初始化

This commit is contained in:
雅诺狐
2025-08-11 19:34:18 +08:00
parent ff7d1177fa
commit 2d4745cd58
257 changed files with 69069 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,254 @@
# -*- coding: utf-8 -*-
import time
import re
import json
import ast
import traceback
from json_repair import repair_json
from datetime import datetime, timedelta
from src.llm_models.utils_model import LLMRequest
from src.common.logger import get_logger
from src.common.database.sqlalchemy_models import Memory # SQLAlchemy Models导入
from src.common.database.sqlalchemy_database_api import get_session
from src.config.config import model_config
from sqlalchemy import select
logger = get_logger(__name__)
session = get_session()
class MemoryItem:
def __init__(self, memory_id: str, chat_id: str, memory_text: str, keywords: list[str]):
self.memory_id = memory_id
self.chat_id = chat_id
self.memory_text: str = memory_text
self.keywords: list[str] = keywords
self.create_time: float = time.time()
self.last_view_time: float = time.time()
class MemoryManager:
def __init__(self):
# self.memory_items:list[MemoryItem] = []
pass
class InstantMemory:
def __init__(self, chat_id):
self.chat_id = chat_id
self.last_view_time = time.time()
self.summary_model = LLMRequest(
model_set=model_config.model_task_config.utils,
request_type="memory.summary",
)
async def if_need_build(self, text):
prompt = f"""
请判断以下内容中是否有值得记忆的信息如果有请输出1否则输出0
{text}
请只输出1或0就好
"""
try:
response, _ = await self.summary_model.generate_response_async(prompt, temperature=0.5)
print(prompt)
print(response)
return "1" in response
except Exception as e:
logger.error(f"判断是否需要记忆出现错误:{str(e)} {traceback.format_exc()}")
return False
async def build_memory(self, text):
prompt = f"""
以下内容中存在值得记忆的信息,请你从中总结出一段值得记忆的信息,并输出
{text}
请以json格式输出一段概括的记忆内容和关键词
{{
"memory_text": "记忆内容",
"keywords": "关键词,用/划分"
}}
"""
try:
response, _ = await self.summary_model.generate_response_async(prompt, temperature=0.5)
# print(prompt)
# print(response)
if not response:
return None
try:
repaired = repair_json(response)
result = json.loads(repaired)
memory_text = result.get("memory_text", "")
keywords = result.get("keywords", "")
if isinstance(keywords, str):
keywords_list = [k.strip() for k in keywords.split("/") if k.strip()]
elif isinstance(keywords, list):
keywords_list = keywords
else:
keywords_list = []
return {"memory_text": memory_text, "keywords": keywords_list}
except Exception as parse_e:
logger.error(f"解析记忆json失败{str(parse_e)} {traceback.format_exc()}")
return None
except Exception as e:
logger.error(f"构建记忆出现错误:{str(e)} {traceback.format_exc()}")
return None
async def create_and_store_memory(self, text):
if_need = await self.if_need_build(text)
if if_need:
logger.info(f"需要记忆:{text}")
memory = await self.build_memory(text)
if memory and memory.get("memory_text"):
memory_id = f"{self.chat_id}_{time.time()}"
memory_item = MemoryItem(
memory_id=memory_id,
chat_id=self.chat_id,
memory_text=memory["memory_text"],
keywords=memory.get("keywords", []),
)
await self.store_memory(memory_item)
else:
logger.info(f"不需要记忆:{text}")
async def store_memory(self, memory_item: MemoryItem):
memory = Memory(
memory_id=memory_item.memory_id,
chat_id=memory_item.chat_id,
memory_text=memory_item.memory_text,
keywords=memory_item.keywords,
create_time=memory_item.create_time,
last_view_time=memory_item.last_view_time,
)
session.add(memory)
session.commit()
async def get_memory(self, target: str):
from json_repair import repair_json
prompt = f"""
请根据以下发言内容,判断是否需要提取记忆
{target}
请用json格式输出包含以下字段
其中time的要求是
可以选择具体日期时间格式为YYYY-MM-DD HH:MM:SS或者大致时间格式为YYYY-MM-DD
可以选择相对时间例如今天昨天前天5天前1个月前
可以选择留空进行模糊搜索
{{
"need_memory": 1,
"keywords": "希望获取的记忆关键词,用/划分",
"time": "希望获取的记忆大致时间"
}}
请只输出json格式不要输出其他多余内容
"""
try:
response, _ = await self.summary_model.generate_response_async(prompt, temperature=0.5)
print(prompt)
print(response)
if not response:
return None
try:
repaired = repair_json(response)
result = json.loads(repaired)
# 解析keywords
keywords = result.get("keywords", "")
