初始化

This commit is contained in:
雅诺狐
2025-08-11 19:34:18 +08:00
parent ff7d1177fa
commit 2d4745cd58
257 changed files with 69069 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,282 @@
import re
import asyncio
import contextvars
from rich.traceback import install
from contextlib import asynccontextmanager
from typing import Dict, Any, Optional, List, Union
from src.common.logger import get_logger
install(extra_lines=3)
logger = get_logger("prompt_build")
class PromptContext:
def __init__(self):
self._context_prompts: Dict[str, Dict[str, "Prompt"]] = {}
# 使用contextvars创建协程上下文变量
self._current_context_var = contextvars.ContextVar("current_context", default=None)
self._context_lock = asyncio.Lock() # 保留锁用于其他操作
@property
def _current_context(self) -> Optional[str]:
"""获取当前协程的上下文ID"""
return self._current_context_var.get()
@_current_context.setter
def _current_context(self, value: Optional[str]):
"""设置当前协程的上下文ID"""
self._current_context_var.set(value)
@asynccontextmanager
async def async_scope(self, context_id: Optional[str] = None):
# sourcery skip: hoist-statement-from-if, use-contextlib-suppress
"""创建一个异步的临时提示模板作用域"""
# 保存当前上下文并设置新上下文
if context_id is not None:
try:
# 添加超时保护,避免长时间等待锁
await asyncio.wait_for(self._context_lock.acquire(), timeout=5.0)
try:
if context_id not in self._context_prompts:
self._context_prompts[context_id] = {}
finally:
self._context_lock.release()
except asyncio.TimeoutError:
logger.warning(f"获取上下文锁超时context_id: {context_id}")
# 超时时直接进入,不设置上下文
context_id = None
# 保存当前协程的上下文值,不影响其他协程
previous_context = self._current_context
# 设置当前协程的新上下文
token = self._current_context_var.set(context_id) if context_id else None
else:
# 如果没有提供新上下文,保持当前上下文不变
previous_context = self._current_context
token = None
try:
yield self
finally:
# 恢复之前的上下文,添加异常保护
if context_id is not None and token is not None:
try:
self._current_context_var.reset(token)
except Exception as e:
logger.warning(f"恢复上下文时出错: {e}")
# 如果reset失败尝试直接设置
try:
self._current_context = previous_context
except Exception:
pass # 静默忽略恢复失败
async def get_prompt_async(self, name: str) -> Optional["Prompt"]:
"""异步获取当前作用域中的提示模板"""
async with self._context_lock:
current_context = self._current_context
logger.debug(f"获取提示词: {name} 当前上下文: {current_context}")
if (
current_context
and current_context in self._context_prompts
and name in self._context_prompts[current_context]
):
return self._context_prompts[current_context][name]
return None
async def register_async(self, prompt: "Prompt", context_id: Optional[str] = None) -> None:
"""异步注册提示模板到指定作用域"""
async with self._context_lock:
if target_context := context_id or self._current_context:
self._context_prompts.setdefault(target_context, {})[prompt.name] = prompt
class PromptManager:
def __init__(self):
self._prompts = {}
self._counter = 0
self._context = PromptContext()
self._lock = asyncio.Lock()
@asynccontextmanager
async def async_message_scope(self, message_id: Optional[str] = None):
"""为消息处理创建异步临时作用域,支持 message_id 为 None 的情况"""
async with self._context.async_scope(message_id):
yield self
async def get_prompt_async(self, name: str) -> "Prompt":
# 首先尝试从当前上下文获取
context_prompt = await self._context.get_prompt_async(name)
if context_prompt is not None:
logger.debug(f"从上下文中获取提示词: {name} {context_prompt}")
return context_prompt
# 如果上下文中不存在,则使用全局提示模板
async with self._lock:
# logger.debug(f"从全局获取提示词: {name}")
if name not in self._prompts:
raise KeyError(f"Prompt '{name}' not found")
return self._prompts[name]
def generate_name(self, template: str) -> str:
"""为未命名的prompt生成名称"""
self._counter += 1
return f"prompt_{self._counter}"
def register(self, prompt: "Prompt") -> None:
"""注册一个prompt"""
if not prompt.name:
prompt.name = self.generate_name(prompt.template)
self._prompts[prompt.name] = prompt
def add_prompt(self, name: str, fstr: str) -> "Prompt":
prompt = Prompt(fstr, name=name)
self._prompts[prompt.name] = prompt
return prompt
async def format_prompt(self, name: str, **kwargs) -> str:
prompt = await self.get_prompt_async(name)
return prompt.format(**kwargs)
# 全局单例
global_prompt_manager = PromptManager()
class Prompt(str):
# 临时标记,作为类常量
_TEMP_LEFT_BRACE = "__ESCAPED_LEFT_BRACE__"
_TEMP_RIGHT_BRACE = "__ESCAPED_RIGHT_BRACE__"
@staticmethod
def _process_escaped_braces(template) -> str:
"""处理模板中的转义花括号,将 \{\} 替换为临时标记""" # type: ignore
# 如果传入的是列表,将其转换为字符串
if isinstance(template, list):
template = "\n".join(str(item) for item in template)
elif not isinstance(template, str):
template = str(template)
return template.replace("\\{", Prompt._TEMP_LEFT_BRACE).replace("\\}", Prompt._TEMP_RIGHT_BRACE)
@staticmethod
def _restore_escaped_braces(template: str) -> str:
"""将临时标记还原为实际的花括号字符"""
return template.replace(Prompt._TEMP_LEFT_BRACE, "{").replace(Prompt._TEMP_RIGHT_BRACE, "}")
def __new__(cls, fstr, name: Optional[str] = None, args: Union[List[Any], tuple[Any, ...]] = None, **kwargs):
# 如果传入的是元组,转换为列表
if isinstance(args, tuple):
args = list(args)
should_register = kwargs.pop("_should_register", True)
# 预处理模板中的转义花括号
processed_fstr = cls._process_escaped_braces(fstr)
# 解析模板
template_args = []
result = re.findall(r"\{(.*?)}", processed_fstr)
for expr in result:
if expr and expr not in template_args:
template_args.append(expr)
# 如果提供了初始参数,立即格式化
if kwargs or args:
formatted = cls._format_template(fstr, args=args, kwargs=kwargs)
obj = super().__new__(cls, formatted)
else:
obj = super().__new__(cls, "")
obj.template = fstr
obj.name = name
obj.args = template_args
obj._args = args or []
obj._kwargs = kwargs
# 修改自动注册逻辑
if should_register and not global_prompt_manager._context._current_context:
global_prompt_manager.register(obj)
return obj
@classmethod
async def create_async(
cls, fstr, name: Optional[str] = None, args: Union[List[Any], tuple[Any, ...]] = None, **kwargs
):
"""异步创建Prompt实例"""
prompt = cls(fstr, name, args, **kwargs)
if global_prompt_manager._context._current_context:
await global_prompt_manager._context.register_async(prompt)
return prompt
@classmethod
def _format_template(cls, template, args: List[Any] = None, kwargs: Dict[str, Any] = None) -> str:
# 预处理模板中的转义花括号
processed_template = cls._process_escaped_braces(template)
template_args = []
result = re.findall(r"\{(.*?)}", processed_template)
for expr in result:
if expr and expr not in template_args:
template_args.append(expr)
formatted_args = {}
formatted_kwargs = {}
# 处理位置参数
if args:
# print(len(template_args), len(args), template_args, args)
for i in range(len(args)):
if i < len(template_args):
arg = args[i]
if isinstance(arg, Prompt):
formatted_args[template_args[i]] = arg.format(**kwargs)
else:
formatted_args[template_args[i]] = arg
else:
logger.error(
f"构建提示词模板失败,解析到的参数列表{template_args},长度为{len(template_args)},输入的参数列表为{args},提示词模板为{template}"
)
raise ValueError("格式化模板失败")
# 处理关键字参数
if kwargs:
for key, value in kwargs.items():
if isinstance(value, Prompt):
remaining_kwargs = {k: v for k, v in kwargs.items() if k != key}
formatted_kwargs[key] = value.format(**remaining_kwargs)
else:
formatted_kwargs[key] = value
try:
# 先用位置参数格式化
if args:
processed_template = processed_template.format(**formatted_args)
# 再用关键字参数格式化
if kwargs:
processed_template = processed_template.format(**formatted_kwargs)
# 将临时标记还原为实际的花括号
result = cls._restore_escaped_braces(processed_template)
return result
except (IndexError, KeyError) as e:
raise ValueError(
f"格式化模板失败: {template}, args={formatted_args}, kwargs={formatted_kwargs} {str(e)}"
) from e
def format(self, *args, **kwargs) -> "str":
"""支持位置参数和关键字参数的格式化,使用"""
ret = type(self)(
self.template,
self.name,
args=list(args) if args else self._args,
_should_register=False,
**kwargs or self._kwargs,
)
