初始化

This commit is contained in:
雅诺狐
2025-08-11 19:34:18 +08:00
parent ff7d1177fa
commit 2d4745cd58
257 changed files with 69069 additions and 0 deletions

View File

@@ -0,0 +1,126 @@
from typing import Dict, Optional, Type
from src.chat.message_receive.chat_stream import ChatStream
from src.common.logger import get_logger
from src.plugin_system.core.component_registry import component_registry
from src.plugin_system.base.component_types import ComponentType, ActionInfo
from src.plugin_system.base.base_action import BaseAction
logger = get_logger("action_manager")
class ActionManager:
"""
动作管理器,用于管理各种类型的动作
现在统一使用新插件系统,简化了原有的新旧兼容逻辑。
"""
def __init__(self):
"""初始化动作管理器"""
# 当前正在使用的动作集合,默认加载默认动作
self._using_actions: Dict[str, ActionInfo] = {}
# 初始化时将默认动作加载到使用中的动作
self._using_actions = component_registry.get_default_actions()
# === 执行Action方法 ===
def create_action(
self,
action_name: str,
action_data: dict,
reasoning: str,
cycle_timers: dict,
thinking_id: str,
chat_stream: ChatStream,
log_prefix: str,
shutting_down: bool = False,
action_message: Optional[dict] = None,
) -> Optional[BaseAction]:
"""
创建动作处理器实例
Args:
action_name: 动作名称
action_data: 动作数据
reasoning: 执行理由
cycle_timers: 计时器字典
thinking_id: 思考ID
chat_stream: 聊天流
log_prefix: 日志前缀
shutting_down: 是否正在关闭
Returns:
Optional[BaseAction]: 创建的动作处理器实例如果动作名称未注册则返回None
"""
try:
# 获取组件类 - 明确指定查询Action类型
component_class: Type[BaseAction] = component_registry.get_component_class(
action_name, ComponentType.ACTION
) # type: ignore
if not component_class:
logger.warning(f"{log_prefix} 未找到Action组件: {action_name}")
return None
# 获取组件信息
component_info = component_registry.get_component_info(action_name, ComponentType.ACTION)
if not component_info:
logger.warning(f"{log_prefix} 未找到Action组件信息: {action_name}")
return None
# 获取插件配置
plugin_config = component_registry.get_plugin_config(component_info.plugin_name)
# 创建动作实例
instance = component_class(
action_data=action_data,
reasoning=reasoning,
cycle_timers=cycle_timers,
thinking_id=thinking_id,
chat_stream=chat_stream,
log_prefix=log_prefix,
shutting_down=shutting_down,
plugin_config=plugin_config,
action_message=action_message,
)
logger.debug(f"创建Action实例成功: {action_name}")
return instance
except Exception as e:
logger.error(f"创建Action实例失败 {action_name}: {e}")
import traceback
logger.error(traceback.format_exc())
return None
def get_using_actions(self) -> Dict[str, ActionInfo]:
"""获取当前正在使用的动作集合"""
return self._using_actions.copy()
# === Modify相关方法 ===
def remove_action_from_using(self, action_name: str) -> bool:
"""
从当前使用的动作集中移除指定动作
Args:
action_name: 动作名称
Returns:
bool: 移除是否成功
"""
if action_name not in self._using_actions:
logger.warning(f"移除失败: 动作 {action_name} 不在当前使用的动作集中")
return False
del self._using_actions[action_name]
logger.debug(f"已从使用集中移除动作 {action_name}")
return True
def restore_actions(self) -> None:
"""恢复到默认动作集"""
actions_to_restore = list(self._using_actions.keys())
self._using_actions = component_registry.get_default_actions()
logger.debug(f"恢复动作集: 从 {actions_to_restore} 恢复到默认动作集 {list(self._using_actions.keys())}")

View File

@@ -0,0 +1,438 @@
import random
import asyncio
import hashlib
import time
from typing import List, Any, Dict, TYPE_CHECKING, Tuple
from src.common.logger import get_logger
from src.config.config import global_config, model_config
from src.llm_models.utils_model import LLMRequest
from src.chat.message_receive.chat_stream import get_chat_manager, ChatMessageContext
