初始化

This commit is contained in:
雅诺狐
2025-08-11 19:34:18 +08:00
parent ff7d1177fa
commit 2d4745cd58
257 changed files with 69069 additions and 0 deletions

View File

@@ -0,0 +1,438 @@
import json
import os
import time
from typing import Dict, List, Tuple
import numpy as np
import pandas as pd
from rich.progress import (
Progress,
BarColumn,
TimeElapsedColumn,
TimeRemainingColumn,
TaskProgressColumn,
MofNCompleteColumn,
SpinnerColumn,
TextColumn,
)
from quick_algo import di_graph, pagerank
from .utils.hash import get_sha256
from .embedding_store import EmbeddingManager, EmbeddingStoreItem
from src.config.config import global_config
from .global_logger import logger
def _get_kg_dir():
"""
安全地获取KG数据目录路径
"""
current_dir = os.path.dirname(os.path.abspath(__file__))
root_path: str = os.path.abspath(os.path.join(current_dir, "..", "..", ".."))
kg_dir = os.path.join(root_path, "data/rag")
return str(kg_dir).replace("\\", "/")
# 延迟初始化,避免在模块加载时就访问可能未初始化的 local_storage
def get_kg_dir_str():
"""获取KG目录字符串"""
return _get_kg_dir()
class KGManager:
def __init__(self):
# 会被保存的字段
# 存储段落的hash值用于去重
self.stored_paragraph_hashes = set()
# 实体出现次数
self.ent_appear_cnt = {}
# KG
self.graph = di_graph.DiGraph()
# 持久化相关 - 使用延迟初始化的路径
self.dir_path = get_kg_dir_str()
self.graph_data_path = self.dir_path + "/" + "rag-graph" + ".graphml"
self.ent_cnt_data_path = self.dir_path + "/" + "rag-ent-cnt" + ".parquet"
self.pg_hash_file_path = self.dir_path + "/" + "rag-pg-hash" + ".json"
def save_to_file(self):
"""将KG数据保存到文件"""
# 确保目录存在
if not os.path.exists(self.dir_path):
os.makedirs(self.dir_path, exist_ok=True)
# 保存KG
di_graph.save_to_file(self.graph, self.graph_data_path)
# 保存实体计数到文件
ent_cnt_df = pd.DataFrame([{"hash_key": k, "appear_cnt": v} for k, v in self.ent_appear_cnt.items()])
ent_cnt_df.to_parquet(self.ent_cnt_data_path, engine="pyarrow", index=False)
# 保存段落hash到文件
with open(self.pg_hash_file_path, "w", encoding="utf-8") as f:
data = {"stored_paragraph_hashes": list(self.stored_paragraph_hashes)}
f.write(json.dumps(data, ensure_ascii=False, indent=4))
def load_from_file(self):
"""从文件加载KG数据"""
# 确保文件存在
if not os.path.exists(self.pg_hash_file_path):
raise FileNotFoundError(f"KG段落hash文件{self.pg_hash_file_path}不存在")
if not os.path.exists(self.ent_cnt_data_path):
raise FileNotFoundError(f"KG实体计数文件{self.ent_cnt_data_path}不存在")
if not os.path.exists(self.graph_data_path):
raise FileNotFoundError(f"KG图文件{self.graph_data_path}不存在")
# 加载段落hash
with open(self.pg_hash_file_path, "r", encoding="utf-8") as f:
data = json.load(f)
self.stored_paragraph_hashes = set(data["stored_paragraph_hashes"])
# 加载实体计数
ent_cnt_df = pd.read_parquet(self.ent_cnt_data_path, engine="pyarrow")
self.ent_appear_cnt = dict({row["hash_key"]: row["appear_cnt"] for _, row in ent_cnt_df.iterrows()})
# 加载KG
self.graph = di_graph.load_from_file(self.graph_data_path)
def _build_edges_between_ent(
self,
node_to_node: Dict[Tuple[str, str], float],
triple_list_data: Dict[str, List[List[str]]],
