初始化

This commit is contained in:
雅诺狐
2025-08-11 19:34:18 +08:00
parent ff7d1177fa
commit 2d4745cd58
257 changed files with 69069 additions and 0 deletions

191
src/llm_models/utils.py Normal file
View File

@@ -0,0 +1,191 @@
import base64
import io
from PIL import Image
from datetime import datetime
from src.common.logger import get_logger
from src.common.database.sqlalchemy_models import LLMUsage, get_session
from src.config.api_ada_configs import ModelInfo
from .payload_content.message import Message, MessageBuilder
from .model_client.base_client import UsageRecord
logger = get_logger("消息压缩工具")
def compress_messages(messages: list[Message], img_target_size: int = 1 * 1024 * 1024) -> list[Message]:
"""
压缩消息列表中的图片
:param messages: 消息列表
:param img_target_size: 图片目标大小默认1MB
:return: 压缩后的消息列表
"""
def reformat_static_image(image_data: bytes) -> bytes:
"""
将静态图片转换为JPEG格式
:param image_data: 图片数据
:return: 转换后的图片数据
"""
try:
image = Image.open(image_data)
if image.format and (image.format.upper() in ["JPEG", "JPG", "PNG", "WEBP"]):
# 静态图像转换为JPEG格式
reformated_image_data = io.BytesIO()
image.save(reformated_image_data, format="JPEG", quality=95, optimize=True)
image_data = reformated_image_data.getvalue()
return image_data
except Exception as e:
logger.error(f"图片转换格式失败: {str(e)}")
return image_data
def rescale_image(image_data: bytes, scale: float) -> tuple[bytes, tuple[int, int] | None, tuple[int, int] | None]:
"""
缩放图片
:param image_data: 图片数据
:param scale: 缩放比例
:return: 缩放后的图片数据
"""
try:
image = Image.open(image_data)
# 原始尺寸
original_size = (image.width, image.height)
# 计算新的尺寸
new_size = (int(original_size[0] * scale), int(original_size[1] * scale))
output_buffer = io.BytesIO()
if getattr(image, "is_animated", False):
# 动态图片,处理所有帧
frames = []
new_size = (new_size[0] // 2, new_size[1] // 2) # 动图,缩放尺寸再打折
for frame_idx in range(getattr(image, "n_frames", 1)):
image.seek(frame_idx)
new_frame = image.copy()
new_frame = new_frame.resize(new_size, Image.Resampling.LANCZOS)
frames.append(new_frame)
# 保存到缓冲区
frames[0].save(
output_buffer,
format="GIF",
save_all=True,
append_images=frames[1:],
optimize=True,
duration=image.info.get("duration", 100),
loop=image.info.get("loop", 0),
)
else:
# 静态图片,直接缩放保存
resized_image = image.resize(new_size, Image.Resampling.LANCZOS)
resized_image.save(output_buffer, format="JPEG", quality=95, optimize=True)
return output_buffer.getvalue(), original_size, new_size
except Exception as e:
logger.error(f"图片缩放失败: {str(e)}")
import traceback
logger.error(traceback.format_exc())
return image_data, None, None
def compress_base64_image(base64_data: str, target_size: int = 1 * 1024 * 1024) -> str:
original_b64_data_size = len(base64_data) # 计算原始数据大小
image_data = base64.b64decode(base64_data)
# 先尝试转换格式为JPEG
image_data = reformat_static_image(image_data)
base64_data = base64.b64encode(image_data).decode("utf-8")
if len(base64_data) <= target_size:
# 如果转换后小于目标大小,直接返回
logger.info(f"成功将图片转为JPEG格式编码后大小: {len(base64_data) / 1024:.1f}KB")
return base64_data
# 如果转换后仍然大于目标大小,进行尺寸压缩
scale = min(1.0, target_size / len(base64_data))
image_data, original_size, new_size = rescale_image(image_data, scale)
base64_data = base64.b64encode(image_data).decode("utf-8")
if original_size and new_size:
logger.info(
f"压缩图片: {original_size[0]}x{original_size[1]} -> {new_size[0]}x{new_size[1]}\n"
f"压缩前大小: {original_b64_data_size / 1024:.1f}KB, 压缩后大小: {len(base64_data) / 1024:.1f}KB"
)
return base64_data
compressed_messages = []
for message in messages:
if isinstance(message.content, list):
# 检查content如有图片则压缩
message_builder = MessageBuilder()
for content_item in message.content:
if isinstance(content_item, tuple):
# 图片,进行压缩
message_builder.add_image_content(
content_item[0],
compress_base64_image(content_item[1], target_size=img_target_size),
)
else:
message_builder.add_text_content(content_item)
compressed_messages.append(message_builder.build())
else:
compressed_messages.append(message)
return compressed_messages
class LLMUsageRecorder:
"""
LLM使用情况记录器SQLAlchemy版本
"""
def record_usage_to_database(
self, model_info: ModelInfo, model_usage: UsageRecord, user_id: str, request_type: str, endpoint: str
):
input_cost = (model_usage.prompt_tokens / 1000000) * model_info.price_in
output_cost = (model_usage.completion_tokens / 1000000) * model_info.price_out
total_cost = round(input_cost + output_cost, 6)
session = None
try:
# 使用 SQLAlchemy 会话创建记录
session = get_session()
usage_record = LLMUsage(
model_name=model_info.model_identifier,
user_id=user_id,
request_type=request_type,
endpoint=endpoint,
prompt_tokens=model_usage.prompt_tokens or 0,
completion_tokens=model_usage.completion_tokens or 0,
total_tokens=model_usage.total_tokens or 0,
cost=total_cost or 0.0,
status="success",
timestamp=datetime.now(), # SQLAlchemy 会处理 DateTime 字段
)
session.add(usage_record)
session.commit()
logger.debug(
f"Token使用情况 - 模型: {model_usage.model_name}, "
f"用户: {user_id}, 类型: {request_type}, "
f"提示词: {model_usage.prompt_tokens}, 完成: {model_usage.completion_tokens}, "
f"总计: {model_usage.total_tokens}"
)
except Exception as e:
if session:
session.rollback()
logger.error(f"记录token使用情况失败: {str(e)}")
finally:
if session:
session.close()
llm_usage_recorder = LLMUsageRecorder()