from src.chat.planner_actions.action_manager import ActionManager
from src.chat.utils.chat_message_builder import get_raw_msg_before_timestamp_with_chat, build_readable_messages
from src.plugin_system.base.component_types import ActionInfo, ActionActivationType
from src.plugin_system.core.global_announcement_manager import global_announcement_manager
if TYPE_CHECKING:
from src.chat.message_receive.chat_stream import ChatStream
logger = get_logger("action_manager")
class ActionModifier:
"""动作处理器
用于处理Observation对象和根据激活类型处理actions。
集成了原有的modify_actions功能和新的激活类型处理功能。
支持并行判定和智能缓存优化。
"""
def __init__(self, action_manager: ActionManager, chat_id: str):
"""初始化动作处理器"""
self.chat_id = chat_id
self.chat_stream: ChatStream = get_chat_manager().get_stream(self.chat_id) # type: ignore
self.log_prefix = f"[{get_chat_manager().get_stream_name(self.chat_id) or self.chat_id}]"
self.action_manager = action_manager
# 用于LLM判定的小模型
self.llm_judge = LLMRequest(model_set=model_config.model_task_config.utils_small, request_type="action.judge")
# 缓存相关属性
self._llm_judge_cache = {} # 缓存LLM判定结果
self._cache_expiry_time = 30 # 缓存过期时间(秒)
self._last_context_hash = None # 上次上下文的哈希值
async def modify_actions(
self,
message_content: str = "",
): # sourcery skip: use-named-expression
"""
动作修改流程,整合传统观察处理和新的激活类型判定
这个方法处理完整的动作管理流程:
1. 基于观察的传统动作修改(循环历史分析、类型匹配等)
2. 基于激活类型的智能动作判定,最终确定可用动作集
处理后ActionManager 将包含最终的可用动作集,供规划器直接使用
"""
logger.debug(f"{self.log_prefix}开始完整动作修改流程")
removals_s1: List[Tuple[str, str]] = []
removals_s2: List[Tuple[str, str]] = []
removals_s3: List[Tuple[str, str]] = []
self.action_manager.restore_actions()
all_actions = self.action_manager.get_using_actions()
message_list_before_now_half = get_raw_msg_before_timestamp_with_chat(
chat_id=self.chat_stream.stream_id,
timestamp=time.time(),
limit=min(int(global_config.chat.max_context_size * 0.33), 10),
)
chat_content = build_readable_messages(
message_list_before_now_half,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="relative",
read_mark=0.0,
show_actions=True,
)
if message_content:
chat_content = chat_content + "\n" + f"现在,最新的消息是:{message_content}"
# === 第一阶段:去除用户自行禁用的 ===
disabled_actions = global_announcement_manager.get_disabled_chat_actions(self.chat_id)
if disabled_actions:
for disabled_action_name in disabled_actions:
if disabled_action_name in all_actions:
removals_s1.append((disabled_action_name, "用户自行禁用"))
self.action_manager.remove_action_from_using(disabled_action_name)
logger.debug(f"{self.log_prefix}阶段一移除动作: {disabled_action_name},原因: 用户自行禁用")
# === 第二阶段:检查动作的关联类型 ===
chat_context = self.chat_stream.context
type_mismatched_actions = self._check_action_associated_types(all_actions, chat_context)
if type_mismatched_actions:
removals_s2.extend(type_mismatched_actions)
# 应用第二阶段的移除
for action_name, reason in removals_s2:
self.action_manager.remove_action_from_using(action_name)
logger.debug(f"{self.log_prefix}阶段二移除动作: {action_name},原因: {reason}")
# === 第三阶段:激活类型判定 ===
if chat_content is not None:
logger.debug(f"{self.log_prefix}开始激活类型判定阶段")
# 获取当前使用的动作集(经过第一阶段处理)
current_using_actions = self.action_manager.get_using_actions()
# 获取因激活类型判定而需要移除的动作
removals_s3 = await self._get_deactivated_actions_by_type(
current_using_actions,
chat_content,
)
# 应用第三阶段的移除
for action_name, reason in removals_s3:
self.action_manager.remove_action_from_using(action_name)
logger.debug(f"{self.log_prefix}阶段三移除动作: {action_name},原因: {reason}")