):
"""构建实体节点之间的关系,同时统计实体出现次数"""
for triple_list in triple_list_data.values():
entity_set = set()
for triple in triple_list:
if triple[0] == triple[2]:
# 避免自连接
continue
# 一个triple就是一条边同时构建双向联系
hash_key1 = "entity" + "-" + get_sha256(triple[0])
hash_key2 = "entity" + "-" + get_sha256(triple[2])
node_to_node[(hash_key1, hash_key2)] = node_to_node.get((hash_key1, hash_key2), 0) + 1.0
node_to_node[(hash_key2, hash_key1)] = node_to_node.get((hash_key2, hash_key1), 0) + 1.0
entity_set.add(hash_key1)
entity_set.add(hash_key2)
# 实体出现次数统计
for hash_key in entity_set:
self.ent_appear_cnt[hash_key] = self.ent_appear_cnt.get(hash_key, 0) + 1.0
@staticmethod
def _build_edges_between_ent_pg(
node_to_node: Dict[Tuple[str, str], float],
triple_list_data: Dict[str, List[List[str]]],
):
"""构建实体节点与文段节点之间的关系"""
for idx in triple_list_data:
for triple in triple_list_data[idx]:
ent_hash_key = "entity" + "-" + get_sha256(triple[0])
pg_hash_key = "paragraph" + "-" + str(idx)
node_to_node[(ent_hash_key, pg_hash_key)] = node_to_node.get((ent_hash_key, pg_hash_key), 0) + 1.0
@staticmethod
def _synonym_connect(
node_to_node: Dict[Tuple[str, str], float],
triple_list_data: Dict[str, List[List[str]]],
embedding_manager: EmbeddingManager,
) -> int:
"""同义词连接"""
new_edge_cnt = 0
# 获取所有实体节点的hash值
ent_hash_list = set()
for triple_list in triple_list_data.values():
for triple in triple_list:
ent_hash_list.add("entity" + "-" + get_sha256(triple[0]))
ent_hash_list.add("entity" + "-" + get_sha256(triple[2]))
ent_hash_list = list(ent_hash_list)
synonym_hash_set = set()
synonym_result = {}
# rich 进度条
total = len(ent_hash_list)
with Progress(
SpinnerColumn(),
TextColumn("[progress.description]{task.description}"),
BarColumn(),
TaskProgressColumn(),
MofNCompleteColumn(),
"",
TimeElapsedColumn(),
"<",
TimeRemainingColumn(),
transient=False,
) as progress:
task = progress.add_task("同义词连接", total=total)
for ent_hash in ent_hash_list:
if ent_hash in synonym_hash_set:
progress.update(task, advance=1)
continue
ent = embedding_manager.entities_embedding_store.store.get(ent_hash)
if ent is None:
progress.update(task, advance=1)
continue
assert isinstance(ent, EmbeddingStoreItem)
# 查询相似实体
similar_ents = embedding_manager.entities_embedding_store.search_top_k(
ent.embedding, global_config.lpmm_knowledge.rag_synonym_search_top_k
)
res_ent = [] # Debug
for res_ent_hash, similarity in similar_ents:
if res_ent_hash == ent_hash:
# 避免自连接
continue
if similarity < global_config.lpmm_knowledge.rag_synonym_threshold:
# 相似度阈值
continue
node_to_node[(res_ent_hash, ent_hash)] = similarity
node_to_node[(ent_hash, res_ent_hash)] = similarity
synonym_hash_set.add(res_ent_hash)
new_edge_cnt += 1
res_ent.append(
(
embedding_manager.entities_embedding_store.store[res_ent_hash].str,
similarity,
)
) # Debug
synonym_result[ent.str] = res_ent
progress.update(task, advance=1)
for k, v in synonym_result.items():
print(f'"{k}"的相似实体为:{v}')
return new_edge_cnt
def _update_graph(
self,