if isinstance(keywords, str):
keywords_list = [k.strip() for k in keywords.split("/") if k.strip()]
elif isinstance(keywords, list):
keywords_list = keywords
else:
keywords_list = []
# 解析time为时间段
time_str = result.get("time", "").strip()
start_time, end_time = self._parse_time_range(time_str)
logger.info(f"start_time: {start_time}, end_time: {end_time}")
# 检索包含关键词的记忆
memories_set = set()
if start_time and end_time:
start_ts = start_time.timestamp()
end_ts = end_time.timestamp()
query = session.execute(select(Memory).where(
(Memory.chat_id == self.chat_id)
& (Memory.create_time >= start_ts)
& (Memory.create_time < end_ts)
)).scalars()
else:
query = session.execute(select(Memory).where(Memory.chat_id == self.chat_id)).scalars()
for mem in query:
# 对每条记忆
mem_keywords = mem.keywords or ""
parsed = ast.literal_eval(mem_keywords)
if isinstance(parsed, list):
mem_keywords = [str(k).strip() for k in parsed if str(k).strip()]
else:
mem_keywords = []
# logger.info(f"mem_keywords: {mem_keywords}")
# logger.info(f"keywords_list: {keywords_list}")
for kw in keywords_list:
# logger.info(f"kw: {kw}")
# logger.info(f"kw in mem_keywords: {kw in mem_keywords}")
if kw in mem_keywords:
# logger.info(f"mem.memory_text: {mem.memory_text}")
memories_set.add(mem.memory_text)
break
return list(memories_set)
except Exception as parse_e:
logger.error(f"解析记忆json失败{str(parse_e)} {traceback.format_exc()}")
return None
except Exception as e:
logger.error(f"获取记忆出现错误:{str(e)} {traceback.format_exc()}")
return None
def _parse_time_range(self, time_str):
# sourcery skip: extract-duplicate-method, use-contextlib-suppress
"""
支持解析如下格式:
- 具体日期时间YYYY-MM-DD HH:MM:SS
- 具体日期YYYY-MM-DD
- 相对时间今天昨天前天N天前N个月前
- 空字符串:返回(None, None)
"""
now = datetime.now()
if not time_str:
return 0, now
time_str = time_str.strip()
# 具体日期时间
try:
dt = datetime.strptime(time_str, "%Y-%m-%d %H:%M:%S")
return dt, dt + timedelta(hours=1)
except Exception:
pass
# 具体日期
try:
dt = datetime.strptime(time_str, "%Y-%m-%d")
return dt, dt + timedelta(days=1)
except Exception:
pass
# 相对时间
if time_str == "今天":
start = now.replace(hour=0, minute=0, second=0, microsecond=0)
end = start + timedelta(days=1)
return start, end
if time_str == "昨天":
start = (now - timedelta(days=1)).replace(hour=0, minute=0, second=0, microsecond=0)
end = start + timedelta(days=1)
return start, end
if time_str == "前天":
start = (now - timedelta(days=2)).replace(hour=0, minute=0, second=0, microsecond=0)
end = start + timedelta(days=1)
return start, end
if m := re.match(r"(\d+)天前", time_str):
days = int(m.group(1))
start = (now - timedelta(days=days)).replace(hour=0, minute=0, second=0, microsecond=0)
end = start + timedelta(days=1)
return start, end
if m := re.match(r"(\d+)个月前", time_str):
months = int(m.group(1))
# 近似每月30天
start = (now - timedelta(days=months * 30)).replace(hour=0, minute=0, second=0, microsecond=0)
end = start + timedelta(days=1)
return start, end
# 其他无法解析
return 0, now

View File

@@ -0,0 +1,144 @@
import difflib
import json
from json_repair import repair_json
from typing import List, Dict
from datetime import datetime
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config, model_config
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.memory_system.Hippocampus import hippocampus_manager
logger = get_logger("memory_activator")
def get_keywords_from_json(json_str) -> List:
"""
从JSON字符串中提取关键词列表
Args:
json_str: JSON格式的字符串
Returns:
List[str]: 关键词列表
"""
try:
# 使用repair_json修复JSON格式
fixed_json = repair_json(json_str)
# 如果repair_json返回的是字符串需要解析为Python对象
result = json.loads(fixed_json) if isinstance(fixed_json, str) else fixed_json
return result.get("keywords", [])
except Exception as e:
logger.error(f"解析关键词JSON失败: {e}")
return []
def init_prompt():
# --- Group Chat Prompt ---
memory_activator_prompt = """
你是一个记忆分析器,你需要根据以下信息来进行回忆
以下是一段聊天记录,请根据这些信息,总结出几个关键词作为记忆回忆的触发词
聊天记录:
{obs_info_text}
你想要回复的消息:
{target_message}
历史关键词(请避免重复提取这些关键词):
{cached_keywords}
请输出一个json格式包含以下字段
{{
"keywords": ["关键词1", "关键词2", "关键词3",......]