# print(f"prompt build result: {ret} name: {ret.name} ")
return str(ret)
def __str__(self) -> str:
return super().__str__() if self._kwargs or self._args else self.template
def __repr__(self) -> str:
return f"Prompt(template='{self.template}', name='{self.name}')"

1467
src/chat/utils/statistic.py Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,158 @@
import asyncio
from time import perf_counter
from functools import wraps
from typing import Optional, Dict, Callable
from rich.traceback import install
install(extra_lines=3)
"""
# 更好的计时器
使用形式:
- 上下文
- 装饰器
- 直接实例化
使用场景:
- 使用Timer在需要测量代码执行时间时如性能测试、计时器工具Timer类是更可靠、高精度的选择。
- 使用time.time()的场景:当需要记录实际时间点(如日志、时间戳)时使用,但避免用它测量时间间隔。
使用方式:
【装饰器】
time_dict = {}
@Timer("计数", time_dict)
def func():
pass
print(time_dict)
【上下文_1】
def func():
with Timer() as t:
pass
print(t)
print(t.human_readable)
【上下文_2】
def func():
time_dict = {}
with Timer("计数", time_dict):
pass
print(time_dict)
【直接实例化】
a = Timer()
print(a) # 直接输出当前 perf_counter 值
参数:
- name计时器的名字默认为 None
- storage计时器结果存储字典默认为 None
- auto_unit自动选择单位毫秒或秒默认为 True自动根据时间切换毫秒或秒
- do_type_check是否进行类型检查默认为 False不进行类型检查
属性human_readable
自定义错误TimerTypeError
"""
class TimerTypeError(TypeError):
"""自定义类型错误"""
__slots__ = ()
def __init__(self, param, expected_type, actual_type):
super().__init__(f"参数 '{param}' 类型错误,期望 {expected_type},实际得到 {actual_type.__name__}")
class Timer:
"""
Timer 支持三种模式:
1. 装饰器模式:用于测量函数/协程运行时间
2. 上下文管理器模式:用于 with 语句块内部计时
3. 直接实例化:如果不调用 __enter__打印对象时将显示当前 perf_counter 的值
"""
__slots__ = ("name", "storage", "elapsed", "auto_unit", "start")
def __init__(
self,
name: Optional[str] = None,
storage: Optional[Dict[str, float]] = None,
auto_unit: bool = True,
do_type_check: bool = False,
):
if do_type_check:
self._validate_types(name, storage)
self.name = name
self.storage = storage
self.elapsed: float = None # type: ignore
self.auto_unit = auto_unit
self.start: float = None # type: ignore
@staticmethod
def _validate_types(name, storage):
"""类型检查"""
if name is not None and not isinstance(name, str):
raise TimerTypeError("name", "Optional[str]", type(name))
if storage is not None and not isinstance(storage, dict):
raise TimerTypeError("storage", "Optional[dict]", type(storage))
def __call__(self, func: Optional[Callable] = None) -> Callable:
"""装饰器模式"""
if func is None:
return lambda f: Timer(name=self.name or f.__name__, storage=self.storage, auto_unit=self.auto_unit)(f)
@wraps(func)
async def async_wrapper(*args, **kwargs):
with self:
return await func(*args, **kwargs)
return None
@wraps(func)
def sync_wrapper(*args, **kwargs):
with self:
return func(*args, **kwargs)
return None
wrapper = async_wrapper if asyncio.iscoroutinefunction(func) else sync_wrapper
wrapper.__timer__ = self # 保留计时器引用 # type: ignore
return wrapper
def __enter__(self):
"""上下文管理器入口"""
self.start = perf_counter()
return self
def __exit__(self, *args):
self.elapsed = perf_counter() - self.start
self._record_time()
return False
def _record_time(self):
"""记录时间"""
if self.storage is not None and self.name:
self.storage[self.name] = self.elapsed
@property
def human_readable(self) -> str:
"""人类可读时间格式"""
if self.elapsed is None:
return "未计时"
if self.auto_unit:
return f"{self.elapsed * 1000:.2f}毫秒" if self.elapsed < 1 else f"{self.elapsed:.2f}"
return f"{self.elapsed:.4f}"
def __str__(self):
if self.start is not None:
if self.elapsed is None:
current_elapsed = perf_counter() - self.start
return f"<Timer {self.name or '匿名'} [计时中: {current_elapsed:.4f}秒]>"
return f"<Timer {self.name or '匿名'} [{self.human_readable}]>"
return f"{perf_counter()}"

View File

@@ -0,0 +1,477 @@
"""
错别字生成器 - 基于拼音和字频的中文错别字生成工具
"""
import json
import math
import os
import random
import time
import jieba
from collections import defaultdict
from pathlib import Path
from pypinyin import Style, pinyin
from src.common.logger import get_logger
logger = get_logger("typo_gen")
class ChineseTypoGenerator:
def __init__(self, error_rate=0.3, min_freq=5, tone_error_rate=0.2, word_replace_rate=0.3, max_freq_diff=200):
"""
初始化错别字生成器
参数:
error_rate: 单字替换概率
min_freq: 最小字频阈值
tone_error_rate: 声调错误概率
word_replace_rate: 整词替换概率
max_freq_diff: 最大允许的频率差异
"""
self.error_rate = error_rate
self.min_freq = min_freq
self.tone_error_rate = tone_error_rate
self.word_replace_rate = word_replace_rate
self.max_freq_diff = max_freq_diff
# 加载数据
# print("正在加载汉字数据库,请稍候...")
# logger.info("正在加载汉字数据库,请稍候...")
self.pinyin_dict = self._create_pinyin_dict()
self.char_frequency = self._load_or_create_char_frequency()
def _load_or_create_char_frequency(self):
"""
加载或创建汉字频率字典
"""
cache_file = Path("depends-data/char_frequency.json")
# 如果缓存文件存在,直接加载
if cache_file.exists():
with open(cache_file, "r", encoding="utf-8") as f:
return json.load(f)
# 使用内置的词频文件
char_freq = defaultdict(int)
dict_path = os.path.join(os.path.dirname(jieba.__file__), "dict.txt")
# 读取jieba的词典文件
with open(dict_path, "r", encoding="utf-8") as f:
for line in f:
word, freq = line.strip().split()[:2]
# 对词中的每个字进行频率累加
for char in word:
if self._is_chinese_char(char):
char_freq[char] += int(freq)
# 归一化频率值
max_freq = max(char_freq.values())
normalized_freq = {char: freq / max_freq * 1000 for char, freq in char_freq.items()}
# 保存到缓存文件
with open(cache_file, "w", encoding="utf-8") as f:
json.dump(normalized_freq, f, ensure_ascii=False, indent=2)
return normalized_freq
@staticmethod
def _create_pinyin_dict():
"""
创建拼音到汉字的映射字典
"""
# 常用汉字范围
chars = [chr(i) for i in range(0x4E00, 0x9FFF)]
pinyin_dict = defaultdict(list)
# 为每个汉字建立拼音映射
for char in chars:
try:
py = pinyin(char, style=Style.TONE3)[0][0]
pinyin_dict[py].append(char)
except Exception:
continue
return pinyin_dict
@staticmethod
def _is_chinese_char(char):
"""
判断是否为汉字
"""
try:
return "\u4e00" <= char <= "\u9fff"
except Exception as e:
logger.debug(str(e))
return False
def _get_pinyin(self, sentence):
"""
将中文句子拆分成单个汉字并获取其拼音
"""
# 将句子拆分成单个字符
characters = list(sentence)
# 获取每个字符的拼音
result = []
for char in characters:
# 跳过空格和非汉字字符
if char.isspace() or not self._is_chinese_char(char):
continue
# 获取拼音(数字声调)
py = pinyin(char, style=Style.TONE3)[0][0]
result.append((char, py))
return result
@staticmethod
def _get_similar_tone_pinyin(py):
"""
获取相似声调的拼音
"""
# 检查拼音是否为空或无效
if not py or len(py) < 1:
return py
# 如果最后一个字符不是数字,说明可能是轻声或其他特殊情况
if not py[-1].isdigit():
# 为非数字结尾的拼音添加数字声调1
return f"{py}1"
base = py[:-1] # 去掉声调
tone = int(py[-1]) # 获取声调
# 处理轻声通常用5表示或无效声调
if tone not in [1, 2, 3, 4]:
return base + str(random.choice([1, 2, 3, 4]))
# 正常处理声调
possible_tones = [1, 2, 3, 4]
possible_tones.remove(tone) # 移除原声调
new_tone = random.choice(possible_tones) # 随机选择一个新声调
return base + str(new_tone)
def _calculate_replacement_probability(self, orig_freq, target_freq):
"""
根据频率差计算替换概率
"""
if target_freq > orig_freq:
return 1.0 # 如果替换字频率更高,保持原有概率
freq_diff = orig_freq - target_freq
if freq_diff > self.max_freq_diff:
return 0.0 # 频率差太大,不替换
# 使用指数衰减函数计算概率
# 频率差为0时概率为1频率差为max_freq_diff时概率接近0
return math.exp(-3 * freq_diff / self.max_freq_diff)
def _get_similar_frequency_chars(self, char, py, num_candidates=5):
"""
获取与给定字频率相近的同音字,可能包含声调错误
"""
homophones = []
# 有一定概率使用错误声调
if random.random() < self.tone_error_rate:
wrong_tone_py = self._get_similar_tone_pinyin(py)
homophones.extend(self.pinyin_dict[wrong_tone_py])
# 添加正确声调的同音字
homophones.extend(self.pinyin_dict[py])
if not homophones:
return None
# 获取原字的频率
orig_freq = self.char_frequency.get(char, 0)
# 计算所有同音字与原字的频率差,并过滤掉低频字
freq_diff = [
(h, self.char_frequency.get(h, 0))
for h in homophones
if h != char and self.char_frequency.get(h, 0) >= self.min_freq
]
if not freq_diff:
return None
# 计算每个候选字的替换概率
candidates_with_prob = []
for h, freq in freq_diff:
prob = self._calculate_replacement_probability(orig_freq, freq)
