初始化
This commit is contained in:
126
src/chat/planner_actions/action_manager.py
Normal file
126
src/chat/planner_actions/action_manager.py
Normal file
@@ -0,0 +1,126 @@
|
||||
from typing import Dict, Optional, Type
|
||||
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.common.logger import get_logger
|
||||
from src.plugin_system.core.component_registry import component_registry
|
||||
from src.plugin_system.base.component_types import ComponentType, ActionInfo
|
||||
from src.plugin_system.base.base_action import BaseAction
|
||||
|
||||
logger = get_logger("action_manager")
|
||||
|
||||
|
||||
class ActionManager:
|
||||
"""
|
||||
动作管理器,用于管理各种类型的动作
|
||||
|
||||
现在统一使用新插件系统,简化了原有的新旧兼容逻辑。
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""初始化动作管理器"""
|
||||
|
||||
# 当前正在使用的动作集合,默认加载默认动作
|
||||
self._using_actions: Dict[str, ActionInfo] = {}
|
||||
|
||||
# 初始化时将默认动作加载到使用中的动作
|
||||
self._using_actions = component_registry.get_default_actions()
|
||||
|
||||
# === 执行Action方法 ===
|
||||
|
||||
def create_action(
|
||||
self,
|
||||
action_name: str,
|
||||
action_data: dict,
|
||||
reasoning: str,
|
||||
cycle_timers: dict,
|
||||
thinking_id: str,
|
||||
chat_stream: ChatStream,
|
||||
log_prefix: str,
|
||||
shutting_down: bool = False,
|
||||
action_message: Optional[dict] = None,
|
||||
) -> Optional[BaseAction]:
|
||||
"""
|
||||
创建动作处理器实例
|
||||
|
||||
Args:
|
||||
action_name: 动作名称
|
||||
action_data: 动作数据
|
||||
reasoning: 执行理由
|
||||
cycle_timers: 计时器字典
|
||||
thinking_id: 思考ID
|
||||
chat_stream: 聊天流
|
||||
log_prefix: 日志前缀
|
||||
shutting_down: 是否正在关闭
|
||||
|
||||
Returns:
|
||||
Optional[BaseAction]: 创建的动作处理器实例,如果动作名称未注册则返回None
|
||||
"""
|
||||
try:
|
||||
# 获取组件类 - 明确指定查询Action类型
|
||||
component_class: Type[BaseAction] = component_registry.get_component_class(
|
||||
action_name, ComponentType.ACTION
|
||||
) # type: ignore
|
||||
if not component_class:
|
||||
logger.warning(f"{log_prefix} 未找到Action组件: {action_name}")
|
||||
return None
|
||||
|
||||
# 获取组件信息
|
||||
component_info = component_registry.get_component_info(action_name, ComponentType.ACTION)
|
||||
if not component_info:
|
||||
logger.warning(f"{log_prefix} 未找到Action组件信息: {action_name}")
|
||||
return None
|
||||
|
||||
# 获取插件配置
|
||||
plugin_config = component_registry.get_plugin_config(component_info.plugin_name)
|
||||
|
||||
# 创建动作实例
|
||||
instance = component_class(
|
||||
action_data=action_data,
|
||||
reasoning=reasoning,
|
||||
cycle_timers=cycle_timers,
|
||||
thinking_id=thinking_id,
|
||||
chat_stream=chat_stream,
|
||||
log_prefix=log_prefix,
|
||||
shutting_down=shutting_down,
|
||||
plugin_config=plugin_config,
|
||||
action_message=action_message,
|
||||
)
|
||||
|
||||
logger.debug(f"创建Action实例成功: {action_name}")
|
||||
return instance
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"创建Action实例失败 {action_name}: {e}")
|
||||
import traceback
|
||||
|
||||
logger.error(traceback.format_exc())
|
||||
return None
|
||||
|
||||
def get_using_actions(self) -> Dict[str, ActionInfo]:
|
||||
"""获取当前正在使用的动作集合"""
|
||||
return self._using_actions.copy()
|
||||
|
||||
# === Modify相关方法 ===
|
||||
def remove_action_from_using(self, action_name: str) -> bool:
|
||||
"""
|
||||
从当前使用的动作集中移除指定动作
|
||||
|
||||
Args:
|
||||
action_name: 动作名称
|
||||
|
||||
Returns:
|
||||
bool: 移除是否成功
|
||||
"""
|
||||
if action_name not in self._using_actions:
|
||||
logger.warning(f"移除失败: 动作 {action_name} 不在当前使用的动作集中")
|
||||
return False
|
||||
|
||||
del self._using_actions[action_name]
|
||||
logger.debug(f"已从使用集中移除动作 {action_name}")
|
||||
return True
|
||||
|
||||
def restore_actions(self) -> None:
|
||||
"""恢复到默认动作集"""
|
||||
actions_to_restore = list(self._using_actions.keys())
|
||||
self._using_actions = component_registry.get_default_actions()
|
||||
logger.debug(f"恢复动作集: 从 {actions_to_restore} 恢复到默认动作集 {list(self._using_actions.keys())}")
|
||||
438
src/chat/planner_actions/action_modifier.py
Normal file
438
src/chat/planner_actions/action_modifier.py
Normal file
@@ -0,0 +1,438 @@
|
||||
import random
|
||||
import asyncio
|
||||
import hashlib
|
||||
import time
|
||||
from typing import List, Any, Dict, TYPE_CHECKING, Tuple
|
||||
|
||||
from src.common.logger import get_logger
|
||||
from src.config.config import global_config, model_config
