先检查 info_list 缓存
info_list = await person_info_manager.get_value(person_id, "info_list") or []
cached_info = None
# 查找对应的 info_type
for info_item in info_list:
if info_item.get("info_type") == info_type:
cached_info = info_item.get("info_content")
logger.debug(f"{self.log_prefix} 在info_list中找到 {person_name}{info_type} 信息: {cached_info}")
break
# 如果缓存中有信息,直接使用
if cached_info:
if person_id not in self.info_fetched_cache:
self.info_fetched_cache[person_id] = {}
self.info_fetched_cache[person_id][info_type] = {
"info": cached_info,
"ttl": 2,
"start_time": start_time,
"person_name": person_name,
"unknown": cached_info == "none",
}
logger.info(f"{self.log_prefix} 记得 {person_name}{info_type}: {cached_info}")
return
# 如果缓存中没有,尝试从用户档案中提取
try:
person_impression = await person_info_manager.get_value(person_id, "impression")
points = await person_info_manager.get_value(person_id, "points")
# 构建印象信息块
if person_impression:
person_impression_block = (
f"<对{person_name}的总体了解>\n{person_impression}\n</对{person_name}的总体了解>"
)
else:
person_impression_block = ""
# 构建要点信息块
if points:
points_text = "\n".join([f"{point[2]}:{point[0]}" for point in points])
points_text_block = f"<对{person_name}的近期了解>\n{points_text}\n</对{person_name}的近期了解>"
else:
points_text_block = ""
# 如果完全没有用户信息
if not points_text_block and not person_impression_block:
if person_id not in self.info_fetched_cache:
self.info_fetched_cache[person_id] = {}
self.info_fetched_cache[person_id][info_type] = {
"info": "none",
"ttl": 2,
"start_time": start_time,
"person_name": person_name,
"unknown": True,
}
logger.info(f"{self.log_prefix} 完全不认识 {person_name}")
await self._save_info_to_cache(person_id, info_type, "none")
return
# 使用LLM提取信息
nickname_str = ",".join(global_config.bot.alias_names)
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
prompt = (await global_prompt_manager.get_prompt_async("real_time_fetch_person_info_prompt")).format(
name_block=name_block,
info_type=info_type,
person_impression_block=person_impression_block,
person_name=person_name,
info_json_str=f'"{info_type}": "有关{info_type}的信息内容"',
points_text_block=points_text_block,
)
# 使用小模型进行即时提取
content, _ = await self.instant_llm_model.generate_response_async(prompt=prompt)
if content:
content_json = json.loads(repair_json(content))
if info_type in content_json:
info_content = content_json[info_type]
is_unknown = info_content == "none" or not info_content
# 保存到运行时缓存
if person_id not in self.info_fetched_cache:
self.info_fetched_cache[person_id] = {}
self.info_fetched_cache[person_id][info_type] = {
"info": "unknown" if is_unknown else info_content,
"ttl": 3,
"start_time": start_time,
"person_name": person_name,
"unknown": is_unknown,
}
# 保存到持久化缓存 (info_list)
await self._save_info_to_cache(person_id, info_type, "none" if is_unknown else info_content)
if not is_unknown:
logger.info(f"{self.log_prefix} 思考得到,{person_name}{info_type}: {info_content}")
else:
logger.info(f"{self.log_prefix} 思考了也不知道{person_name}{info_type} 信息")
else:
logger.warning(f"{self.log_prefix} 小模型返回空结果,获取 {person_name}{info_type} 信息失败。")
except Exception as e:
logger.error(f"{self.log_prefix} 执行信息提取时出错: {e}")
logger.error(traceback.format_exc())
async def _save_info_to_cache(self, person_id: str, info_type: str, info_content: str):
# sourcery skip: use-next
"""将提取到的信息保存到 person_info 的 info_list 字段中
Args:
person_id: 用户ID
info_type: 信息类型
info_content: 信息内容
"""
try:
person_info_manager = get_person_info_manager()
# 获取现有的 info_list
info_list = await person_info_manager.get_value(person_id, "info_list") or []
# 查找是否已存在相同 info_type 的记录
found_index = -1
for i, info_item in enumerate(info_list):
if isinstance(info_item, dict) and info_item.get("info_type") == info_type:
found_index = i
break
# 创建新的信息记录
new_info_item = {
"info_type": info_type,
"info_content": info_content,
}
if found_index >= 0:
# 更新现有记录
info_list[found_index] = new_info_item
logger.info(f"{self.log_prefix} [缓存更新] 更新 {person_id}{info_type} 信息缓存")
else:
# 添加新记录
info_list.append(new_info_item)
logger.info(f"{self.log_prefix} [缓存保存] 新增 {person_id}{info_type} 信息缓存")
# 保存更新后的 info_list
await person_info_manager.update_one_field(person_id, "info_list", info_list)
except Exception as e:
logger.error(f"{self.log_prefix} [缓存保存] 保存信息到缓存失败: {e}")
logger.error(traceback.format_exc())
class RelationshipFetcherManager:
"""关系提取器管理器
管理不同 chat_id 的 RelationshipFetcher 实例
"""
def __init__(self):
self._fetchers: Dict[str, RelationshipFetcher] = {}
def get_fetcher(self, chat_id: str) -> RelationshipFetcher:
"""获取或创建指定 chat_id 的 RelationshipFetcher
Args:
chat_id: 聊天ID
Returns:
RelationshipFetcher: 关系提取器实例
"""
if chat_id not in self._fetchers:
self._fetchers[chat_id] = RelationshipFetcher(chat_id)
return self._fetchers[chat_id]
def remove_fetcher(self, chat_id: str):
"""移除指定 chat_id 的 RelationshipFetcher
Args:
chat_id: 聊天ID
"""
if chat_id in self._fetchers:
del self._fetchers[chat_id]
def clear_all(self):
"""清空所有 RelationshipFetcher"""
self._fetchers.clear()
def get_active_chat_ids(self) -> List[str]:
"""获取所有活跃的 chat_id 列表"""
return list(self._fetchers.keys())
# 全局管理器实例
relationship_fetcher_manager = RelationshipFetcherManager()
init_real_time_info_prompts()