if prob > 0: # 只保留有效概率的候选字
candidates_with_prob.append((h, prob))
if not candidates_with_prob:
return None
# 根据概率排序
candidates_with_prob.sort(key=lambda x: x[1], reverse=True)
# 返回概率最高的几个字
return [char for char, _ in candidates_with_prob[:num_candidates]]
@staticmethod
def _get_word_pinyin(word):
"""
获取词语的拼音列表
"""
return [py[0] for py in pinyin(word, style=Style.TONE3)]
@staticmethod
def _segment_sentence(sentence):
"""
使用jieba分词返回词语列表
"""
return list(jieba.cut(sentence))
def _get_word_homophones(self, word):
"""
获取整个词的同音词,只返回高频的有意义词语
"""
if len(word) == 1:
return []
# 获取词的拼音
word_pinyin = self._get_word_pinyin(word)
# 遍历所有可能的同音字组合
candidates = []
for py in word_pinyin:
chars = self.pinyin_dict.get(py, [])
if not chars:
return []
candidates.append(chars)
# 生成所有可能的组合
import itertools
all_combinations = itertools.product(*candidates)
# 获取jieba词典和词频信息
dict_path = os.path.join(os.path.dirname(jieba.__file__), "dict.txt")
valid_words = {} # 改用字典存储词语及其频率
with open(dict_path, "r", encoding="utf-8") as f:
for line in f:
parts = line.strip().split()
if len(parts) >= 2:
word_text = parts[0]
word_freq = float(parts[1]) # 获取词频
valid_words[word_text] = word_freq
# 获取原词的词频作为参考
original_word_freq = valid_words.get(word, 0)
min_word_freq = original_word_freq * 0.1 # 设置最小词频为原词频的10%
# 过滤和计算频率
homophones = []
for combo in all_combinations:
new_word = "".join(combo)
if new_word != word and new_word in valid_words:
new_word_freq = valid_words[new_word]
# 只保留词频达到阈值的词
if new_word_freq >= min_word_freq:
# 计算词的平均字频(考虑字频和词频)
char_avg_freq = sum(self.char_frequency.get(c, 0) for c in new_word) / len(new_word)
# 综合评分:结合词频和字频
combined_score = new_word_freq * 0.7 + char_avg_freq * 0.3
if combined_score >= self.min_freq:
homophones.append((new_word, combined_score))
# 按综合分数排序并限制返回数量
sorted_homophones = sorted(homophones, key=lambda x: x[1], reverse=True)
return [word for word, _ in sorted_homophones[:5]] # 限制返回前5个结果
def create_typo_sentence(self, sentence):
"""
创建包含同音字错误的句子,支持词语级别和字级别的替换
参数:
sentence: 输入的中文句子
返回:
typo_sentence: 包含错别字的句子
correction_suggestion: 随机选择的一个纠正建议,返回正确的字/词
"""
result = []
typo_info = []
word_typos = [] # 记录词语错误对(错词,正确词)
char_typos = [] # 记录单字错误对(错字,正确字)
current_pos = 0
# 分词
words = self._segment_sentence(sentence)
for word in words:
# 如果是标点符号或空格,直接添加
if all(not self._is_chinese_char(c) for c in word):
result.append(word)
current_pos += len(word)
continue
# 获取词语的拼音
word_pinyin = self._get_word_pinyin(word)
# 尝试整词替换
if len(word) > 1 and random.random() < self.word_replace_rate:
word_homophones = self._get_word_homophones(word)
if word_homophones:
typo_word = random.choice(word_homophones)
# 计算词的平均频率
orig_freq = sum(self.char_frequency.get(c, 0) for c in word) / len(word)
typo_freq = sum(self.char_frequency.get(c, 0) for c in typo_word) / len(typo_word)
# 添加到结果中
result.append(typo_word)
typo_info.append(
(
word,
typo_word,
" ".join(word_pinyin),
" ".join(self._get_word_pinyin(typo_word)),
orig_freq,
typo_freq,
)
)
word_typos.append((typo_word, word)) # 记录(错词,正确词)对
current_pos += len(typo_word)
continue
# 如果不进行整词替换,则进行单字替换
if len(word) == 1:
char = word
py = word_pinyin[0]
if random.random() < self.error_rate:
similar_chars = self._get_similar_frequency_chars(char, py)
if similar_chars:
typo_char = random.choice(similar_chars)
typo_freq = self.char_frequency.get(typo_char, 0)
orig_freq = self.char_frequency.get(char, 0)
replace_prob = self._calculate_replacement_probability(orig_freq, typo_freq)
if random.random() < replace_prob:
result.append(typo_char)
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
char_typos.append((typo_char, char)) # 记录(错字,正确字)对
current_pos += 1
continue
result.append(char)
current_pos += 1
else:
# 处理多字词的单字替换
word_result = []
for _, (char, py) in enumerate(zip(word, word_pinyin, strict=False)):
# 词中的字替换概率降低
word_error_rate = self.error_rate * (0.7 ** (len(word) - 1))
if random.random() < word_error_rate:
similar_chars = self._get_similar_frequency_chars(char, py)
if similar_chars:
typo_char = random.choice(similar_chars)
typo_freq = self.char_frequency.get(typo_char, 0)
orig_freq = self.char_frequency.get(char, 0)
replace_prob = self._calculate_replacement_probability(orig_freq, typo_freq)
if random.random() < replace_prob:
word_result.append(typo_char)
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
char_typos.append((typo_char, char)) # 记录(错字,正确字)对
continue
word_result.append(char)
result.append("".join(word_result))
current_pos += len(word)
# 优先从词语错误中选择,如果没有则从单字错误中选择
correction_suggestion = None
# 50%概率返回纠正建议
if random.random() < 0.5:
if word_typos:
wrong_word, correct_word = random.choice(word_typos)
correction_suggestion = correct_word
elif char_typos:
wrong_char, correct_char = random.choice(char_typos)
correction_suggestion = correct_char
return "".join(result), correction_suggestion
@staticmethod
def format_typo_info(typo_info):
"""
格式化错别字信息
参数:
typo_info: 错别字信息列表
返回:
格式化后的错别字信息字符串
"""
if not typo_info:
return "未生成错别字"
result = []
for orig, typo, orig_py, typo_py, orig_freq, typo_freq in typo_info:
# 判断是否为词语替换
is_word = " " in orig_py
if is_word:
error_type = "整词替换"
else:
tone_error = orig_py[:-1] == typo_py[:-1] and orig_py[-1] != typo_py[-1]
error_type = "声调错误" if tone_error else "同音字替换"
result.append(
f"原文:{orig}({orig_py}) [频率:{orig_freq:.2f}] -> "
f"替换:{typo}({typo_py}) [频率:{typo_freq:.2f}] [{error_type}]"
)
return "\n".join(result)
def set_params(self, **kwargs):
"""
设置参数
可设置参数:
error_rate: 单字替换概率
min_freq: 最小字频阈值
tone_error_rate: 声调错误概率
word_replace_rate: 整词替换概率
max_freq_diff: 最大允许的频率差异
"""
for key, value in kwargs.items():
if hasattr(self, key):
setattr(self, key, value)
print(f"参数 {key} 已设置为 {value}")
else:
print(f"警告: 参数 {key} 不存在")
def main():
# 创建错别字生成器实例
typo_generator = ChineseTypoGenerator(error_rate=0.03, min_freq=7, tone_error_rate=0.02, word_replace_rate=0.3)
# 获取用户输入
sentence = input("请输入中文句子:")
# 创建包含错别字的句子
start_time = time.time()
typo_sentence, correction_suggestion = typo_generator.create_typo_sentence(sentence)
# 打印结果
print("\n原句:", sentence)
print("错字版:", typo_sentence)
# 打印纠正建议
if correction_suggestion:
print("\n随机纠正建议:")
print(f"应该改为:{correction_suggestion}")
# 计算并打印总耗时
end_time = time.time()
total_time = end_time - start_time
print(f"\n总耗时:{total_time:.2f}")
if __name__ == "__main__":
main()

767
src/chat/utils/utils.py Normal file
View File

@@ -0,0 +1,767 @@
import random
import re
import string
import time
import jieba
import numpy as np
from collections import Counter
from maim_message import UserInfo
from typing import Optional, Tuple, Dict, List, Any
from src.common.logger import get_logger
from src.common.message_repository import find_messages, count_messages
from src.config.config import global_config, model_config
from src.chat.message_receive.message import MessageRecv
from src.chat.message_receive.chat_stream import get_chat_manager
from src.llm_models.utils_model import LLMRequest
from src.person_info.person_info import PersonInfoManager, get_person_info_manager
from .typo_generator import ChineseTypoGenerator
logger = get_logger("chat_utils")
def is_english_letter(char: str) -> bool:
"""检查字符是否为英文字母(忽略大小写)"""
return "a" <= char.lower() <= "z"
def db_message_to_str(message_dict: dict) -> str:
logger.debug(f"message_dict: {message_dict}")
time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(message_dict["time"]))
try:
name = f"[({message_dict['user_id']}){message_dict.get('user_nickname', '')}]{message_dict.get('user_cardname', '')}"
except Exception:
name = message_dict.get("user_nickname", "") or f"用户{message_dict['user_id']}"
content = message_dict.get("processed_plain_text", "")