# === 统一日志记录 ===
all_removals = removals_s1 + removals_s2 + removals_s3
removals_summary: str = ""
if all_removals:
removals_summary = " | ".join([f"{name}({reason})" for name, reason in all_removals])
logger.info(
f"{self.log_prefix} 动作修改流程结束,最终可用动作: {list(self.action_manager.get_using_actions().keys())}||移除记录: {removals_summary}"
)
def _check_action_associated_types(self, all_actions: Dict[str, ActionInfo], chat_context: ChatMessageContext):
type_mismatched_actions: List[Tuple[str, str]] = []
for action_name, action_info in all_actions.items():
if action_info.associated_types and not chat_context.check_types(action_info.associated_types):
associated_types_str = ", ".join(action_info.associated_types)
reason = f"适配器不支持(需要: {associated_types_str}"
type_mismatched_actions.append((action_name, reason))
logger.debug(f"{self.log_prefix}决定移除动作: {action_name},原因: {reason}")
return type_mismatched_actions
async def _get_deactivated_actions_by_type(
self,
actions_with_info: Dict[str, ActionInfo],
chat_content: str = "",
) -> List[tuple[str, str]]:
"""
根据激活类型过滤,返回需要停用的动作列表及原因
Args:
actions_with_info: 带完整信息的动作字典
chat_content: 聊天内容
Returns:
List[Tuple[str, str]]: 需要停用的 (action_name, reason) 元组列表
"""
deactivated_actions = []
# 分类处理不同激活类型的actions
llm_judge_actions = {}
actions_to_check = list(actions_with_info.items())
random.shuffle(actions_to_check)
for action_name, action_info in actions_to_check:
activation_type = action_info.activation_type or action_info.focus_activation_type
if activation_type == ActionActivationType.ALWAYS:
continue # 总是激活,无需处理
elif activation_type == ActionActivationType.RANDOM:
probability = action_info.random_activation_probability
if random.random() >= probability:
reason = f"RANDOM类型未触发概率{probability}"
deactivated_actions.append((action_name, reason))
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: {reason}")
elif activation_type == ActionActivationType.KEYWORD:
if not self._check_keyword_activation(action_name, action_info, chat_content):
keywords = action_info.activation_keywords
reason = f"关键词未匹配(关键词: {keywords}"
deactivated_actions.append((action_name, reason))
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: {reason}")
elif activation_type == ActionActivationType.LLM_JUDGE:
llm_judge_actions[action_name] = action_info
elif activation_type == ActionActivationType.NEVER:
reason = "激活类型为never"
deactivated_actions.append((action_name, reason))
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: 激活类型为never")
else:
logger.warning(f"{self.log_prefix}未知的激活类型: {activation_type},跳过处理")
# 并行处理LLM_JUDGE类型
if llm_judge_actions:
llm_results = await self._process_llm_judge_actions_parallel(
llm_judge_actions,
chat_content,
)
for action_name, should_activate in llm_results.items():
if not should_activate:
reason = "LLM判定未激活"
deactivated_actions.append((action_name, reason))
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: {reason}")
return deactivated_actions
def _generate_context_hash(self, chat_content: str) -> str:
"""生成上下文的哈希值用于缓存"""
context_content = f"{chat_content}"
return hashlib.md5(context_content.encode("utf-8")).hexdigest()
async def _process_llm_judge_actions_parallel(
self,
llm_judge_actions: Dict[str, Any],
chat_content: str = "",
) -> Dict[str, bool]:
"""
并行处理LLM判定actions支持智能缓存
Args:
llm_judge_actions: 需要LLM判定的actions
chat_content: 聊天内容
Returns:
Dict[str, bool]: action名称到激活结果的映射
"""