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.chat.message_receive.chat_stream import get_chat_manager, ChatMessageContext
|
||||
from src.chat.planner_actions.action_manager import ActionManager
|
||||
from src.chat.utils.chat_message_builder import get_raw_msg_before_timestamp_with_chat, build_readable_messages
|
||||
from src.plugin_system.base.component_types import ActionInfo, ActionActivationType
|
||||
from src.plugin_system.core.global_announcement_manager import global_announcement_manager
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
|
||||
logger = get_logger("action_manager")
|
||||
|
||||
|
||||
class ActionModifier:
|
||||
"""动作处理器
|
||||
|
||||
用于处理Observation对象和根据激活类型处理actions。
|
||||
集成了原有的modify_actions功能和新的激活类型处理功能。
|
||||
支持并行判定和智能缓存优化。
|
||||
"""
|
||||
|
||||
def __init__(self, action_manager: ActionManager, chat_id: str):
|
||||
"""初始化动作处理器"""
|
||||
self.chat_id = chat_id
|
||||
self.chat_stream: ChatStream = get_chat_manager().get_stream(self.chat_id) # type: ignore
|
||||
self.log_prefix = f"[{get_chat_manager().get_stream_name(self.chat_id) or self.chat_id}]"
|
||||
|
||||
self.action_manager = action_manager
|
||||
|
||||
# 用于LLM判定的小模型
|
||||
self.llm_judge = LLMRequest(model_set=model_config.model_task_config.utils_small, request_type="action.judge")
|
||||
|
||||
# 缓存相关属性
|
||||
self._llm_judge_cache = {} # 缓存LLM判定结果
|
||||
self._cache_expiry_time = 30 # 缓存过期时间(秒)
|
||||
self._last_context_hash = None # 上次上下文的哈希值
|
||||
|
||||
async def modify_actions(
|
||||
self,
|
||||
message_content: str = "",
|
||||
): # sourcery skip: use-named-expression
|
||||
"""
|
||||
动作修改流程,整合传统观察处理和新的激活类型判定
|
||||
|
||||
这个方法处理完整的动作管理流程:
|
||||
1. 基于观察的传统动作修改(循环历史分析、类型匹配等)
|
||||
2. 基于激活类型的智能动作判定,最终确定可用动作集
|
||||
|
||||
处理后,ActionManager 将包含最终的可用动作集,供规划器直接使用
|
||||
"""
|
||||
logger.debug(f"{self.log_prefix}开始完整动作修改流程")
|
||||
|
||||
removals_s1: List[Tuple[str, str]] = []
|
||||
removals_s2: List[Tuple[str, str]] = []
|
||||
removals_s3: List[Tuple[str, str]] = []
|
||||
|
||||
self.action_manager.restore_actions()
|
||||
all_actions = self.action_manager.get_using_actions()
|
||||
|
||||
message_list_before_now_half = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=self.chat_stream.stream_id,
|
||||
timestamp=time.time(),
|
||||
limit=min(int(global_config.chat.max_context_size * 0.33), 10),
|
||||
)
|
||||
chat_content = build_readable_messages(
|
||||
message_list_before_now_half,
|
||||
replace_bot_name=True,
|
||||
merge_messages=False,
|
||||
timestamp_mode="relative",
|
||||
read_mark=0.0,
|
||||
show_actions=True,
|
||||
)
|
||||
|
||||
if message_content:
|
||||
chat_content = chat_content + "\n" + f"现在,最新的消息是:{message_content}"
|
||||
|
||||
# === 第一阶段:去除用户自行禁用的 ===
|
||||
disabled_actions = global_announcement_manager.get_disabled_chat_actions(self.chat_id)
|
||||
if disabled_actions:
|
||||
for disabled_action_name in disabled_actions:
|
||||
if disabled_action_name in all_actions:
|
||||
removals_s1.append((disabled_action_name, "用户自行禁用"))
|
||||
self.action_manager.remove_action_from_using(disabled_action_name)
|
||||
logger.debug(f"{self.log_prefix}阶段一移除动作: {disabled_action_name},原因: 用户自行禁用")
|
||||
|
||||
# === 第二阶段:检查动作的关联类型 ===
|
||||
chat_context = self.chat_stream.context
|
||||
type_mismatched_actions = self._check_action_associated_types(all_actions, chat_context)
|
||||
|
||||
if type_mismatched_actions:
|
||||
removals_s2.extend(type_mismatched_actions)
|
||||
|
||||
# 应用第二阶段的移除
|
||||
for action_name, reason in removals_s2:
|
||||
self.action_manager.remove_action_from_using(action_name)
|
||||
logger.debug(f"{self.log_prefix}阶段二移除动作: {action_name},原因: {reason}")
|
||||
|
||||
# === 第三阶段:激活类型判定 ===
|
||||
if chat_content is not None:
|
||||
logger.debug(f"{self.log_prefix}开始激活类型判定阶段")
|
||||
|
||||
# 获取当前使用的动作集(经过第一阶段处理)
|
||||
current_using_actions = self.action_manager.get_using_actions()
|
||||
|
||||
# 获取因激活类型判定而需要移除的动作
|
||||
removals_s3 = await self._get_deactivated_actions_by_type(
|
||||
current_using_actions,
|
||||
chat_content,
|
||||
)
|
||||
|
||||
# 应用第三阶段的移除
|
||||
for action_name, reason in removals_s3:
|
||||
self.action_manager.remove_action_from_using(action_name)
|
||||
logger.debug(f"{self.log_prefix}阶段三移除动作: {action_name},原因: {reason}")
|
||||
|
||||
# === 统一日志记录 ===
|
||||
all_removals = removals_s1 + removals_s2 + removals_s3
|
||||
removals_summary: str = ""