result = f"[{time_str}] {name}: {content}\n"
logger.debug(f"result: {result}")
return result
def is_mentioned_bot_in_message(message: MessageRecv) -> tuple[bool, float]:
"""检查消息是否提到了机器人"""
keywords = [global_config.bot.nickname]
nicknames = global_config.bot.alias_names
reply_probability = 0.0
is_at = False
is_mentioned = False
if message.is_mentioned is not None:
return bool(message.is_mentioned), message.is_mentioned
if (
message.message_info.additional_config is not None
and message.message_info.additional_config.get("is_mentioned") is not None
):
try:
reply_probability = float(message.message_info.additional_config.get("is_mentioned")) # type: ignore
is_mentioned = True
return is_mentioned, reply_probability
except Exception as e:
logger.warning(str(e))
logger.warning(
f"消息中包含不合理的设置 is_mentioned: {message.message_info.additional_config.get('is_mentioned')}"
)
if global_config.bot.nickname in message.processed_plain_text:
is_mentioned = True
for alias_name in global_config.bot.alias_names:
if alias_name in message.processed_plain_text:
is_mentioned = True
# 判断是否被@
if re.search(rf"@<(.+?):{global_config.bot.qq_account}>", message.processed_plain_text):
is_at = True
is_mentioned = True
# print(f"message.processed_plain_text: {message.processed_plain_text}")
# print(f"is_mentioned: {is_mentioned}")
# print(f"is_at: {is_at}")
if is_at and global_config.chat.at_bot_inevitable_reply:
reply_probability = 1.0
logger.debug("被@回复概率设置为100%")
else:
if not is_mentioned:
# 判断是否被回复
if re.match(
rf"\[回复 (.+?)\({str(global_config.bot.qq_account)}\)(.+?)\],说:", message.processed_plain_text
) or re.match(
rf"\[回复<(.+?)(?=:{str(global_config.bot.qq_account)}>)\:{str(global_config.bot.qq_account)}>(.+?)\],说:",
message.processed_plain_text,
):
is_mentioned = True
else:
# 判断内容中是否被提及
message_content = re.sub(r"@(.+?)(\d+)", "", message.processed_plain_text)
message_content = re.sub(r"@<(.+?)(?=:(\d+))\:(\d+)>", "", message_content)
message_content = re.sub(r"\[回复 (.+?)\(((\d+)|未知id)\)(.+?)\],说:", "", message_content)
message_content = re.sub(r"\[回复<(.+?)(?=:(\d+))\:(\d+)>(.+?)\],说:", "", message_content)
for keyword in keywords:
if keyword in message_content:
is_mentioned = True
for nickname in nicknames:
if nickname in message_content:
is_mentioned = True
if is_mentioned and global_config.chat.mentioned_bot_inevitable_reply:
reply_probability = 1.0
logger.debug("被提及回复概率设置为100%")
return is_mentioned, reply_probability
async def get_embedding(text, request_type="embedding") -> Optional[List[float]]:
"""获取文本的embedding向量"""
llm = LLMRequest(model_set=model_config.model_task_config.embedding, request_type=request_type)
try:
embedding, _ = await llm.get_embedding(text)
except Exception as e:
logger.error(f"获取embedding失败: {str(e)}")
embedding = None
return embedding
def get_recent_group_speaker(chat_stream_id: str, sender, limit: int = 12) -> list:
# 获取当前群聊记录内发言的人
filter_query = {"chat_id": chat_stream_id}
sort_order = [("time", -1)]
recent_messages = find_messages(message_filter=filter_query, sort=sort_order, limit=limit)
if not recent_messages:
return []
who_chat_in_group = []
for msg_db_data in recent_messages:
user_info = UserInfo.from_dict(
{
"platform": msg_db_data["user_platform"],
"user_id": msg_db_data["user_id"],
"user_nickname": msg_db_data["user_nickname"],
"user_cardname": msg_db_data.get("user_cardname", ""),
}
)
if (
(user_info.platform, user_info.user_id) != sender
and user_info.user_id != global_config.bot.qq_account
and (user_info.platform, user_info.user_id, user_info.user_nickname) not in who_chat_in_group
and len(who_chat_in_group) < 5
): # 排除重复排除消息发送者排除bot限制加载的关系数目
who_chat_in_group.append((user_info.platform, user_info.user_id, user_info.user_nickname))
return who_chat_in_group
def split_into_sentences_w_remove_punctuation(text: str) -> list[str]:
"""将文本分割成句子,并根据概率合并
1. 识别分割点(, 。 ; 空格),但如果分割点左右都是英文字母则不分割。
2. 将文本分割成 (内容, 分隔符) 的元组。
3. 根据原始文本长度计算合并概率,概率性地合并相邻段落。
注意:此函数假定颜文字已在上层被保护。
Args:
text: 要分割的文本字符串 (假定颜文字已被保护)
Returns:
List[str]: 分割和合并后的句子列表
"""
# 预处理:处理多余的换行符
# 1. 将连续的换行符替换为单个换行符
text = re.sub(r"\n\s*\n+", "\n", text)
# 2. 处理换行符和其他分隔符的组合
text = re.sub(r"\n\s*([,。;\s])", r"\1", text)
text = re.sub(r"([,。;\s])\s*\n", r"\1", text)
# 处理两个汉字中间的换行符
text = re.sub(r"([\u4e00-\u9fff])\n([\u4e00-\u9fff])", r"\1。\2", text)
len_text = len(text)
if len_text < 3:
return list(text) if random.random() < 0.01 else [text]
# 定义分隔符
separators = {"", ",", " ", "", ";"}
segments = []
current_segment = ""
# 1. 分割成 (内容, 分隔符) 元组
i = 0
while i < len(text):
char = text[i]
if char in separators:
# 检查分割条件:如果分隔符左右都是英文字母,则不分割
can_split = True
if 0 < i < len(text) - 1:
prev_char = text[i - 1]
next_char = text[i + 1]
# if is_english_letter(prev_char) and is_english_letter(next_char) and char == ' ': # 原计划只对空格应用此规则,现应用于所有分隔符
if is_english_letter(prev_char) and is_english_letter(next_char):
can_split = False
if can_split:
# 只有当当前段不为空时才添加
if current_segment:
segments.append((current_segment, char))
# 如果当前段为空,但分隔符是空格,则也添加一个空段(保留空格)
elif char == " ":
segments.append(("", char))
current_segment = ""
else:
# 不分割,将分隔符加入当前段
current_segment += char
else:
current_segment += char
i += 1
# 添加最后一个段(没有后续分隔符)
if current_segment:
segments.append((current_segment, ""))
# 过滤掉完全空的段(内容和分隔符都为空)
segments = [(content, sep) for content, sep in segments if content or sep]
# 如果分割后为空(例如,输入全是分隔符且不满足保留条件),恢复颜文字并返回
if not segments:
return [text] if text else [] # 如果原始文本非空,则返回原始文本(可能只包含未被分割的字符或颜文字占位符)
# 2. 概率合并
if len_text < 12:
split_strength = 0.2
elif len_text < 32:
split_strength = 0.6
else:
split_strength = 0.7
# 合并概率与分割强度相反
merge_probability = 1.0 - split_strength
merged_segments = []
idx = 0
while idx < len(segments):
current_content, current_sep = segments[idx]
# 检查是否可以与下一段合并
# 条件:不是最后一段,且随机数小于合并概率,且当前段有内容(避免合并空段)
if idx + 1 < len(segments) and random.random() < merge_probability and current_content:
next_content, next_sep = segments[idx + 1]
# 合并: (内容1 + 分隔符1 + 内容2, 分隔符2)
# 只有当下一段也有内容时才合并文本,否则只传递分隔符
if next_content:
merged_content = current_content + current_sep + next_content
merged_segments.append((merged_content, next_sep))
else: # 下一段内容为空,只保留当前内容和下一段的分隔符
merged_segments.append((current_content, next_sep))
idx += 2 # 跳过下一段,因为它已被合并
else:
# 不合并,直接添加当前段
merged_segments.append((current_content, current_sep))
idx += 1
# 提取最终的句子内容
final_sentences = [content for content, sep in merged_segments if content] # 只保留有内容的段
# 清理可能引入的空字符串和仅包含空白的字符串
final_sentences = [
s for s in final_sentences if s.strip()
] # 过滤掉空字符串以及仅包含空白(如换行符、空格)的字符串
logger.debug(f"分割并合并后的句子: {final_sentences}")
return final_sentences
def random_remove_punctuation(text: str) -> str:
"""随机处理标点符号,模拟人类打字习惯
Args:
text: 要处理的文本
Returns:
str: 处理后的文本
"""
result = ""
text_len = len(text)
for i, char in enumerate(text):
if char == "" and i == text_len - 1: # 结尾的句号
if random.random() > 0.1: # 90%概率删除结尾句号
continue
elif char == "":
rand = random.random()
if rand < 0.05: # 5%概率删除逗号
continue
elif rand < 0.25: # 20%概率把逗号变成空格
result += " "
continue
result += char
return result
def process_llm_response(text: str, enable_splitter: bool = True, enable_chinese_typo: bool = True) -> list[str]:
if not global_config.response_post_process.enable_response_post_process:
return [text]
# 先保护颜文字
if global_config.response_splitter.enable_kaomoji_protection:
protected_text, kaomoji_mapping = protect_kaomoji(text)
logger.debug(f"保护颜文字后的文本: {protected_text}")
else:
protected_text = text
kaomoji_mapping = {}
# 提取被 () 或 [] 或 ()包裹且包含中文的内容
pattern = re.compile(r"[(\[](?=.*[一-鿿]).*?[)\]]")
_extracted_contents = pattern.findall(protected_text) # 在保护后的文本上查找
# 去除 () 和 [] 及其包裹的内容
cleaned_text = pattern.sub("", protected_text)