# 生成当前上下文的哈希值
current_context_hash = self._generate_context_hash(chat_content)
current_time = time.time()
results = {}
tasks_to_run = {}
# 检查缓存
for action_name, action_info in llm_judge_actions.items():
cache_key = f"{action_name}_{current_context_hash}"
# 检查是否有有效的缓存
if (
cache_key in self._llm_judge_cache
and current_time - self._llm_judge_cache[cache_key]["timestamp"] < self._cache_expiry_time
):
results[action_name] = self._llm_judge_cache[cache_key]["result"]
logger.debug(
f"{self.log_prefix}使用缓存结果 {action_name}: {'激活' if results[action_name] else '未激活'}"
)
else:
# 需要进行LLM判定
tasks_to_run[action_name] = action_info
# 如果有需要运行的任务,并行执行
if tasks_to_run:
logger.debug(f"{self.log_prefix}并行执行LLM判定任务数: {len(tasks_to_run)}")
# 创建并行任务
tasks = []
task_names = []
for action_name, action_info in tasks_to_run.items():
task = self._llm_judge_action(
action_name,
action_info,
chat_content,
)
tasks.append(task)
task_names.append(action_name)
# 并行执行所有任务
try:
task_results = await asyncio.gather(*tasks, return_exceptions=True)
# 处理结果并更新缓存
for action_name, result in zip(task_names, task_results, strict=False):
if isinstance(result, Exception):
logger.error(f"{self.log_prefix}LLM判定action {action_name} 时出错: {result}")
results[action_name] = False
else:
results[action_name] = result
# 更新缓存
cache_key = f"{action_name}_{current_context_hash}"
self._llm_judge_cache[cache_key] = {"result": result, "timestamp": current_time}
logger.debug(f"{self.log_prefix}并行LLM判定完成耗时: {time.time() - current_time:.2f}s")
except Exception as e:
logger.error(f"{self.log_prefix}并行LLM判定失败: {e}")
# 如果并行执行失败为所有任务返回False
for action_name in tasks_to_run:
results[action_name] = False
# 清理过期缓存
self._cleanup_expired_cache(current_time)
return results
def _cleanup_expired_cache(self, current_time: float):
"""清理过期的缓存条目"""
expired_keys = []
expired_keys.extend(
cache_key
for cache_key, cache_data in self._llm_judge_cache.items()
if current_time - cache_data["timestamp"] > self._cache_expiry_time
)
for key in expired_keys:
del self._llm_judge_cache[key]
if expired_keys:
logger.debug(f"{self.log_prefix}清理了 {len(expired_keys)} 个过期缓存条目")
async def _llm_judge_action(
self,
action_name: str,
action_info: ActionInfo,
chat_content: str = "",
) -> bool: # sourcery skip: move-assign-in-block, use-named-expression
"""
使用LLM判定是否应该激活某个action
Args:
action_name: 动作名称
action_info: 动作信息
observed_messages_str: 观察到的聊天消息
chat_context: 聊天上下文
extra_context: 额外上下文
Returns:
bool: 是否应该激活此action
"""
try:
# 构建判定提示词
action_description = action_info.description
action_require = action_info.action_require
custom_prompt = action_info.llm_judge_prompt
# 构建基础判定提示词
base_prompt = f"""
你需要判断在当前聊天情况下,是否应该激活名为"{action_name}"的动作。
动作描述:{action_description}
动作使用场景:
"""
for req in action_require:
base_prompt += f"- {req}\n"
if custom_prompt:
base_prompt += f"\n额外判定条件:\n{custom_prompt}\n"
if chat_content:
base_prompt += f"\n当前聊天记录:\n{chat_content}\n"
base_prompt += """
请根据以上信息判断是否应该激活这个动作。
只需要回答"""",不要有其他内容。
"""
# 调用LLM进行判定
response, _ = await self.llm_judge.generate_response_async(prompt=base_prompt)
# 解析响应
response = response.strip().lower()
# print(base_prompt)
# print(f"LLM判定动作 {action_name}:响应='{response}'")
should_activate = "" in response or "yes" in response or "true" in response
logger.debug(
f"{self.log_prefix}LLM判定动作 {action_name}:响应='{response}',结果={'激活' if should_activate else '不激活'}"
)
return should_activate
except Exception as e:
logger.error(f"{self.log_prefix}LLM判定动作 {action_name} 时出错: {e}")