|
||||
if all_removals:
|
||||
removals_summary = " | ".join([f"{name}({reason})" for name, reason in all_removals])
|
||||
|
||||
logger.info(
|
||||
f"{self.log_prefix} 动作修改流程结束,最终可用动作: {list(self.action_manager.get_using_actions().keys())}||移除记录: {removals_summary}"
|
||||
)
|
||||
|
||||
def _check_action_associated_types(self, all_actions: Dict[str, ActionInfo], chat_context: ChatMessageContext):
|
||||
type_mismatched_actions: List[Tuple[str, str]] = []
|
||||
for action_name, action_info in all_actions.items():
|
||||
if action_info.associated_types and not chat_context.check_types(action_info.associated_types):
|
||||
associated_types_str = ", ".join(action_info.associated_types)
|
||||
reason = f"适配器不支持(需要: {associated_types_str})"
|
||||
type_mismatched_actions.append((action_name, reason))
|
||||
logger.debug(f"{self.log_prefix}决定移除动作: {action_name},原因: {reason}")
|
||||
return type_mismatched_actions
|
||||
|
||||
async def _get_deactivated_actions_by_type(
|
||||
self,
|
||||
actions_with_info: Dict[str, ActionInfo],
|
||||
chat_content: str = "",
|
||||
) -> List[tuple[str, str]]:
|
||||
"""
|
||||
根据激活类型过滤,返回需要停用的动作列表及原因
|
||||
|
||||
Args:
|
||||
actions_with_info: 带完整信息的动作字典
|
||||
chat_content: 聊天内容
|
||||
|
||||
Returns:
|
||||
List[Tuple[str, str]]: 需要停用的 (action_name, reason) 元组列表
|
||||
"""
|
||||
deactivated_actions = []
|
||||
|
||||
# 分类处理不同激活类型的actions
|
||||
llm_judge_actions = {}
|
||||
|
||||
actions_to_check = list(actions_with_info.items())
|
||||
random.shuffle(actions_to_check)
|
||||
|
||||
for action_name, action_info in actions_to_check:
|
||||
activation_type = action_info.activation_type or action_info.focus_activation_type
|
||||
|
||||
if activation_type == ActionActivationType.ALWAYS:
|
||||
continue # 总是激活,无需处理
|
||||
|
||||
elif activation_type == ActionActivationType.RANDOM:
|
||||
probability = action_info.random_activation_probability
|
||||
if random.random() >= probability:
|
||||
reason = f"RANDOM类型未触发(概率{probability})"
|
||||
deactivated_actions.append((action_name, reason))
|
||||
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: {reason}")
|
||||
|
||||
elif activation_type == ActionActivationType.KEYWORD:
|
||||
if not self._check_keyword_activation(action_name, action_info, chat_content):
|
||||
keywords = action_info.activation_keywords
|
||||
reason = f"关键词未匹配(关键词: {keywords})"
|
||||
deactivated_actions.append((action_name, reason))
|
||||
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: {reason}")
|
||||
|
||||
elif activation_type == ActionActivationType.LLM_JUDGE:
|
||||
llm_judge_actions[action_name] = action_info
|
||||
|
||||
elif activation_type == ActionActivationType.NEVER:
|
||||
reason = "激活类型为never"
|
||||
deactivated_actions.append((action_name, reason))
|
||||
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: 激活类型为never")
|
||||
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix}未知的激活类型: {activation_type},跳过处理")
|
||||
|
||||
# 并行处理LLM_JUDGE类型
|
||||
if llm_judge_actions:
|
||||
llm_results = await self._process_llm_judge_actions_parallel(
|
||||
llm_judge_actions,
|
||||
chat_content,
|
||||
)
|
||||
for action_name, should_activate in llm_results.items():
|
||||
if not should_activate:
|
||||
reason = "LLM判定未激活"
|
||||
deactivated_actions.append((action_name, reason))
|
||||
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: {reason}")
|
||||
|
||||
return deactivated_actions
|
||||
|
||||
def _generate_context_hash(self, chat_content: str) -> str:
|
||||
"""生成上下文的哈希值用于缓存"""
|
||||
context_content = f"{chat_content}"
|
||||
return hashlib.md5(context_content.encode("utf-8")).hexdigest()
|
||||
|
||||
async def _process_llm_judge_actions_parallel(
|
||||
self,
|
||||
llm_judge_actions: Dict[str, Any],
|
||||
chat_content: str = "",
|
||||
) -> Dict[str, bool]:
|
||||
"""
|
||||
并行处理LLM判定actions,支持智能缓存
|
||||
|
||||
Args:
|
||||
llm_judge_actions: 需要LLM判定的actions
|
||||
chat_content: 聊天内容
|
||||
|
||||
Returns:
|
||||
Dict[str, bool]: action名称到激活结果的映射
|
||||
"""
|
||||
|
||||
# 生成当前上下文的哈希值
|
||||
current_context_hash = self._generate_context_hash(chat_content)
|
||||
current_time = time.time()
|
||||
|
||||
results = {}
|
||||
tasks_to_run = {}
|
||||
|
||||
# 检查缓存
|
||||
for action_name, action_info in llm_judge_actions.items():
|
||||
cache_key = f"{action_name}_{current_context_hash}"