if cleaned_text == "":
return ["呃呃"]
logger.debug(f"{text}去除括号处理后的文本: {cleaned_text}")
# 对清理后的文本进行进一步处理
max_length = global_config.response_splitter.max_length * 2
max_sentence_num = global_config.response_splitter.max_sentence_num
# 如果基本上是中文,则进行长度过滤
if get_western_ratio(cleaned_text) < 0.1 and len(cleaned_text) > max_length:
logger.warning(f"回复过长 ({len(cleaned_text)} 字符),返回默认回复")
return ["懒得说"]
typo_generator = ChineseTypoGenerator(
error_rate=global_config.chinese_typo.error_rate,
min_freq=global_config.chinese_typo.min_freq,
tone_error_rate=global_config.chinese_typo.tone_error_rate,
word_replace_rate=global_config.chinese_typo.word_replace_rate,
)
if global_config.response_splitter.enable and enable_splitter:
split_sentences = split_into_sentences_w_remove_punctuation(cleaned_text)
else:
split_sentences = [cleaned_text]
sentences = []
for sentence in split_sentences:
if global_config.chinese_typo.enable and enable_chinese_typo:
typoed_text, typo_corrections = typo_generator.create_typo_sentence(sentence)
sentences.append(typoed_text)
if typo_corrections:
sentences.append(typo_corrections)
else:
sentences.append(sentence)
if len(sentences) > max_sentence_num:
logger.warning(f"分割后消息数量过多 ({len(sentences)} 条),返回默认回复")
return [f"{global_config.bot.nickname}不知道哦"]
# if extracted_contents:
# for content in extracted_contents:
# sentences.append(content)
# 在所有句子处理完毕后,对包含占位符的列表进行恢复
if global_config.response_splitter.enable_kaomoji_protection:
sentences = recover_kaomoji(sentences, kaomoji_mapping)
return sentences
def calculate_typing_time(
input_string: str,
thinking_start_time: float,
chinese_time: float = 0.3,
english_time: float = 0.15,
is_emoji: bool = False,
) -> float:
"""
计算输入字符串所需的时间,中文和英文字符有不同的输入时间
input_string (str): 输入的字符串
chinese_time (float): 中文字符的输入时间默认为0.2秒
english_time (float): 英文字符的输入时间默认为0.1秒
is_emoji (bool): 是否为emoji默认为False
特殊情况:
- 如果只有一个中文字符将使用3倍的中文输入时间
- 在所有输入结束后额外加上回车时间0.3秒
- 如果is_emoji为True将使用固定1秒的输入时间
"""
# # 将0-1的唤醒度映射到-1到1
# mood_arousal = mood_manager.current_mood.arousal
# # 映射到0.5到2倍的速度系数
# typing_speed_multiplier = 1.5**mood_arousal # 唤醒度为1时速度翻倍,为-1时速度减半
# chinese_time *= 1 / typing_speed_multiplier
# english_time *= 1 / typing_speed_multiplier
# 计算中文字符数
chinese_chars = sum("\u4e00" <= char <= "\u9fff" for char in input_string)
# 如果只有一个中文字符使用3倍时间
if chinese_chars == 1 and len(input_string.strip()) == 1:
return chinese_time * 3 + 0.3 # 加上回车时间
# 正常计算所有字符的输入时间
total_time = 0.0
for char in input_string:
total_time += chinese_time if "\u4e00" <= char <= "\u9fff" else english_time
if is_emoji:
total_time = 1
if time.time() - thinking_start_time > 10:
total_time = 1
# print(f"thinking_start_time:{thinking_start_time}")
# print(f"nowtime:{time.time()}")
# print(f"nowtime - thinking_start_time:{time.time() - thinking_start_time}")
# print(f"{total_time}")
return total_time # 加上回车时间
def cosine_similarity(v1, v2):
"""计算余弦相似度"""
dot_product = np.dot(v1, v2)
norm1 = np.linalg.norm(v1)
norm2 = np.linalg.norm(v2)
return 0 if norm1 == 0 or norm2 == 0 else dot_product / (norm1 * norm2)
def text_to_vector(text):
"""将文本转换为词频向量"""
# 分词
words = jieba.lcut(text)
return Counter(words)
def find_similar_topics_simple(text: str, topics: list, top_k: int = 5) -> list:
"""使用简单的余弦相似度计算文本相似度"""
# 将输入文本转换为词频向量
text_vector = text_to_vector(text)
# 计算每个主题的相似度
similarities = []
for topic in topics:
topic_vector = text_to_vector(topic)
# 获取所有唯一词
all_words = set(text_vector.keys()) | set(topic_vector.keys())
# 构建向量
v1 = [text_vector.get(word, 0) for word in all_words]
v2 = [topic_vector.get(word, 0) for word in all_words]
# 计算相似度
similarity = cosine_similarity(v1, v2)
similarities.append((topic, similarity))
# 按相似度降序排序并返回前k个
return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_k]
def truncate_message(message: str, max_length=20) -> str:
"""截断消息,使其不超过指定长度"""
return f"{message[:max_length]}..." if len(message) > max_length else message
def protect_kaomoji(sentence):
""" "
识别并保护句子中的颜文字(含括号与无括号),将其替换为占位符,
并返回替换后的句子和占位符到颜文字的映射表。
Args:
sentence (str): 输入的原始句子
Returns:
tuple: (处理后的句子, {占位符: 颜文字})
"""
kaomoji_pattern = re.compile(
r"("
r"[(\[(【]" # 左括号
r"[^()\[\]()【】]*?" # 非括号字符(惰性匹配)
r"[^一-龥a-zA-Z0-9\s]" # 非中文、非英文、非数字、非空格字符(必须包含至少一个)
r"[^()\[\]()【】]*?" # 非括号字符(惰性匹配)
r"[)\])】" # 右括号
r"]"
r")"
r"|"
r"([▼▽・ᴥω・﹏^><≧≦ ̄`´∀ヮДд︿﹀へ。゚╥╯╰︶︹•⁄]{2,15})"
)
kaomoji_matches = kaomoji_pattern.findall(sentence)
placeholder_to_kaomoji = {}
for idx, match in enumerate(kaomoji_matches):
kaomoji = match[0] or match[1]
placeholder = f"__KAOMOJI_{idx}__"
sentence = sentence.replace(kaomoji, placeholder, 1)
placeholder_to_kaomoji[placeholder] = kaomoji
return sentence, placeholder_to_kaomoji
def recover_kaomoji(sentences, placeholder_to_kaomoji):
"""
根据映射表恢复句子中的颜文字。
Args:
sentences (list): 含有占位符的句子列表
placeholder_to_kaomoji (dict): 占位符到颜文字的映射表
Returns:
list: 恢复颜文字后的句子列表
"""
recovered_sentences = []
for sentence in sentences:
for placeholder, kaomoji in placeholder_to_kaomoji.items():
sentence = sentence.replace(placeholder, kaomoji)
recovered_sentences.append(sentence)
return recovered_sentences
def get_western_ratio(paragraph):
"""计算段落中字母数字字符的西文比例
原理:检查段落中字母数字字符的西文比例
通过is_english_letter函数判断每个字符是否为西文
只检查字母数字字符,忽略标点符号和空格等非字母数字字符
Args:
paragraph: 要检查的文本段落
Returns:
float: 西文字符比例(0.0-1.0)如果没有字母数字字符则返回0.0
"""
alnum_chars = [char for char in paragraph if char.isalnum()]
if not alnum_chars:
return 0.0
western_count = sum(bool(is_english_letter(char)) for char in alnum_chars)
return western_count / len(alnum_chars)
def count_messages_between(start_time: float, end_time: float, stream_id: str) -> tuple[int, int]:
"""计算两个时间点之间的消息数量和文本总长度
Args:
start_time (float): 起始时间戳 (不包含)
end_time (float): 结束时间戳 (包含)
stream_id (str): 聊天流ID
Returns:
tuple[int, int]: (消息数量, 文本总长度)
"""
count = 0
total_length = 0
# 参数校验 (可选但推荐)
if start_time >= end_time:
# logger.debug(f"开始时间 {start_time} 大于或等于结束时间 {end_time},返回 0, 0")
return 0, 0
if not stream_id:
logger.error("stream_id 不能为空")
return 0, 0
# 使用message_repository中的count_messages和find_messages函数
# 构建查询条件
filter_query = {"chat_id": stream_id, "time": {"$gt": start_time, "$lte": end_time}}
try:
# 先获取消息数量
count = count_messages(filter_query)
# 获取消息内容计算总长度
messages = find_messages(message_filter=filter_query)
total_length = sum(len(msg.get("processed_plain_text", "")) for msg in messages)
return count, total_length
except Exception as e:
logger.error(f"计算消息数量时发生意外错误: {e}")
return 0, 0
def translate_timestamp_to_human_readable(timestamp: float, mode: str = "normal") -> str:
# sourcery skip: merge-comparisons, merge-duplicate-blocks, switch
"""将时间戳转换为人类可读的时间格式
Args:
timestamp: 时间戳
mode: 转换模式,"normal"为标准格式,"relative"为相对时间格式
Returns:
str: 格式化后的时间字符串
"""
if mode == "normal":
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(timestamp))
elif mode == "normal_no_YMD":
return time.strftime("%H:%M:%S", time.localtime(timestamp))
elif mode == "relative":
now = time.time()
diff = now - timestamp
if diff < 20:
return "刚刚"
elif diff < 60:
return f"{int(diff)}秒前"
elif diff < 3600:
return f"{int(diff / 60)}分钟前"
elif diff < 86400:
return f"{int(diff / 3600)}小时前"
elif diff < 86400 * 2:
return f"{int(diff / 86400)}天前"
else:
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(timestamp)) + ":"
else: # mode = "lite" or unknown
# 只返回时分秒格式
return time.strftime("%H:%M:%S", time.localtime(timestamp))
def get_chat_type_and_target_info(chat_id: str) -> Tuple[bool, Optional[Dict]]:
"""
获取聊天类型(是否群聊)和私聊对象信息。
Args:
chat_id: 聊天流ID
Returns:
Tuple[bool, Optional[Dict]]:
- bool: 是否为群聊 (True 是群聊, False 是私聊或未知)
- Optional[Dict]: 如果是私聊,包含对方信息的字典;否则为 None。
字典包含: platform, user_id, user_nickname, person_id, person_name
"""
