初始化

This commit is contained in:
雅诺狐
2025-08-11 19:34:18 +08:00
parent ff7d1177fa
commit 2d4745cd58
257 changed files with 69069 additions and 0 deletions

View File

@@ -0,0 +1,124 @@
import time
from typing import Tuple, List, Dict, Optional
from .global_logger import logger
from .embedding_store import EmbeddingManager
from .kg_manager import KGManager
# from .lpmmconfig import global_config
from .utils.dyn_topk import dyn_select_top_k
from src.llm_models.utils_model import LLMRequest
from src.chat.utils.utils import get_embedding
from src.config.config import global_config, model_config
MAX_KNOWLEDGE_LENGTH = 10000 # 最大知识长度
class QAManager:
def __init__(
self,
embed_manager: EmbeddingManager,
kg_manager: KGManager,
):
self.embed_manager = embed_manager
self.kg_manager = kg_manager
self.qa_model = LLMRequest(model_set=model_config.model_task_config.lpmm_qa, request_type="lpmm.qa")
async def process_query(self, question: str) -> Optional[Tuple[List[Tuple[str, float, float]], Optional[Dict[str, float]]]]:
"""处理查询"""
# 生成问题的Embedding
part_start_time = time.perf_counter()
question_embedding = await get_embedding(question)
if question_embedding is None:
logger.error("生成问题Embedding失败")
return None
part_end_time = time.perf_counter()
logger.debug(f"Embedding用时{part_end_time - part_start_time:.5f}s")
# 根据问题Embedding查询Relation Embedding库
part_start_time = time.perf_counter()
relation_search_res = self.embed_manager.relation_embedding_store.search_top_k(
question_embedding,
global_config.lpmm_knowledge.qa_relation_search_top_k,
)
if relation_search_res is None:
return None
# 过滤阈值
# 考虑动态阈值:当存在显著数值差异的结果时,保留显著结果;否则,保留所有结果
relation_search_res = dyn_select_top_k(relation_search_res, 0.5, 1.0)
if not relation_search_res or relation_search_res[0][1] < global_config.lpmm_knowledge.qa_relation_threshold:
# 未找到相关关系
logger.debug("未找到相关关系,跳过关系检索")
relation_search_res = []
part_end_time = time.perf_counter()
logger.debug(f"关系检索用时:{part_end_time - part_start_time:.5f}s")
for res in relation_search_res:
rel_str = self.embed_manager.relation_embedding_store.store.get(res[0]).str
print(f"找到相关关系,相似度:{(res[1] * 100):.2f}% - {rel_str}")
# TODO: 使用LLM过滤三元组结果
# logger.info(f"LLM过滤三元组用时{time.time() - part_start_time:.2f}s")
# part_start_time = time.time()
# 根据问题Embedding查询Paragraph Embedding库
part_start_time = time.perf_counter()
paragraph_search_res = self.embed_manager.paragraphs_embedding_store.search_top_k(
question_embedding,
global_config.lpmm_knowledge.qa_paragraph_search_top_k,
)
part_end_time = time.perf_counter()
logger.debug(f"文段检索用时:{part_end_time - part_start_time:.5f}s")
if len(relation_search_res) != 0:
logger.info("找到相关关系将使用RAG进行检索")
# 使用KG检索
part_start_time = time.perf_counter()
result, ppr_node_weights = self.kg_manager.kg_search(
relation_search_res, paragraph_search_res, self.embed_manager
)
part_end_time = time.perf_counter()
logger.info(f"RAG检索用时{part_end_time - part_start_time:.5f}s")
else:
logger.info("未找到相关关系,将使用文段检索结果")
result = paragraph_search_res
ppr_node_weights = None
# 过滤阈值
result = dyn_select_top_k(result, 0.5, 1.0)
for res in result:
raw_paragraph = self.embed_manager.paragraphs_embedding_store.store[res[0]].str
print(f"找到相关文段,相关系数:{res[1]:.8f}\n{raw_paragraph}\n\n")
return result, ppr_node_weights
async def get_knowledge(self, question: str) -> Optional[str]:
"""获取知识"""
# 处理查询
processed_result = await self.process_query(question)
if processed_result is not None:
query_res = processed_result[0]
# 检查查询结果是否为空
if not query_res:
logger.debug("知识库查询结果为空,可能是知识库中没有相关内容")
return None
knowledge = [
(
self.embed_manager.paragraphs_embedding_store.store[res[0]].str,
res[1],
)
for res in query_res
]
found_knowledge = "\n".join(
[f"{i + 1}条知识:{k[0]}\n 该条知识对于问题的相关性:{k[1]}" for i, k in enumerate(knowledge)]
)
if len(found_knowledge) > MAX_KNOWLEDGE_LENGTH:
found_knowledge = found_knowledge[:MAX_KNOWLEDGE_LENGTH] + "\n"
return found_knowledge
else:
logger.debug("LPMM知识库并未初始化可能是从未导入过知识...")
return None