}}
不要输出其他多余内容只输出json格式就好
"""
Prompt(memory_activator_prompt, "memory_activator_prompt")
class MemoryActivator:
def __init__(self):
self.key_words_model = LLMRequest(
model_set=model_config.model_task_config.utils_small,
request_type="memory.activator",
)
self.running_memory = []
self.cached_keywords = set() # 用于缓存历史关键词
async def activate_memory_with_chat_history(self, target_message, chat_history_prompt) -> List[Dict]:
"""
激活记忆
"""
# 如果记忆系统被禁用,直接返回空列表
if not global_config.memory.enable_memory:
return []
# 将缓存的关键词转换为字符串用于prompt
cached_keywords_str = ", ".join(self.cached_keywords) if self.cached_keywords else "暂无历史关键词"
prompt = await global_prompt_manager.format_prompt(
"memory_activator_prompt",
obs_info_text=chat_history_prompt,
target_message=target_message,
cached_keywords=cached_keywords_str,
)
# logger.debug(f"prompt: {prompt}")
response, (reasoning_content, model_name, _) = await self.key_words_model.generate_response_async(
prompt, temperature=0.5
)
keywords = list(get_keywords_from_json(response))
# 更新关键词缓存
if keywords:
# 限制缓存大小最多保留10个关键词
if len(self.cached_keywords) > 10:
# 转换为列表,移除最早的关键词
cached_list = list(self.cached_keywords)
self.cached_keywords = set(cached_list[-8:])
# 添加新的关键词到缓存
self.cached_keywords.update(keywords)
# 调用记忆系统获取相关记忆
related_memory = await hippocampus_manager.get_memory_from_topic(
valid_keywords=keywords, max_memory_num=3, max_memory_length=2, max_depth=3
)
logger.debug(f"当前记忆关键词: {self.cached_keywords} ")
logger.debug(f"获取到的记忆: {related_memory}")
# 激活时所有已有记忆的duration+1达到3则移除
for m in self.running_memory[:]:
m["duration"] = m.get("duration", 1) + 1
self.running_memory = [m for m in self.running_memory if m["duration"] < 3]
if related_memory:
for topic, memory in related_memory:
# 检查是否已存在相同topic或相似内容相似度>=0.7)的记忆
exists = any(
m["topic"] == topic or difflib.SequenceMatcher(None, m["content"], memory).ratio() >= 0.7
for m in self.running_memory
)
if not exists:
self.running_memory.append(
{"topic": topic, "content": memory, "timestamp": datetime.now().isoformat(), "duration": 1}
)
logger.debug(f"添加新记忆: {topic} - {memory}")
# 限制同时加载的记忆条数最多保留最后3条
if len(self.running_memory) > 3:
self.running_memory = self.running_memory[-3:]
return self.running_memory
init_prompt()

View File

@@ -0,0 +1,126 @@
import numpy as np
from datetime import datetime, timedelta
from rich.traceback import install
install(extra_lines=3)
class MemoryBuildScheduler:
def __init__(self, n_hours1, std_hours1, weight1, n_hours2, std_hours2, weight2, total_samples=50):
"""
初始化记忆构建调度器
参数:
n_hours1 (float): 第一个分布的均值(距离现在的小时数)
std_hours1 (float): 第一个分布的标准差(小时)
weight1 (float): 第一个分布的权重
n_hours2 (float): 第二个分布的均值(距离现在的小时数)
std_hours2 (float): 第二个分布的标准差(小时)
weight2 (float): 第二个分布的权重
total_samples (int): 要生成的总时间点数量
"""
# 验证参数
if total_samples <= 0:
raise ValueError("total_samples 必须大于0")
if weight1 < 0 or weight2 < 0:
raise ValueError("权重必须为非负数")
if std_hours1 < 0 or std_hours2 < 0:
raise ValueError("标准差必须为非负数")
# 归一化权重
total_weight = weight1 + weight2
if total_weight == 0:
raise ValueError("权重总和不能为0")
self.weight1 = weight1 / total_weight
self.weight2 = weight2 / total_weight
self.n_hours1 = n_hours1
self.std_hours1 = std_hours1
self.n_hours2 = n_hours2
self.std_hours2 = std_hours2
self.total_samples = total_samples
self.base_time = datetime.now()
def generate_time_samples(self):
"""生成混合分布的时间采样点"""
# 根据权重计算每个分布的样本数
samples1 = max(1, int(self.total_samples * self.weight1))
samples2 = max(1, self.total_samples - samples1) # 确保 samples2 至少为1
# 生成两个正态分布的小时偏移
hours_offset1 = np.random.normal(loc=self.n_hours1, scale=self.std_hours1, size=samples1)
hours_offset2 = np.random.normal(loc=self.n_hours2, scale=self.std_hours2, size=samples2)
# 合并两个分布的偏移
hours_offset = np.concatenate([hours_offset1, hours_offset2])
# 将偏移转换为实际时间戳(使用绝对值确保时间点在过去)
timestamps = [self.base_time - timedelta(hours=abs(offset)) for offset in hours_offset]
# 按时间排序(从最早到最近)
return sorted(timestamps)
def get_timestamp_array(self):
"""返回时间戳数组"""
timestamps = self.generate_time_samples()
return [int(t.timestamp()) for t in timestamps]
# def print_time_samples(timestamps, show_distribution=True):
# """打印时间样本和分布信息"""
# print(f"\n生成的{len(timestamps)}个时间点分布:")
# print("序号".ljust(5), "时间戳".ljust(25), "距现在(小时)")
# print("-" * 50)
# now = datetime.now()
# time_diffs = []
# for i, timestamp in enumerate(timestamps, 1):
# hours_diff = (now - timestamp).total_seconds() / 3600
# time_diffs.append(hours_diff)
# print(f"{str(i).ljust(5)} {timestamp.strftime('%Y-%m-%d %H:%M:%S').ljust(25)} {hours_diff:.2f}")
# # 打印统计信息
# print("\n统计信息")
# print(f"平均时间偏移:{np.mean(time_diffs):.2f}小时")
# print(f"标准差:{np.std(time_diffs):.2f}小时")
# print(f"最早时间:{min(timestamps).strftime('%Y-%m-%d %H:%M:%S')} ({max(time_diffs):.2f}小时前)")
# print(f"最近时间:{max(timestamps).strftime('%Y-%m-%d %H:%M:%S')} ({min(time_diffs):.2f}小时前)")
# if show_distribution:
# # 计算时间分布的直方图
# hist, bins = np.histogram(time_diffs, bins=40)
# print("\n时间分布每个*代表一个时间点):")
# for i in range(len(hist)):
# if hist[i] > 0:
# print(f"{bins[i]:6.1f}-{bins[i + 1]:6.1f}小时: {'*' * int(hist[i])}")
# # 使用示例
# if __name__ == "__main__":
# # 创建一个双峰分布的记忆调度器
# scheduler = MemoryBuildScheduler(
# n_hours1=12, # 第一个分布均值12小时前
# std_hours1=8, # 第一个分布标准差
# weight1=0.7, # 第一个分布权重 70%
# n_hours2=36, # 第二个分布均值36小时前
# std_hours2=24, # 第二个分布标准差
# weight2=0.3, # 第二个分布权重 30%
# total_samples=50, # 总共生成50个时间点
# )
# # 生成时间分布
# timestamps = scheduler.generate_time_samples()
# # 打印结果,包含分布可视化
# print_time_samples(timestamps, show_distribution=True)
# # 打印时间戳数组
# timestamp_array = scheduler.get_timestamp_array()
# print("\n时间戳数组Unix时间戳")
# print("[", end="")
# for i, ts in enumerate(timestamp_array):
# if i > 0:
# print(", ", end="")
# print(ts, end="")
# print("]")