# 出错时默认不激活
return False
def _check_keyword_activation(
self,
action_name: str,
action_info: ActionInfo,
chat_content: str = "",
) -> bool:
"""
检查是否匹配关键词触发条件
Args:
action_name: 动作名称
action_info: 动作信息
observed_messages_str: 观察到的聊天消息
chat_context: 聊天上下文
extra_context: 额外上下文
Returns:
bool: 是否应该激活此action
"""
activation_keywords = action_info.activation_keywords
case_sensitive = action_info.keyword_case_sensitive
if not activation_keywords:
logger.warning(f"{self.log_prefix}动作 {action_name} 设置为关键词触发但未配置关键词")
return False
# 构建检索文本
search_text = ""
if chat_content:
search_text += chat_content
# if chat_context:
# search_text += f" {chat_context}"
# if extra_context:
# search_text += f" {extra_context}"
# 如果不区分大小写,转换为小写
if not case_sensitive:
search_text = search_text.lower()
# 检查每个关键词
matched_keywords = []
for keyword in activation_keywords:
check_keyword = keyword if case_sensitive else keyword.lower()
if check_keyword in search_text:
matched_keywords.append(keyword)
if matched_keywords:
logger.debug(f"{self.log_prefix}动作 {action_name} 匹配到关键词: {matched_keywords}")
return True
else:
logger.debug(f"{self.log_prefix}动作 {action_name} 未匹配到任何关键词: {activation_keywords}")
return False

View File

@@ -0,0 +1,410 @@
import json
import time
import traceback
from typing import Dict, Any, Optional, Tuple
from rich.traceback import install
from datetime import datetime
from json_repair import repair_json
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config, model_config
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.utils.chat_message_builder import (
build_readable_actions,
get_actions_by_timestamp_with_chat,
build_readable_messages_with_id,
get_raw_msg_before_timestamp_with_chat,
)
from src.chat.utils.utils import get_chat_type_and_target_info
from src.chat.planner_actions.action_manager import ActionManager
from src.chat.message_receive.chat_stream import get_chat_manager
from src.plugin_system.base.component_types import ActionInfo, ChatMode, ComponentType
from src.plugin_system.core.component_registry import component_registry
logger = get_logger("planner")
install(extra_lines=3)
def init_prompt():
Prompt(
"""
{time_block}
{identity_block}
你现在需要根据聊天内容选择的合适的action来参与聊天。
{chat_context_description},以下是具体的聊天内容
{chat_content_block}
{moderation_prompt}
现在请你根据{by_what}选择合适的action和触发action的消息:
{actions_before_now_block}
{no_action_block}
{action_options_text}
你必须从上面列出的可用action中选择一个并说明触发action的消息id不是消息原文和选择该action的原因。
请根据动作示例,以严格的 JSON 格式输出,且仅包含 JSON 内容:
""",
"planner_prompt",
)
Prompt(
"""
动作:{action_name}
动作描述:{action_description}
{action_require}
{{
"action": "{action_name}",{action_parameters}{target_prompt}
"reason":"触发action的原因"
}}
""",
"action_prompt",
)
class ActionPlanner:
def __init__(self, chat_id: str, action_manager: ActionManager):
self.chat_id = chat_id
self.log_prefix = f"[{get_chat_manager().get_stream_name(chat_id) or chat_id}]"
self.action_manager = action_manager
# LLM规划器配置
self.planner_llm = LLMRequest(
model_set=model_config.model_task_config.planner, request_type="planner"
) # 用于动作规划
self.last_obs_time_mark = 0.0
# 添加重试计数器
self.plan_retry_count = 0
self.max_plan_retries = 3
def find_message_by_id(self, message_id: str, message_id_list: list) -> Optional[Dict[str, Any]]:
# sourcery skip: use-next
"""
根据message_id从message_id_list中查找对应的原始消息
Args:
message_id: 要查找的消息ID
message_id_list: 消息ID列表格式为[{'id': str, 'message': dict}, ...]