is_group_chat = False # Default to private/unknown
chat_target_info = None
try:
if chat_stream := get_chat_manager().get_stream(chat_id):
if chat_stream.group_info:
is_group_chat = True
chat_target_info = None # Explicitly None for group chat
elif chat_stream.user_info: # It's a private chat
is_group_chat = False
user_info = chat_stream.user_info
platform: str = chat_stream.platform
user_id: str = user_info.user_id # type: ignore
# Initialize target_info with basic info
target_info = {
"platform": platform,
"user_id": user_id,
"user_nickname": user_info.user_nickname,
"person_id": None,
"person_name": None,
}
# Try to fetch person info
try:
# Assume get_person_id is sync (as per original code), keep using to_thread
person_id = PersonInfoManager.get_person_id(platform, user_id)
person_name = None
if person_id:
# get_value is async, so await it directly
person_info_manager = get_person_info_manager()
person_name = person_info_manager.get_value_sync(person_id, "person_name")
target_info["person_id"] = person_id
target_info["person_name"] = person_name
except Exception as person_e:
logger.warning(
f"获取 person_id 或 person_name 时出错 for {platform}:{user_id} in utils: {person_e}"
)
chat_target_info = target_info
else:
logger.warning(f"无法获取 chat_stream for {chat_id} in utils")
except Exception as e:
logger.error(f"获取聊天类型和目标信息时出错 for {chat_id}: {e}", exc_info=True)
# Keep defaults on error
return is_group_chat, chat_target_info
def assign_message_ids(messages: List[Any]) -> List[Dict[str, Any]]:
"""
为消息列表中的每个消息分配唯一的简短随机ID
Args:
messages: 消息列表
Returns:
包含 {'id': str, 'message': any} 格式的字典列表
"""
result = []
used_ids = set()
len_i = len(messages)
if len_i > 100:
a = 10
b = 99
else:
a = 1
b = 9
for i, message in enumerate(messages):
# 生成唯一的简短ID
while True:
# 使用索引+随机数生成简短ID
random_suffix = random.randint(a, b)
message_id = f"m{i+1}{random_suffix}"
if message_id not in used_ids:
used_ids.add(message_id)
break
result.append({
'id': message_id,
'message': message
})
return result
def assign_message_ids_flexible(
messages: list,
prefix: str = "msg",
id_length: int = 6,
use_timestamp: bool = False
) -> list:
"""
为消息列表中的每个消息分配唯一的简短随机ID增强版
Args:
messages: 消息列表
prefix: ID前缀默认为"msg"
id_length: ID的总长度不包括前缀默认为6
use_timestamp: 是否在ID中包含时间戳默认为False
Returns:
包含 {'id': str, 'message': any} 格式的字典列表
"""
result = []
used_ids = set()
for i, message in enumerate(messages):
# 生成唯一的ID
while True:
if use_timestamp:
# 使用时间戳的后几位 + 随机字符
timestamp_suffix = str(int(time.time() * 1000))[-3:]
remaining_length = id_length - 3
random_chars = ''.join(random.choices(string.ascii_lowercase + string.digits, k=remaining_length))
message_id = f"{prefix}{timestamp_suffix}{random_chars}"
else:
# 使用索引 + 随机字符
index_str = str(i + 1)
remaining_length = max(1, id_length - len(index_str))
random_chars = ''.join(random.choices(string.ascii_lowercase + string.digits, k=remaining_length))
message_id = f"{prefix}{index_str}{random_chars}"
if message_id not in used_ids:
used_ids.add(message_id)
break
result.append({
'id': message_id,
'message': message
})
return result
# 使用示例:
# messages = ["Hello", "World", "Test message"]
#
# # 基础版本
# result1 = assign_message_ids(messages)
# # 结果: [{'id': 'm1123', 'message': 'Hello'}, {'id': 'm2456', 'message': 'World'}, {'id': 'm3789', 'message': 'Test message'}]
#
# # 增强版本 - 自定义前缀和长度
# result2 = assign_message_ids_flexible(messages, prefix="chat", id_length=8)
# # 结果: [{'id': 'chat1abc2', 'message': 'Hello'}, {'id': 'chat2def3', 'message': 'World'}, {'id': 'chat3ghi4', 'message': 'Test message'}]
#
# # 增强版本 - 使用时间戳
# result3 = assign_message_ids_flexible(messages, prefix="ts", use_timestamp=True)
# # 结果: [{'id': 'ts123a1b', 'message': 'Hello'}, {'id': 'ts123c2d', 'message': 'World'}, {'id': 'ts123e3f', 'message': 'Test message'}]

View File

@@ -0,0 +1,659 @@
import base64
import os
import time
import hashlib
import uuid
import io
import asyncio
import numpy as np
from typing import Optional, Tuple
from PIL import Image
from rich.traceback import install
from src.common.logger import get_logger
from src.common.database.database import db
from src.common.database.sqlalchemy_models import Images, ImageDescriptions
from src.config.config import global_config, model_config
from src.llm_models.utils_model import LLMRequest
from src.common.database.sqlalchemy_models import get_db_session
from sqlalchemy import select, and_
install(extra_lines=3)
logger = get_logger("chat_image")
class ImageManager:
_instance = None
IMAGE_DIR = "data" # 图像存储根目录
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if not self._initialized:
self._ensure_image_dir()
self._initialized = True
self.vlm = LLMRequest(model_set=model_config.model_task_config.vlm, request_type="image")
try:
db.connect(reuse_if_open=True)
# 使用SQLAlchemy创建表已在初始化时完成
logger.debug("使用SQLAlchemy进行表管理")
except Exception as e:
logger.error(f"数据库连接失败: {e}")
self._initialized = True
def _ensure_image_dir(self):
"""确保图像存储目录存在"""
os.makedirs(self.IMAGE_DIR, exist_ok=True)
@staticmethod
def _get_description_from_db(image_hash: str, description_type: str) -> Optional[str]:
"""从数据库获取图片描述
Args:
image_hash: 图片哈希值
description_type: 描述类型 ('emoji''image')
Returns:
Optional[str]: 描述文本如果不存在则返回None
"""
try:
with get_db_session() as session:
record = session.execute(select(ImageDescriptions).where(
and_(ImageDescriptions.image_description_hash == image_hash, ImageDescriptions.type == description_type)
)).scalar()
return record.description if record else None
except Exception as e:
logger.error(f"从数据库获取描述失败 (SQLAlchemy): {str(e)}")
return None
@staticmethod
def _save_description_to_db(image_hash: str, description: str, description_type: str) -> None:
"""保存图片描述到数据库
Args:
image_hash: 图片哈希值
description: 描述文本
description_type: 描述类型 ('emoji''image')
"""
try:
current_timestamp = time.time()
with get_db_session() as session:
# 查找现有记录
existing = session.execute(select(ImageDescriptions).where(
and_(ImageDescriptions.image_description_hash == image_hash, ImageDescriptions.type == description_type)
)).scalar()
if existing:
# 更新现有记录
existing.description = description
existing.timestamp = current_timestamp
else:
# 创建新记录
new_desc = ImageDescriptions(
image_description_hash=image_hash,
type=description_type,
description=description,
timestamp=current_timestamp
)
session.add(new_desc)
# session.commit() 会在上下文管理器中自动调用
except Exception as e:
logger.error(f"保存描述到数据库失败 (SQLAlchemy): {str(e)}")
async def get_emoji_tag(self, image_base64: str) -> str:
from src.chat.emoji_system.emoji_manager import get_emoji_manager
emoji_manager = get_emoji_manager()
if isinstance(image_base64, str):
image_base64 = image_base64.encode("ascii", errors="ignore").decode("ascii")
image_bytes = base64.b64decode(image_base64)
image_hash = hashlib.md5(image_bytes).hexdigest()
emoji = await emoji_manager.get_emoji_from_manager(image_hash)
emotion_list = emoji.emotion
tag_str = ",".join(emotion_list)
return f"[表情包:{tag_str}]"
async def get_emoji_description(self, image_base64: str) -> str:
"""获取表情包描述优先使用Emoji表中的缓存数据"""
try:
# 计算图片哈希
# 确保base64字符串只包含ASCII字符
if isinstance(image_base64, str):
image_base64 = image_base64.encode("ascii", errors="ignore").decode("ascii")
image_bytes = base64.b64decode(image_base64)
image_hash = hashlib.md5(image_bytes).hexdigest()
image_format = Image.open(io.BytesIO(image_bytes)).format.lower() # type: ignore
# 优先使用EmojiManager查询已注册表情包的描述
try:
from src.chat.emoji_system.emoji_manager import get_emoji_manager
emoji_manager = get_emoji_manager()
cached_emoji_description = await emoji_manager.get_emoji_description_by_hash(image_hash)
if cached_emoji_description:
logger.info(f"[缓存命中] 使用已注册表情包描述: {cached_emoji_description[:50]}...")