node_to_node: Dict[Tuple[str, str], float],
embedding_manager: EmbeddingManager,
):
"""更新KG图结构
流程:
1. 更新图结构:遍历所有待添加的新边
- 若是新边,则添加到图中
- 若是已存在的边,则更新边的权重
2. 更新新节点的属性
"""
existed_nodes = self.graph.get_node_list()
existed_edges = [str((edge[0], edge[1])) for edge in self.graph.get_edge_list()]
now_time = time.time()
# 更新图结构
for src_tgt, weight in node_to_node.items():
key = str(src_tgt)
# 检查边是否已存在
if key not in existed_edges:
# 新边
self.graph.add_edge(
di_graph.DiEdge(
src_tgt[0],
src_tgt[1],
{
"weight": weight,
"create_time": now_time,
"update_time": now_time,
},
)
)
else:
# 已存在的边
edge_item = self.graph[src_tgt[0], src_tgt[1]]
edge_item["weight"] += weight
edge_item["update_time"] = now_time
self.graph.update_edge(edge_item)
# 更新新节点属性
for src_tgt in node_to_node.keys():
for node_hash in src_tgt:
if node_hash not in existed_nodes:
if node_hash.startswith("entity"):
# 新增实体节点
node = embedding_manager.entities_embedding_store.store.get(node_hash)
if node is None:
logger.warning(f"实体节点 {node_hash} 在嵌入库中不存在,跳过")
continue
assert isinstance(node, EmbeddingStoreItem)
node_item = self.graph[node_hash]
node_item["content"] = node.str
node_item["type"] = "ent"
node_item["create_time"] = now_time
self.graph.update_node(node_item)
elif node_hash.startswith("paragraph"):
# 新增文段节点
node = embedding_manager.paragraphs_embedding_store.store.get(node_hash)
if node is None:
logger.warning(f"段落节点 {node_hash} 在嵌入库中不存在,跳过")
continue
assert isinstance(node, EmbeddingStoreItem)
content = node.str.replace("\n", " ")
node_item = self.graph[node_hash]
node_item["content"] = content if len(content) < 8 else content[:8] + "..."
node_item["type"] = "pg"
node_item["create_time"] = now_time
self.graph.update_node(node_item)
def build_kg(
self,
triple_list_data: Dict[str, List[List[str]]],
embedding_manager: EmbeddingManager,
):
"""增量式构建KG
注意应当在调用该方法后保存KG
Args:
triple_list_data: 三元组数据
embedding_manager: EmbeddingManager对象
"""
# 实体之间的联系
node_to_node = dict()
# 构建实体节点之间的关系,同时统计实体出现次数
logger.info("正在构建KG实体节点之间的关系同时统计实体出现次数")
# 从三元组提取实体对
self._build_edges_between_ent(node_to_node, triple_list_data)
# 构建实体节点与文段节点之间的关系
logger.info("正在构建KG实体节点与文段节点之间的关系")
self._build_edges_between_ent_pg(node_to_node, triple_list_data)
# 近义词扩展链接
# 对每个实体节点,找到最相似的实体节点,建立扩展连接
logger.info("正在进行近义词扩展链接")
self._synonym_connect(node_to_node, triple_list_data, embedding_manager)
# 构建图
self._update_graph(node_to_node, embedding_manager)
# 记录已处理存储的段落hash
for idx in triple_list_data:
self.stored_paragraph_hashes.add(str(idx))
def kg_search(
self,
relation_search_result: List[Tuple[Tuple[str, str, str], float]],
paragraph_search_result: List[Tuple[str, float]],
embed_manager: EmbeddingManager,
):
"""RAG搜索与PageRank
Args:
relation_search_result: RelationEmbedding的搜索结果relation_tripple, similarity
paragraph_search_result: ParagraphEmbedding的搜索结果paragraph_hash, similarity
embed_manager: EmbeddingManager对象
"""
# 图中存在的节点总集
existed_nodes = self.graph.get_node_list()
# 准备PPR使用的数据
# 节点权重:实体
ent_weights = {}
# 节点权重:文段
pg_weights = {}