Returns:
找到的原始消息字典如果未找到则返回None
"""
for item in message_id_list:
if item.get("id") == message_id:
return item.get("message")
return None
def get_latest_message(self, message_id_list: list) -> Optional[Dict[str, Any]]:
"""
获取消息列表中的最新消息
Args:
message_id_list: 消息ID列表格式为[{'id': str, 'message': dict}, ...]
Returns:
最新的消息字典如果列表为空则返回None
"""
if not message_id_list:
return None
# 假设消息列表是按时间顺序排列的,最后一个是最新的
return message_id_list[-1].get("message")
async def plan(
self, mode: ChatMode = ChatMode.FOCUS
) -> Tuple[Dict[str, Dict[str, Any] | str], Optional[Dict[str, Any]]]:
"""
规划器 (Planner): 使用LLM根据上下文决定做出什么动作。
"""
action = "no_reply" # 默认动作
reasoning = "规划器初始化默认"
action_data = {}
current_available_actions: Dict[str, ActionInfo] = {}
target_message: Optional[Dict[str, Any]] = None # 初始化target_message变量
prompt: str = ""
message_id_list: list = []
try:
is_group_chat, chat_target_info, current_available_actions = self.get_necessary_info()
# --- 构建提示词 (调用修改后的 PromptBuilder 方法) ---
prompt, message_id_list = await self.build_planner_prompt(
is_group_chat=is_group_chat, # <-- Pass HFC state
chat_target_info=chat_target_info, # <-- 传递获取到的聊天目标信息
current_available_actions=current_available_actions, # <-- Pass determined actions
mode=mode,
)
# --- 调用 LLM (普通文本生成) ---
llm_content = None
try:
llm_content, (reasoning_content, _, _) = await self.planner_llm.generate_response_async(prompt=prompt)
if global_config.debug.show_prompt:
logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
logger.info(f"{self.log_prefix}规划器原始响应: {llm_content}")
if reasoning_content:
logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}")
else:
logger.debug(f"{self.log_prefix}规划器原始提示词: {prompt}")
logger.debug(f"{self.log_prefix}规划器原始响应: {llm_content}")
if reasoning_content:
logger.debug(f"{self.log_prefix}规划器推理: {reasoning_content}")
except Exception as req_e:
logger.error(f"{self.log_prefix}LLM 请求执行失败: {req_e}")
reasoning = f"LLM 请求失败,模型出现问题: {req_e}"
action = "no_reply"
if llm_content:
try:
parsed_json = json.loads(repair_json(llm_content))
if isinstance(parsed_json, list):
if parsed_json:
parsed_json = parsed_json[-1]
logger.warning(f"{self.log_prefix}LLM返回了多个JSON对象使用最后一个: {parsed_json}")
else:
parsed_json = {}
if not isinstance(parsed_json, dict):
logger.error(f"{self.log_prefix}解析后的JSON不是字典类型: {type(parsed_json)}")
parsed_json = {}
action = parsed_json.get("action", "no_reply")
reasoning = parsed_json.get("reasoning", "未提供原因")
# 将所有其他属性添加到action_data
for key, value in parsed_json.items():
if key not in ["action", "reasoning"]:
action_data[key] = value
# 在FOCUS模式下非no_reply动作需要target_message_id
if mode == ChatMode.FOCUS and action != "no_reply":
if target_message_id := parsed_json.get("target_message_id"):
# 根据target_message_id查找原始消息
target_message = self.find_message_by_id(target_message_id, message_id_list)
# target_message = None
# 如果获取的target_message为None输出warning并重新plan
if target_message is None:
self.plan_retry_count += 1
logger.warning(f"{self.log_prefix}无法找到target_message_id '{target_message_id}' 对应的消息,重试次数: {self.plan_retry_count}/{self.max_plan_retries}")
# 如果连续三次plan均为None输出error并选取最新消息
if self.plan_retry_count >= self.max_plan_retries:
logger.error(f"{self.log_prefix}连续{self.max_plan_retries}次plan获取target_message失败选择最新消息作为target_message")
target_message = self.get_latest_message(message_id_list)
self.plan_retry_count = 0 # 重置计数器
else:
# 递归重新plan
return await self.plan(mode)
else:
# 成功获取到target_message重置计数器
self.plan_retry_count = 0
else:
logger.warning(f"{self.log_prefix}FOCUS模式下动作'{action}'缺少target_message_id")
if action == "no_action":
reasoning = "normal决定不使用额外动作"
elif action != "no_reply" and action != "reply" and action not in current_available_actions:
logger.warning(
f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{action}' (可用: {list(current_available_actions.keys())}),将强制使用 'no_reply'"
)
reasoning = f"LLM 返回了当前不可用的动作 '{action}' (可用: {list(current_available_actions.keys())})。原始理由: {reasoning}"
action = "no_reply"
except Exception as json_e:
logger.warning(f"{self.log_prefix}解析LLM响应JSON失败 {json_e}. LLM原始输出: '{llm_content}'")
traceback.print_exc()
reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_reply'."
action = "no_reply"
except Exception as outer_e:
logger.error(f"{self.log_prefix}Planner 处理过程中发生意外错误,规划失败,将执行 no_reply: {outer_e}")
traceback.print_exc()
action = "no_reply"
reasoning = f"Planner 内部处理错误: {outer_e}"
is_parallel = False
if mode == ChatMode.NORMAL and action in current_available_actions:
is_parallel = current_available_actions[action].parallel_action
action_result = {
"action_type": action,
"action_data": action_data,
"reasoning": reasoning,
"timestamp": time.time(),
"is_parallel": is_parallel,
}
return (
{
"action_result": action_result,
"action_prompt": prompt,
},
target_message,
)
async def build_planner_prompt(
self,
is_group_chat: bool, # Now passed as argument
chat_target_info: Optional[dict], # Now passed as argument
current_available_actions: Dict[str, ActionInfo],
mode: ChatMode = ChatMode.FOCUS,
) -> tuple[str, list]: # sourcery skip: use-join
"""构建 Planner LLM 的提示词 (获取模板并填充数据)"""
try:
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=self.chat_id,
timestamp=time.time(),
limit=int(global_config.chat.max_context_size * 0.6),
)
chat_content_block, message_id_list = build_readable_messages_with_id(
messages=message_list_before_now,
timestamp_mode="normal_no_YMD",
read_mark=self.last_obs_time_mark,
truncate=True,
show_actions=True,
)
actions_before_now = get_actions_by_timestamp_with_chat(
chat_id=self.chat_id,
timestamp_start=time.time() - 3600,
timestamp_end=time.time(),
limit=5,
)
actions_before_now_block = build_readable_actions(
actions=actions_before_now,
)
actions_before_now_block = f"你刚刚选择并执行过的action是\n{actions_before_now_block}"
self.last_obs_time_mark = time.time()
if mode == ChatMode.FOCUS:
mentioned_bonus = ""
if global_config.chat.mentioned_bot_inevitable_reply:
mentioned_bonus = "\n- 有人提到你"
if global_config.chat.at_bot_inevitable_reply:
mentioned_bonus = "\n- 有人提到你或者at你"
by_what = "聊天内容"
target_prompt = '\n "target_message_id":"触发action的消息id"'
no_action_block = f"""重要说明:
- 'no_reply' 表示只进行不进行回复,等待合适的回复时机
- 当你刚刚发送了消息没有人回复时选择no_reply
- 当你一次发送了太多消息为了避免打扰聊天节奏选择no_reply
动作reply
动作描述:参与聊天回复,发送文本进行表达
- 你想要闲聊或者随便附和{mentioned_bonus}
- 如果你刚刚进行了回复,不要对同一个话题重复回应
{{
"action": "reply",
"target_message_id":"触发action的消息id",