return cached_emoji_description
except Exception as e:
logger.debug(f"查询EmojiManager时出错: {e}")
# 查询ImageDescriptions表的缓存描述
if cached_description := self._get_description_from_db(image_hash, "emoji"):
logger.info(f"[缓存命中] 使用ImageDescriptions表中的描述: {cached_description[:50]}...")
return f"[表情包:{cached_description}]"
# === 二步走识别流程 ===
# 第一步VLM视觉分析 - 生成详细描述
if image_format in ["gif", "GIF"]:
image_base64_processed = self.transform_gif(image_base64)
if image_base64_processed is None:
logger.warning("GIF转换失败无法获取描述")
return "[表情包(GIF处理失败)]"
vlm_prompt = "这是一个动态图表情包,每一张图代表了动态图的某一帧,黑色背景代表透明,描述一下表情包表达的情感和内容,描述细节,从互联网梗,meme的角度去分析"
detailed_description, _ = await self.vlm.generate_response_for_image(
vlm_prompt, image_base64_processed, "jpg", temperature=0.4, max_tokens=300
)
else:
vlm_prompt = (
"这是一个表情包,请详细描述一下表情包所表达的情感和内容,描述细节,从互联网梗,meme的角度去分析"
)
detailed_description, _ = await self.vlm.generate_response_for_image(
vlm_prompt, image_base64, image_format, temperature=0.4, max_tokens=300
)
if detailed_description is None:
logger.warning("VLM未能生成表情包详细描述")
return "[表情包(VLM描述生成失败)]"
# 第二步LLM情感分析 - 基于详细描述生成简短的情感标签
emotion_prompt = f"""
请你基于这个表情包的详细描述提取出最核心的情感含义用1-2个词概括。
详细描述:'{detailed_description}'
要求:
1. 只输出1-2个最核心的情感词汇
2. 从互联网梗、meme的角度理解
3. 输出简短精准,不要解释
4. 如果有多个词用逗号分隔
"""
# 使用较低温度确保输出稳定
emotion_llm = LLMRequest(model_set=model_config.model_task_config.utils, request_type="emoji")
emotion_result, _ = await emotion_llm.generate_response_async(
emotion_prompt, temperature=0.3, max_tokens=50
)
if emotion_result is None:
logger.warning("LLM未能生成情感标签使用详细描述的前几个词")
# 降级处理:从详细描述中提取关键词
import jieba
words = list(jieba.cut(detailed_description))
emotion_result = "".join(words[:2]) if len(words) >= 2 else (words[0] if words else "表情")
# 处理情感结果取前1-2个最重要的标签
emotions = [e.strip() for e in emotion_result.replace("", ",").split(",") if e.strip()]
final_emotion = emotions[0] if emotions else "表情"
# 如果有第二个情感且不重复,也包含进来
if len(emotions) > 1 and emotions[1] != emotions[0]:
final_emotion = f"{emotions[0]}{emotions[1]}"
logger.info(f"[emoji识别] 详细描述: {detailed_description[:50]}... -> 情感标签: {final_emotion}")
if cached_description := self._get_description_from_db(image_hash, "emoji"):
logger.warning(f"虽然生成了描述,但是找到缓存表情包描述: {cached_description}")
return f"[表情包:{cached_description}]"
# 保存表情包文件和元数据(用于可能的后续分析)
logger.debug(f"保存表情包: {image_hash}")
current_timestamp = time.time()
filename = f"{int(current_timestamp)}_{image_hash[:8]}.{image_format}"
emoji_dir = os.path.join(self.IMAGE_DIR, "emoji")
os.makedirs(emoji_dir, exist_ok=True)
file_path = os.path.join(emoji_dir, filename)
try:
# 保存文件
with open(file_path, "wb") as f:
f.write(image_bytes)
# 保存到数据库 (Images表) - 包含详细描述用于可能的注册流程
try:
from src.common.database.sqlalchemy_models import get_db_session
with get_db_session() as session:
existing_img = session.execute(select(Images).where(
and_(Images.emoji_hash == image_hash, Images.type == "emoji")
)).scalar()
if existing_img:
existing_img.path = file_path
existing_img.description = detailed_description # 保存详细描述
existing_img.timestamp = current_timestamp
else:
new_img = Images(
emoji_hash=image_hash,
path=file_path,
type="emoji",
description=detailed_description, # 保存详细描述
timestamp=current_timestamp,
)
session.add(new_img)
# session.commit() 会在上下文管理器中自动调用
except Exception as e:
logger.error(f"保存到Images表失败: {str(e)}")
except Exception as e:
logger.error(f"保存表情包文件或元数据失败: {str(e)}")
# 保存最终的情感标签到缓存 (ImageDescriptions表)
self._save_description_to_db(image_hash, final_emotion, "emoji")
return f"[表情包:{final_emotion}]"
except Exception as e:
logger.error(f"获取表情包描述失败: {str(e)}")
return "[表情包(处理失败)]"
async def get_image_description(self, image_base64: str) -> str:
"""获取普通图片描述优先使用Images表中的缓存数据"""
try:
# 计算图片哈希
if isinstance(image_base64, str):
image_base64 = image_base64.encode("ascii", errors="ignore").decode("ascii")
image_bytes = base64.b64decode(image_base64)
image_hash = hashlib.md5(image_bytes).hexdigest()
# 优先检查Images表中是否已有完整的描述
with get_db_session() as session:
existing_image = session.execute(select(Images).where(Images.emoji_hash == image_hash)).scalar()
if existing_image:
# 更新计数
if hasattr(existing_image, "count") and existing_image.count is not None:
existing_image.count += 1
else:
existing_image.count = 1
# 如果已有描述,直接返回
if existing_image.description:
logger.debug(f"[缓存命中] 使用Images表中的图片描述: {existing_image.description[:50]}...")
return f"[图片:{existing_image.description}]"
if cached_description := self._get_description_from_db(image_hash, "image"):
logger.debug(f"[缓存命中] 使用ImageDescriptions表中的描述: {cached_description[:50]}...")
return f"[图片:{cached_description}]"
# 调用AI获取描述
image_format = Image.open(io.BytesIO(image_bytes)).format.lower() # type: ignore
prompt = global_config.custom_prompt.image_prompt
logger.info(f"[VLM调用] 为图片生成新描述 (Hash: {image_hash[:8]}...)")
description, _ = await self.vlm.generate_response_for_image(
prompt, image_base64, image_format, temperature=0.4, max_tokens=300
)
if description is None:
logger.warning("AI未能生成图片描述")
return "[图片(描述生成失败)]"
# 保存图片和描述
current_timestamp = time.time()
filename = f"{int(current_timestamp)}_{image_hash[:8]}.{image_format}"
image_dir = os.path.join(self.IMAGE_DIR, "image")
os.makedirs(image_dir, exist_ok=True)
file_path = os.path.join(image_dir, filename)
try:
# 保存文件
with open(file_path, "wb") as f:
f.write(image_bytes)
# 保存到数据库,补充缺失字段
if existing_image:
existing_image.path = file_path
existing_image.description = description
existing_image.timestamp = current_timestamp
if not hasattr(existing_image, "image_id") or not existing_image.image_id:
existing_image.image_id = str(uuid.uuid4())
if not hasattr(existing_image, "vlm_processed") or existing_image.vlm_processed is None:
existing_image.vlm_processed = True
session.commit()
logger.debug(f"[数据库] 更新已有图片记录: {image_hash[:8]}...")
else:
new_img = Images(
image_id=str(uuid.uuid4()),
emoji_hash=image_hash,
path=file_path,
type="image",
description=description,
timestamp=current_timestamp,
vlm_processed=True,
count=1,
)
session.add(new_img)
session.commit()
logger.debug(f"[数据库] 创建新图片记录: {image_hash[:8]}...")
except Exception as e:
logger.error(f"保存图片文件或元数据失败: {str(e)}")
# 保存描述到ImageDescriptions表作为备用缓存
self._save_description_to_db(image_hash, description, "image")
logger.info(f"[VLM完成] 图片描述生成: {description[:50]}...")
return f"[图片:{description}]"
except Exception as e:
logger.error(f"获取图片描述失败: {str(e)}")
return "[图片(处理失败)]"
@staticmethod
def transform_gif(gif_base64: str, similarity_threshold: float = 1000.0, max_frames: int = 15) -> Optional[str]:
# sourcery skip: use-contextlib-suppress
"""将GIF转换为水平拼接的静态图像, 跳过相似的帧
Args:
gif_base64: GIF的base64编码字符串
similarity_threshold: 判定帧相似的阈值 (MSE)越小表示要求差异越大才算不同帧默认1000.0
max_frames: 最大抽取的帧数默认15
Returns:
Optional[str]: 拼接后的JPG图像的base64编码字符串, 或者在失败时返回None
"""
try:
# 确保base64字符串只包含ASCII字符
if isinstance(gif_base64, str):
gif_base64 = gif_base64.encode("ascii", errors="ignore").decode("ascii")
# 解码base64
gif_data = base64.b64decode(gif_base64)
gif = Image.open(io.BytesIO(gif_data))
# 收集所有帧
all_frames = []
try:
while True:
gif.seek(len(all_frames))
# 确保是RGB格式方便比较
frame = gif.convert("RGB")
all_frames.append(frame.copy())
except EOFError:
pass # 读完啦
if not all_frames:
logger.warning("GIF中没有找到任何帧")
return None # 空的GIF直接返回None
# --- 新的帧选择逻辑 ---
selected_frames = []
last_selected_frame_np = None
for i, current_frame in enumerate(all_frames):
current_frame_np = np.array(current_frame)
# 第一帧总是要选的
if i == 0:
selected_frames.append(current_frame)
last_selected_frame_np = current_frame_np
continue
# 计算和上一张选中帧的差异(均方误差 MSE
if last_selected_frame_np is not None:
mse = np.mean((current_frame_np - last_selected_frame_np) ** 2)