# 以下部分处理实体权重ent_weights
# 针对每个关系,提取出其中的主宾短语作为两个实体,并记录对应的三元组的相似度作为权重依据
ent_sim_scores = {}
for relation_hash, similarity, _ in relation_search_result:
# 提取主宾短语
relation = embed_manager.relation_embedding_store.store.get(relation_hash).str
assert relation is not None # 断言relation不为空
# 关系三元组
triple = relation[2:-2].split("', '")
for ent in [(triple[0]), (triple[2])]:
ent_hash = "entity" + "-" + get_sha256(ent)
if ent_hash in existed_nodes: # 该实体需在KG中存在
if ent_hash not in ent_sim_scores: # 尚未记录的实体
ent_sim_scores[ent_hash] = []
ent_sim_scores[ent_hash].append(similarity)
ent_mean_scores = {} # 记录实体的平均相似度
for ent_hash, scores in ent_sim_scores.items():
# 先对相似度进行累加,然后与实体计数相除获取最终权重
ent_weights[ent_hash] = float(np.sum(scores)) / self.ent_appear_cnt[ent_hash]
# 记录实体的平均相似度用于后续的top_k筛选
ent_mean_scores[ent_hash] = float(np.mean(scores))
del ent_sim_scores
ent_weights_max = max(ent_weights.values())
ent_weights_min = min(ent_weights.values())
if ent_weights_max == ent_weights_min:
# 只有一个相似度则全赋值为1
for ent_hash in ent_weights.keys():
ent_weights[ent_hash] = 1.0
else:
down_edge = global_config.lpmm_knowledge.qa_paragraph_node_weight
# 缩放取值区间至[down_edge, 1]
for ent_hash, score in ent_weights.items():
# 缩放相似度
ent_weights[ent_hash] = (
(score - ent_weights_min) * (1 - down_edge) / (ent_weights_max - ent_weights_min)
) + down_edge
# 取平均相似度的top_k实体
top_k = global_config.lpmm_knowledge.qa_ent_filter_top_k
if len(ent_mean_scores) > top_k:
# 从大到小排序取后len - k个
ent_mean_scores = {k: v for k, v in sorted(ent_mean_scores.items(), key=lambda item: item[1], reverse=True)}
for ent_hash, _ in ent_mean_scores.items():
# 删除被淘汰的实体节点权重设置
del ent_weights[ent_hash]
del top_k, ent_mean_scores
# 以下部分处理文段权重pg_weights
# 将搜索结果中文段的相似度归一化作为权重
pg_sim_scores = {}
pg_sim_score_max = 0.0
pg_sim_score_min = 1.0
for pg_hash, similarity in paragraph_search_result:
# 查找最大和最小值
pg_sim_score_max = max(pg_sim_score_max, similarity)
pg_sim_score_min = min(pg_sim_score_min, similarity)
pg_sim_scores[pg_hash] = similarity
# 归一化
for pg_hash, similarity in pg_sim_scores.items():
# 归一化相似度
pg_sim_scores[pg_hash] = (similarity - pg_sim_score_min) / (pg_sim_score_max - pg_sim_score_min)
del pg_sim_score_max, pg_sim_score_min
for pg_hash, score in pg_sim_scores.items():
pg_weights[pg_hash] = (
score * global_config.lpmm_knowledge.qa_paragraph_node_weight
) # 文段权重 = 归一化相似度 * 文段节点权重参数
del pg_sim_scores
# 最终权重数据 = 实体权重 + 文段权重
ppr_node_weights = {k: v for d in [ent_weights, pg_weights] for k, v in d.items()}
del ent_weights, pg_weights
# PersonalizedPageRank
ppr_res = pagerank.run_pagerank(
self.graph,
personalization=ppr_node_weights,
max_iter=100,
alpha=global_config.lpmm_knowledge.qa_ppr_damping,
)
# 获取最终结果
# 从搜索结果中提取文段节点的结果
passage_node_res = [
(node_key, score)
for node_key, score in ppr_res.items()
if node_key.startswith("paragraph")
]
del ppr_res
# 排序:按照分数从大到小
passage_node_res = sorted(passage_node_res, key=lambda item: item[1], reverse=True)
return passage_node_res, ppr_node_weights