|
||||
|
||||
# 检查是否有有效的缓存
|
||||
if (
|
||||
cache_key in self._llm_judge_cache
|
||||
and current_time - self._llm_judge_cache[cache_key]["timestamp"] < self._cache_expiry_time
|
||||
):
|
||||
results[action_name] = self._llm_judge_cache[cache_key]["result"]
|
||||
logger.debug(
|
||||
f"{self.log_prefix}使用缓存结果 {action_name}: {'激活' if results[action_name] else '未激活'}"
|
||||
)
|
||||
else:
|
||||
# 需要进行LLM判定
|
||||
tasks_to_run[action_name] = action_info
|
||||
|
||||
# 如果有需要运行的任务,并行执行
|
||||
if tasks_to_run:
|
||||
logger.debug(f"{self.log_prefix}并行执行LLM判定,任务数: {len(tasks_to_run)}")
|
||||
|
||||
# 创建并行任务
|
||||
tasks = []
|
||||
task_names = []
|
||||
|
||||
for action_name, action_info in tasks_to_run.items():
|
||||
task = self._llm_judge_action(
|
||||
action_name,
|
||||
action_info,
|
||||
chat_content,
|
||||
)
|
||||
tasks.append(task)
|
||||
task_names.append(action_name)
|
||||
|
||||
# 并行执行所有任务
|
||||
try:
|
||||
task_results = await asyncio.gather(*tasks, return_exceptions=True)
|
||||
|
||||
# 处理结果并更新缓存
|
||||
for action_name, result in zip(task_names, task_results, strict=False):
|
||||
if isinstance(result, Exception):
|
||||
logger.error(f"{self.log_prefix}LLM判定action {action_name} 时出错: {result}")
|
||||
results[action_name] = False
|
||||
else:
|
||||
results[action_name] = result
|
||||
|
||||
# 更新缓存
|
||||
cache_key = f"{action_name}_{current_context_hash}"
|
||||
self._llm_judge_cache[cache_key] = {"result": result, "timestamp": current_time}
|
||||
|
||||
logger.debug(f"{self.log_prefix}并行LLM判定完成,耗时: {time.time() - current_time:.2f}s")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}并行LLM判定失败: {e}")
|
||||
# 如果并行执行失败,为所有任务返回False
|
||||
for action_name in tasks_to_run:
|
||||
results[action_name] = False
|
||||
|
||||
# 清理过期缓存
|
||||
self._cleanup_expired_cache(current_time)
|
||||
|
||||
return results
|
||||
|
||||
def _cleanup_expired_cache(self, current_time: float):
|
||||
"""清理过期的缓存条目"""
|
||||
expired_keys = []
|
||||
expired_keys.extend(
|
||||
cache_key
|
||||
for cache_key, cache_data in self._llm_judge_cache.items()
|
||||
if current_time - cache_data["timestamp"] > self._cache_expiry_time
|
||||
)
|
||||
for key in expired_keys:
|
||||
del self._llm_judge_cache[key]
|
||||
|
||||
if expired_keys:
|
||||
logger.debug(f"{self.log_prefix}清理了 {len(expired_keys)} 个过期缓存条目")
|
||||
|
||||
async def _llm_judge_action(
|
||||
self,
|
||||
action_name: str,
|
||||
action_info: ActionInfo,
|
||||
chat_content: str = "",
|
||||
) -> bool: # sourcery skip: move-assign-in-block, use-named-expression
|
||||
"""
|
||||
使用LLM判定是否应该激活某个action
|
||||
|
||||
Args:
|
||||
action_name: 动作名称
|
||||
action_info: 动作信息
|
||||
observed_messages_str: 观察到的聊天消息
|
||||
chat_context: 聊天上下文
|
||||
extra_context: 额外上下文
|
||||
|
||||
Returns:
|
||||
bool: 是否应该激活此action
|
||||
"""
|
||||
|
||||
try:
|
||||
# 构建判定提示词
|
||||
action_description = action_info.description
|
||||
action_require = action_info.action_require
|
||||
custom_prompt = action_info.llm_judge_prompt
|
||||
|
||||
# 构建基础判定提示词
|
||||
base_prompt = f"""
|
||||
你需要判断在当前聊天情况下,是否应该激活名为"{action_name}"的动作。
|
||||
|
||||
动作描述:{action_description}
|
||||
|
||||
动作使用场景:
|
||||
"""
|
||||
for req in action_require:
|
||||
base_prompt += f"- {req}\n"
|
||||
|
||||
if custom_prompt:
|
||||
base_prompt += f"\n额外判定条件:\n{custom_prompt}\n"
|
||||
|
||||
if chat_content:
|
||||
base_prompt += f"\n当前聊天记录:\n{chat_content}\n"
|
||||
|
||||
base_prompt += """
|
||||
请根据以上信息判断是否应该激活这个动作。
|
||||
只需要回答"是"或"否",不要有其他内容。
|
||||
"""
|
||||
|
||||
# 调用LLM进行判定
|
||||
response, _ = await self.llm_judge.generate_response_async(prompt=base_prompt)
|
||||
|
||||
# 解析响应
|
||||
response = response.strip().lower()
|
||||
|
||||
# print(base_prompt)
|
||||
# print(f"LLM判定动作 {action_name}:响应='{response}'")
|
||||
|
||||
should_activate = "是" in response or "yes" in response or "true" in response
|
||||
|
||||
logger.debug(
|
||||
f"{self.log_prefix}LLM判定动作 {action_name}:响应='{response}',结果={'激活' if should_activate else '不激活'}"
|
||||
)
|
||||
return should_activate
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}LLM判定动作 {action_name} 时出错: {e}")
|
||||
# 出错时默认不激活
|
||||
return False
|
||||
|
||||
def _check_keyword_activation(
|
||||
self,
|
||||
action_name: str,
|
||||
action_info: ActionInfo,
|
||||
chat_content: str = "",
|
||||
) -> bool:
|