# logger.debug(f"帧 {i} 与上一选中帧的 MSE: {mse}") # 可以取消注释来看差异值
# 如果差异够大,就选它!
if mse > similarity_threshold:
selected_frames.append(current_frame)
last_selected_frame_np = current_frame_np
# 检查是不是选够了
if len(selected_frames) >= max_frames:
# logger.debug(f"已选够 {max_frames} 帧,停止选择。")
break
# 如果差异不大就跳过这一帧啦
# --- 帧选择逻辑结束 ---
# 如果选择后连一帧都没有比如GIF只有一帧且后续处理失败或者原始GIF就没帧也返回None
if not selected_frames:
logger.warning("处理后没有选中任何帧")
return None
# logger.debug(f"总帧数: {len(all_frames)}, 选中帧数: {len(selected_frames)}")
# 获取选中的第一帧的尺寸(假设所有帧尺寸一致)
frame_width, frame_height = selected_frames[0].size
# 计算目标尺寸,保持宽高比
target_height = 200 # 固定高度
# 防止除以零
if frame_height == 0:
logger.error("帧高度为0无法计算缩放尺寸")
return None
target_width = int((target_height / frame_height) * frame_width)
# 宽度也不能是0
if target_width == 0:
logger.warning(f"计算出的目标宽度为0 (原始尺寸 {frame_width}x{frame_height})调整为1")
target_width = 1
# 调整所有选中帧的大小
resized_frames = [
frame.resize((target_width, target_height), Image.Resampling.LANCZOS) for frame in selected_frames
]
# 创建拼接图像
total_width = target_width * len(resized_frames)
# 防止总宽度为0
if total_width == 0 and resized_frames:
logger.warning("计算出的总宽度为0但有选中帧可能目标宽度太小")
# 至少给点宽度吧
total_width = len(resized_frames)
elif total_width == 0:
logger.error("计算出的总宽度为0且无选中帧")
return None
combined_image = Image.new("RGB", (total_width, target_height))
# 水平拼接图像
for idx, frame in enumerate(resized_frames):
combined_image.paste(frame, (idx * target_width, 0))
# 转换为base64
buffer = io.BytesIO()
combined_image.save(buffer, format="JPEG", quality=85) # 保存为JPEG
return base64.b64encode(buffer.getvalue()).decode("utf-8")
except MemoryError:
logger.error("GIF转换失败: 内存不足可能是GIF太大或帧数太多")
return None # 内存不够啦
except Exception as e:
logger.error(f"GIF转换失败: {str(e)}", exc_info=True) # 记录详细错误信息
return None # 其他错误也返回None
async def process_image(self, image_base64: str) -> Tuple[str, str]:
# sourcery skip: hoist-if-from-if
"""处理图片并返回图片ID和描述
Args:
image_base64: 图片的base64编码
Returns:
Tuple[str, str]: (图片ID, 描述)
"""
try:
# 生成图片ID
# 计算图片哈希
# 确保base64字符串只包含ASCII字符
if isinstance(image_base64, str):
image_base64 = image_base64.encode("ascii", errors="ignore").decode("ascii")
image_bytes = base64.b64decode(image_base64)
image_hash = hashlib.md5(image_bytes).hexdigest()
with get_db_session() as session:
existing_image = session.execute(select(Images).where(Images.emoji_hash == image_hash)).scalar()
if existing_image:
# 检查是否缺少必要字段,如果缺少则创建新记录
if (
not hasattr(existing_image, "image_id")
or not existing_image.image_id
or not hasattr(existing_image, "count")
or existing_image.count is None
or not hasattr(existing_image, "vlm_processed")
or existing_image.vlm_processed is None
):
logger.debug(f"图片记录缺少必要字段,补全旧记录: {image_hash}")
if not existing_image.image_id:
existing_image.image_id = str(uuid.uuid4())
if existing_image.count is None:
existing_image.count = 0
if existing_image.vlm_processed is None:
existing_image.vlm_processed = False
existing_image.count += 1
session.commit()
return existing_image.image_id, f"[picid:{existing_image.image_id}]"
# print(f"图片不存在: {image_hash}")
image_id = str(uuid.uuid4())
# 保存新图片
current_timestamp = time.time()
image_dir = os.path.join(self.IMAGE_DIR, "images")
os.makedirs(image_dir, exist_ok=True)
filename = f"{image_id}.png"
file_path = os.path.join(image_dir, filename)
# 保存文件
with open(file_path, "wb") as f:
f.write(image_bytes)
# 保存到数据库
new_img = Images(
image_id=image_id,
emoji_hash=image_hash,
path=file_path,
type="image",
timestamp=current_timestamp,
vlm_processed=False,
count=1,
)
session.add(new_img)
session.commit()
# 启动异步VLM处理
asyncio.create_task(self._process_image_with_vlm(image_id, image_base64))
return image_id, f"[picid:{image_id}]"
except Exception as e:
logger.error(f"处理图片失败: {str(e)}")
return "", "[图片]"
async def _process_image_with_vlm(self, image_id: str, image_base64: str) -> None:
"""使用VLM处理图片并更新数据库
Args:
image_id: 图片ID
image_base64: 图片的base64编码
"""
try:
# 计算图片哈希
# 确保base64字符串只包含ASCII字符
if isinstance(image_base64, str):
image_base64 = image_base64.encode("ascii", errors="ignore").decode("ascii")
image_bytes = base64.b64decode(image_base64)
image_hash = hashlib.md5(image_bytes).hexdigest()
with get_db_session() as session:
# 获取当前图片记录
image = session.execute(select(Images).where(Images.image_id == image_id)).scalar()
# 优先检查是否已有其他相同哈希的图片记录包含描述
existing_with_description = session.execute(select(Images).where(
and_(
Images.emoji_hash == image_hash,
Images.description.isnot(None),
Images.description != "",
Images.id != image.id
)
)).scalar()
if existing_with_description:
logger.debug(f"[缓存复用] 从其他相同图片记录复用描述: {existing_with_description.description[:50]}...")
image.description = existing_with_description.description
image.vlm_processed = True
session.commit()
# 同时保存到ImageDescriptions表作为备用缓存
self._save_description_to_db(image_hash, existing_with_description.description, "image")
return
# 检查ImageDescriptions表的缓存描述
if cached_description := self._get_description_from_db(image_hash, "image"):
logger.debug(f"[缓存复用] 从ImageDescriptions表复用描述: {cached_description[:50]}...")
image.description = cached_description
image.vlm_processed = True
session.commit()
return
# 获取图片格式
image_format = Image.open(io.BytesIO(image_bytes)).format.lower() # type: ignore
# 构建prompt
prompt = global_config.custom_prompt.image_prompt
# 获取VLM描述
logger.info(f"[VLM异步调用] 为图片生成描述 (ID: {image_id}, Hash: {image_hash[:8]}...)")
description, _ = await self.vlm.generate_response_for_image(
prompt, image_base64, image_format, temperature=0.4, max_tokens=300
)
if description is None:
logger.warning("VLM未能生成图片描述")
description = "无法生成描述"
if cached_description := self._get_description_from_db(image_hash, "image"):
logger.warning(f"虽然生成了描述,但是找到缓存图片描述: {cached_description}")
description = cached_description
# 更新数据库
image.description = description
image.vlm_processed = True
# 保存描述到ImageDescriptions表作为备用缓存
self._save_description_to_db(image_hash, description, "image")
logger.info(f"[VLM异步完成] 图片描述生成: {description[:50]}...")
except Exception as e:
logger.error(f"VLM处理图片失败: {str(e)}")
# 创建全局单例
image_manager = None
def get_image_manager() -> ImageManager:
"""获取全局图片管理器单例"""
global image_manager
if image_manager is None:
image_manager = ImageManager()
return image_manager
def image_path_to_base64(image_path: str) -> str:
"""将图片路径转换为base64编码
Args:
image_path: 图片文件路径
Returns:
str: base64编码的图片数据
Raises:
FileNotFoundError: 当图片文件不存在时
IOError: 当读取图片文件失败时
"""
if not os.path.exists(image_path):
raise FileNotFoundError(f"图片文件不存在: {image_path}")
with open(image_path, "rb") as f:
if image_data := f.read():
return base64.b64encode(image_data).decode("utf-8")
else:
raise IOError(f"读取图片文件失败: {image_path}")

View File

@@ -0,0 +1,29 @@
from src.config.config import global_config, model_config
from src.llm_models.utils_model import LLMRequest
from src.common.logger import get_logger
from rich.traceback import install
install(extra_lines=3)
logger = get_logger("chat_voice")
async def get_voice_text(voice_base64: str) -> str:
"""获取音频文件转录文本"""
if not global_config.voice.enable_asr:
logger.warning("语音识别未启用,无法处理语音消息")
return "[语音]"
try:
_llm = LLMRequest(model_set=model_config.model_task_config.voice, request_type="audio")
text = await _llm.generate_response_for_voice(voice_base64)
if text is None:
logger.warning("未能生成语音文本")
return "[语音(文本生成失败)]"
logger.debug(f"描述是{text}")
return f"[语音:{text}]"
except Exception as e:
logger.error(f"语音转文字失败: {str(e)}")
return "[语音]"