"reason":"回复的原因"
}}
"""
else:
by_what = "聊天内容和用户的最新消息"
target_prompt = ""
no_action_block = """重要说明:
- 'reply' 表示只进行普通聊天回复,不执行任何额外动作
- 其他action表示在普通回复的基础上执行相应的额外动作"""
chat_context_description = "你现在正在一个群聊中"
chat_target_name = None # Only relevant for private
if not is_group_chat and chat_target_info:
chat_target_name = (
chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or "对方"
)
chat_context_description = f"你正在和 {chat_target_name} 私聊"
action_options_block = ""
for using_actions_name, using_actions_info in current_available_actions.items():
if using_actions_info.action_parameters:
param_text = "\n"
for param_name, param_description in using_actions_info.action_parameters.items():
param_text += f' "{param_name}":"{param_description}"\n'
param_text = param_text.rstrip("\n")
else:
param_text = ""
require_text = ""
for require_item in using_actions_info.action_require:
require_text += f"- {require_item}\n"
require_text = require_text.rstrip("\n")
using_action_prompt = await global_prompt_manager.get_prompt_async("action_prompt")
using_action_prompt = using_action_prompt.format(
action_name=using_actions_name,
action_description=using_actions_info.description,
action_parameters=param_text,
action_require=require_text,
target_prompt=target_prompt,
)
action_options_block += using_action_prompt
moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。"
time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
bot_name = global_config.bot.nickname
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
else:
bot_nickname = ""
bot_core_personality = global_config.personality.personality_core
identity_block = f"你的名字是{bot_name}{bot_nickname},你{bot_core_personality}"
planner_prompt_template = await global_prompt_manager.get_prompt_async("planner_prompt")
prompt = planner_prompt_template.format(
time_block=time_block,
by_what=by_what,
chat_context_description=chat_context_description,
chat_content_block=chat_content_block,
actions_before_now_block=actions_before_now_block,
no_action_block=no_action_block,
action_options_text=action_options_block,
moderation_prompt=moderation_prompt_block,
identity_block=identity_block,
)
return prompt, message_id_list
except Exception as e:
logger.error(f"构建 Planner 提示词时出错: {e}")
logger.error(traceback.format_exc())
return "构建 Planner Prompt 时出错", []
def get_necessary_info(self) -> Tuple[bool, Optional[dict], Dict[str, ActionInfo]]:
"""
获取 Planner 需要的必要信息
"""
is_group_chat = True
is_group_chat, chat_target_info = get_chat_type_and_target_info(self.chat_id)
logger.debug(f"{self.log_prefix}获取到聊天信息 - 群聊: {is_group_chat}, 目标信息: {chat_target_info}")
current_available_actions_dict = self.action_manager.get_using_actions()
# 获取完整的动作信息
all_registered_actions: Dict[str, ActionInfo] = component_registry.get_components_by_type( # type: ignore
ComponentType.ACTION
)
current_available_actions = {}
for action_name in current_available_actions_dict:
if action_name in all_registered_actions:
current_available_actions[action_name] = all_registered_actions[action_name]
else:
logger.warning(f"{self.log_prefix}使用中的动作 {action_name} 未在已注册动作中找到")
return is_group_chat, chat_target_info, current_available_actions
init_prompt()