||||
"""
|
||||
检查是否匹配关键词触发条件
|
||||
|
||||
Args:
|
||||
action_name: 动作名称
|
||||
action_info: 动作信息
|
||||
observed_messages_str: 观察到的聊天消息
|
||||
chat_context: 聊天上下文
|
||||
extra_context: 额外上下文
|
||||
|
||||
Returns:
|
||||
bool: 是否应该激活此action
|
||||
"""
|
||||
|
||||
activation_keywords = action_info.activation_keywords
|
||||
case_sensitive = action_info.keyword_case_sensitive
|
||||
|
||||
if not activation_keywords:
|
||||
logger.warning(f"{self.log_prefix}动作 {action_name} 设置为关键词触发但未配置关键词")
|
||||
return False
|
||||
|
||||
# 构建检索文本
|
||||
search_text = ""
|
||||
if chat_content:
|
||||
search_text += chat_content
|
||||
# if chat_context:
|
||||
# search_text += f" {chat_context}"
|
||||
# if extra_context:
|
||||
# search_text += f" {extra_context}"
|
||||
|
||||
# 如果不区分大小写,转换为小写
|
||||
if not case_sensitive:
|
||||
search_text = search_text.lower()
|
||||
|
||||
# 检查每个关键词
|
||||
matched_keywords = []
|
||||
for keyword in activation_keywords:
|
||||
check_keyword = keyword if case_sensitive else keyword.lower()
|
||||
if check_keyword in search_text:
|
||||
matched_keywords.append(keyword)
|
||||
|
||||
if matched_keywords:
|
||||
logger.debug(f"{self.log_prefix}动作 {action_name} 匹配到关键词: {matched_keywords}")
|
||||
return True
|
||||
else:
|
||||
logger.debug(f"{self.log_prefix}动作 {action_name} 未匹配到任何关键词: {activation_keywords}")
|
||||
return False
|
||||
410
src/chat/planner_actions/planner.py
Normal file
410
src/chat/planner_actions/planner.py
Normal file
@@ -0,0 +1,410 @@
|
||||
import json
|
||||
import time
|
||||
import traceback
|
||||
from typing import Dict, Any, Optional, Tuple
|
||||
from rich.traceback import install
|
||||
from datetime import datetime
|
||||
from json_repair import repair_json
|
||||
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.config.config import global_config, model_config
|
||||
from src.common.logger import get_logger
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.chat.utils.chat_message_builder import (
|
||||
build_readable_actions,
|
||||
get_actions_by_timestamp_with_chat,
|
||||
build_readable_messages_with_id,
|
||||
get_raw_msg_before_timestamp_with_chat,
|
||||
)
|
||||
from src.chat.utils.utils import get_chat_type_and_target_info
|
||||
from src.chat.planner_actions.action_manager import ActionManager
|
||||
from src.chat.message_receive.chat_stream import get_chat_manager
|
||||
from src.plugin_system.base.component_types import ActionInfo, ChatMode, ComponentType
|
||||
from src.plugin_system.core.component_registry import component_registry
|
||||
|
||||
logger = get_logger("planner")
|
||||
|
||||
install(extra_lines=3)
|
||||
|
||||
|
||||
def init_prompt():
|
||||
Prompt(
|
||||
"""
|
||||
{time_block}
|
||||
{identity_block}
|
||||
你现在需要根据聊天内容,选择的合适的action来参与聊天。
|
||||
{chat_context_description},以下是具体的聊天内容
|
||||
{chat_content_block}
|
||||
|
||||
{moderation_prompt}
|
||||
|
||||
现在请你根据{by_what}选择合适的action和触发action的消息:
|
||||
{actions_before_now_block}
|
||||
|
||||
{no_action_block}
|
||||
{action_options_text}
|
||||
|
||||
你必须从上面列出的可用action中选择一个,并说明触发action的消息id(不是消息原文)和选择该action的原因。
|
||||
|
||||
请根据动作示例,以严格的 JSON 格式输出,且仅包含 JSON 内容:
|
||||
""",
|
||||
"planner_prompt",
|
||||
)
|
||||
|
||||
Prompt(
|
||||
"""
|
||||
动作:{action_name}
|
||||
动作描述:{action_description}
|
||||
{action_require}
|
||||
{{
|
||||
"action": "{action_name}",{action_parameters}{target_prompt}
|
||||
"reason":"触发action的原因"
|
||||
}}
|
||||
""",
|
||||
"action_prompt",
|
||||
)
|
||||
|
||||
|
||||
class ActionPlanner:
|
||||
def __init__(self, chat_id: str, action_manager: ActionManager):
|
||||
self.chat_id = chat_id
|
||||
self.log_prefix = f"[{get_chat_manager().get_stream_name(chat_id) or chat_id}]"
|
||||
self.action_manager = action_manager
|
||||
# LLM规划器配置
|
||||
self.planner_llm = LLMRequest(
|
||||
model_set=model_config.model_task_config.planner, request_type="planner"
|
||||
) # 用于动作规划
|
||||
|
||||
self.last_obs_time_mark = 0.0
|
||||
# 添加重试计数器
|
||||
self.plan_retry_count = 0
|
||||
self.max_plan_retries = 3
|
||||
|
||||
def find_message_by_id(self, message_id: str, message_id_list: list) -> Optional[Dict[str, Any]]:
|
||||
# sourcery skip: use-next
|
||||
"""
|
||||
根据message_id从message_id_list中查找对应的原始消息
|
||||
|
||||
Args:
|
||||
message_id: 要查找的消息ID
|
||||
message_id_list: 消息ID列表,格式为[{'id': str, 'message': dict}, ...]
|
||||
|
||||
Returns:
|
||||
找到的原始消息字典,如果未找到则返回None
|
||||
"""
|
||||
for item in message_id_list:
|
||||
if item.get("id") == message_id:
|
||||
return item.get("message")
|
||||
return None
|
||||
|
||||
def get_latest_message(self, message_id_list: list) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
获取消息列表中的最新消息
|
||||
|
||||
Args:
|
||||
message_id_list: 消息ID列表,格式为[{'id': str, 'message': dict}, ...]
|
||||
|
||||
Returns:
|
||||
最新的消息字典,如果列表为空则返回None
|
||||
"""
|
||||
if not message_id_list:
|
||||
return None
|
||||
# 假设消息列表是按时间顺序排列的,最后一个是最新的
|
||||
return message_id_list[-1].get("message")
|
||||
|
||||
async def plan(
|
||||
self, mode: ChatMode = ChatMode.FOCUS
|
||||
) -> Tuple[Dict[str, Dict[str, Any] | str], Optional[Dict[str, Any]]]:
|
||||
"""
|
||||
规划器 (Planner): 使用LLM根据上下文决定做出什么动作。
|
||||
"""
|
||||
|
||||
action = "no_reply" # 默认动作
|
||||
reasoning = "规划器初始化默认"
|
||||
action_data = {}
|
||||
current_available_actions: Dict[str, ActionInfo] = {}
|
||||
target_message: Optional[Dict[str, Any]] = None # 初始化target_message变量
|
||||
prompt: str = ""
|
||||
message_id_list: list = []
|
||||
|
||||
try:
|
||||
is_group_chat, chat_target_info, current_available_actions = self.get_necessary_info()
|
||||
|
||||
# --- 构建提示词 (调用修改后的 PromptBuilder 方法) ---
|
||||
prompt, message_id_list = await self.build_planner_prompt(
|
||||
is_group_chat=is_group_chat, # <-- Pass HFC state
|
||||
chat_target_info=chat_target_info, # <-- 传递获取到的聊天目标信息
|
||||
current_available_actions=current_available_actions, # <-- Pass determined actions
|
||||
mode=mode,
|
||||
)
|
||||
|
||||
# --- 调用 LLM (普通文本生成) ---
|
||||
llm_content = None
|
||||
try:
|
||||
llm_content, (reasoning_content, _, _) = await self.planner_llm.generate_response_async(prompt=prompt)
|
||||
|
||||
if global_config.debug.show_prompt:
|
||||
logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
|
||||
logger.info(f"{self.log_prefix}规划器原始响应: {llm_content}")
|
||||
if reasoning_content:
|
||||
logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}")
|
||||
else:
|
||||
logger.debug(f"{self.log_prefix}规划器原始提示词: {prompt}")
|
||||
logger.debug(f"{self.log_prefix}规划器原始响应: {llm_content}")
|
||||
if reasoning_content:
|
||||
logger.debug(f"{self.log_prefix}规划器推理: {reasoning_content}")
|
||||
|
||||
except Exception as req_e:
|
||||
logger.error(f"{self.log_prefix}LLM 请求执行失败: {req_e}")
|
||||
reasoning = f"LLM 请求失败,模型出现问题: {req_e}"
|
||||
action = "no_reply"
|
||||
|
||||
if llm_content:
|
||||
try:
|
||||
parsed_json = json.loads(repair_json(llm_content))
|
||||
|
||||
if isinstance(parsed_json, list):
|
||||
if parsed_json:
|
||||
parsed_json = parsed_json[-1]
|
||||
logger.warning(f"{self.log_prefix}LLM返回了多个JSON对象,使用最后一个: {parsed_json}")
|
||||
else:
|
||||
parsed_json = {}
|
||||
|
||||
if not isinstance(parsed_json, dict):
|
||||
logger.error(f"{self.log_prefix}解析后的JSON不是字典类型: {type(parsed_json)}")
|
||||
parsed_json = {}
|
||||
|
||||
action = parsed_json.get("action", "no_reply")
|
||||
reasoning = parsed_json.get("reasoning", "未提供原因")
|
||||
|
||||
# 将所有其他属性添加到action_data
|
||||
for key, value in parsed_json.items():
|
||||
if key not in ["action", "reasoning"]:
|
||||
action_data[key] = value
|
||||
|
||||
# 在FOCUS模式下,非no_reply动作需要target_message_id
|
||||
if mode == ChatMode.FOCUS and action != "no_reply":
|
||||
if target_message_id := parsed_json.get("target_message_id"):
|
||||
# 根据target_message_id查找原始消息
|
||||
target_message = self.find_message_by_id(target_message_id, message_id_list)
|
||||
# target_message = None
|
||||
# 如果获取的target_message为None,输出warning并重新plan
|
||||
if target_message is None:
|
||||
self.plan_retry_count += 1
|
||||
logger.warning(f"{self.log_prefix}无法找到target_message_id '{target_message_id}' 对应的消息,重试次数: {self.plan_retry_count}/{self.max_plan_retries}")
|
||||
|
||||
# 如果连续三次plan均为None,输出error并选取最新消息
|
||||
if self.plan_retry_count >= self.max_plan_retries:
|
||||
logger.error(f"{self.log_prefix}连续{self.max_plan_retries}次plan获取target_message失败,选择最新消息作为target_message")
|
||||
target_message = self.get_latest_message(message_id_list)
|
||||
self.plan_retry_count = 0 # 重置计数器
|
||||
else:
|
||||
# 递归重新plan
|
||||
return await self.plan(mode)
|
||||
else:
|
||||
# 成功获取到target_message,重置计数器
|
||||
self.plan_retry_count = 0
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix}FOCUS模式下动作'{action}'缺少target_message_id")
|
||||
|
||||
if action == "no_action":
|
||||
reasoning = "normal决定不使用额外动作"
|
||||
elif action != "no_reply" and action != "reply" and action not in current_available_actions:
|
||||
logger.warning(
|
||||
f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{action}' (可用: {list(current_available_actions.keys())}),将强制使用 'no_reply'"
|
||||
)
|
||||
reasoning = f"LLM 返回了当前不可用的动作 '{action}' (可用: {list(current_available_actions.keys())})。原始理由: {reasoning}"
|
||||
action = "no_reply"
|
||||
|
||||
except Exception as json_e:
|
||||
logger.warning(f"{self.log_prefix}解析LLM响应JSON失败 {json_e}. LLM原始输出: '{llm_content}'")
|
||||
traceback.print_exc()
|
||||
reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_reply'."
|
||||
action = "no_reply"
|
||||
|
||||
except Exception as outer_e:
|
||||
logger.error(f"{self.log_prefix}Planner 处理过程中发生意外错误,规划失败,将执行 no_reply: {outer_e}")
|
||||
traceback.print_exc()
|
||||
action = "no_reply"
|
||||
reasoning = f"Planner 内部处理错误: {outer_e}"
|
||||
|
||||
is_parallel = False
|
||||
if mode == ChatMode.NORMAL and action in current_available_actions:
|
||||
is_parallel = current_available_actions[action].parallel_action
|
||||
|
||||
action_result = {
|
||||
"action_type": action,
|
||||
"action_data": action_data,
|
||||
"reasoning": reasoning,
|
||||
"timestamp": time.time(),
|
||||
"is_parallel": is_parallel,
|
||||
}
|
||||
|
||||
return (
|
||||
{
|
||||
"action_result": action_result,
|
||||
"action_prompt": prompt,
|
||||
},
|
||||
target_message,
|
||||
)
|
||||
|
||||
async def build_planner_prompt(
|
||||
self,
|
||||
is_group_chat: bool, # Now passed as argument
|
||||
chat_target_info: Optional[dict], # Now passed as argument
|
||||
current_available_actions: Dict[str, ActionInfo],
|
||||
mode: ChatMode = ChatMode.FOCUS,
|
||||
) -> tuple[str, list]: # sourcery skip: use-join
|
||||
"""构建 Planner LLM 的提示词 (获取模板并填充数据)"""
|
||||
try:
|
||||
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=self.chat_id,
|
||||
timestamp=time.time(),
|
||||
limit=int(global_config.chat.max_context_size * 0.6),
|
||||
)
|
||||
|
||||
chat_content_block, message_id_list = build_readable_messages_with_id(
|
||||
messages=message_list_before_now,
|
||||
timestamp_mode="normal_no_YMD",
|
||||
read_mark=self.last_obs_time_mark,
|
||||
truncate=True,
|
||||
show_actions=True,
|
||||
)
|
||||
|
||||
actions_before_now = get_actions_by_timestamp_with_chat(
|
||||
chat_id=self.chat_id,
|
||||
timestamp_start=time.time() - 3600,
|
||||
timestamp_end=time.time(),
|
||||
limit=5,
|
||||
)
|
||||
|
||||
actions_before_now_block = build_readable_actions(
|
||||
actions=actions_before_now,
|
||||
)
|
||||
|
||||
actions_before_now_block = f"你刚刚选择并执行过的action是:\n{actions_before_now_block}"
|
||||
|
||||
self.last_obs_time_mark = time.time()
|
||||
|
||||
if mode == ChatMode.FOCUS:
|
||||
mentioned_bonus = ""
|
||||
if global_config.chat.mentioned_bot_inevitable_reply:
|
||||
mentioned_bonus = "\n- 有人提到你"
|
||||
if global_config.chat.at_bot_inevitable_reply:
|
||||
mentioned_bonus = "\n- 有人提到你,或者at你"
|
||||
|
||||
by_what = "聊天内容"
|
||||
target_prompt = '\n "target_message_id":"触发action的消息id"'
|
||||
no_action_block = f"""重要说明:
|
||||
- 'no_reply' 表示只进行不进行回复,等待合适的回复时机
|
||||
- 当你刚刚发送了消息,没有人回复时,选择no_reply
|
||||
- 当你一次发送了太多消息,为了避免打扰聊天节奏,选择no_reply
|
||||
|
||||
动作:reply
|
||||
动作描述:参与聊天回复,发送文本进行表达
|
||||
- 你想要闲聊或者随便附和{mentioned_bonus}
|
||||
- 如果你刚刚进行了回复,不要对同一个话题重复回应
|
||||
{{
|
||||
"action": "reply",
|
||||
"target_message_id":"触发action的消息id",
|
||||
"reason":"回复的原因"
|
||||
}}
|
||||
|
||||
"""
|
||||
else:
|
||||
by_what = "聊天内容和用户的最新消息"
|
||||
target_prompt = ""
|
||||
no_action_block = """重要说明:
|
||||
- 'reply' 表示只进行普通聊天回复,不执行任何额外动作
|
||||
- 其他action表示在普通回复的基础上,执行相应的额外动作"""
|
||||
|
||||
chat_context_description = "你现在正在一个群聊中"
|
||||
chat_target_name = None # Only relevant for private
|
||||
if not is_group_chat and chat_target_info:
|
||||
chat_target_name = (
|
||||
chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or "对方"
|
||||
)
|
||||
chat_context_description = f"你正在和 {chat_target_name} 私聊"
|
||||
|
||||
action_options_block = ""
|
||||
|
||||
for using_actions_name, using_actions_info in current_available_actions.items():
|
||||
if using_actions_info.action_parameters:
|
||||
param_text = "\n"
|
||||
for param_name, param_description in using_actions_info.action_parameters.items():
|
||||
param_text += f' "{param_name}":"{param_description}"\n'
|
||||
param_text = param_text.rstrip("\n")
|
||||
else:
|
||||
param_text = ""
|
||||
|
||||
require_text = ""
|
||||
for require_item in using_actions_info.action_require:
|
||||
require_text += f"- {require_item}\n"
|
||||
require_text = require_text.rstrip("\n")
|
||||
|
||||
using_action_prompt = await global_prompt_manager.get_prompt_async("action_prompt")
|
||||
using_action_prompt = using_action_prompt.format(
|
||||
action_name=using_actions_name,
|
||||
action_description=using_actions_info.description,
|
||||
action_parameters=param_text,
|
||||
action_require=require_text,
|
||||
target_prompt=target_prompt,
|
||||
)
|
||||
|
||||
action_options_block += using_action_prompt
|
||||
|
||||
moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。"
|
||||
|
||||
time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
|
||||
|
||||
bot_name = global_config.bot.nickname
|
||||
if global_config.bot.alias_names:
|
||||
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
|
||||
else:
|
||||
bot_nickname = ""
|
||||
bot_core_personality = global_config.personality.personality_core
|
||||
identity_block = f"你的名字是{bot_name}{bot_nickname},你{bot_core_personality}:"
|
||||
|
||||
planner_prompt_template = await global_prompt_manager.get_prompt_async("planner_prompt")
|
||||
prompt = planner_prompt_template.format(
|
||||
time_block=time_block,
|
||||
by_what=by_what,
|
||||
chat_context_description=chat_context_description,
|
||||
chat_content_block=chat_content_block,
|
||||
actions_before_now_block=actions_before_now_block,
|
||||
no_action_block=no_action_block,
|
||||
action_options_text=action_options_block,
|
||||
moderation_prompt=moderation_prompt_block,
|
||||
identity_block=identity_block,
|
||||
)
|
||||
return prompt, message_id_list
|
||||
except Exception as e:
|
||||
logger.error(f"构建 Planner 提示词时出错: {e}")
|
||||
logger.error(traceback.format_exc())
|
||||
return "构建 Planner Prompt 时出错", []
|
||||
|
||||
def get_necessary_info(self) -> Tuple[bool, Optional[dict], Dict[str, ActionInfo]]:
|
||||
"""
|
||||
获取 Planner 需要的必要信息
|
||||
"""
|
||||
is_group_chat = True
|
||||
is_group_chat, chat_target_info = get_chat_type_and_target_info(self.chat_id)
|
||||
logger.debug(f"{self.log_prefix}获取到聊天信息 - 群聊: {is_group_chat}, 目标信息: {chat_target_info}")
|
||||
|
||||
current_available_actions_dict = self.action_manager.get_using_actions()
|
||||
|
||||
# 获取完整的动作信息
|
||||
all_registered_actions: Dict[str, ActionInfo] = component_registry.get_components_by_type( # type: ignore
|
||||
ComponentType.ACTION
|
||||
)
|
||||
current_available_actions = {}
|
||||
for action_name in current_available_actions_dict:
|
||||
if action_name in all_registered_actions:
|
||||
current_available_actions[action_name] = all_registered_actions[action_name]
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix}使用中的动作 {action_name} 未在已注册动作中找到")
|
||||
|
||||
return is_group_chat, chat_target_info, current_available_actions
|
||||
|
||||
|
||||
init_prompt()
|
||||
Reference in New Issue
Block a user