初始化

This commit is contained in:
雅诺狐
2025-08-11 19:34:18 +08:00
parent ff7d1177fa
commit 2d4745cd58
257 changed files with 69069 additions and 0 deletions

View File

@@ -0,0 +1,175 @@
import asyncio
import json
import time
from typing import List, Union
from .global_logger import logger
from . import prompt_template
from .knowledge_lib import INVALID_ENTITY
from src.llm_models.utils_model import LLMRequest
from json_repair import repair_json
def _extract_json_from_text(text: str):
# sourcery skip: assign-if-exp, extract-method
"""从文本中提取JSON数据的高容错方法"""
if text is None:
logger.error("输入文本为None")
return []
try:
fixed_json = repair_json(text)
if isinstance(fixed_json, str):
parsed_json = json.loads(fixed_json)
else:
parsed_json = fixed_json
# 如果是列表,直接返回
if isinstance(parsed_json, list):
return parsed_json
# 如果是字典且只有一个项目,可能包装了列表
if isinstance(parsed_json, dict):
# 如果字典只有一个键,并且值是列表,返回那个列表
if len(parsed_json) == 1:
value = list(parsed_json.values())[0]
if isinstance(value, list):
return value
return parsed_json
# 其他情况,尝试转换为列表
logger.warning(f"解析的JSON不是预期格式: {type(parsed_json)}, 内容: {parsed_json}")
return []
except Exception as e:
logger.error(f"JSON提取失败: {e}, 原始文本: {text[:100] if text else 'None'}...")
return []
def _entity_extract(llm_req: LLMRequest, paragraph: str) -> List[str]:
# sourcery skip: reintroduce-else, swap-if-else-branches, use-named-expression
"""对段落进行实体提取返回提取出的实体列表JSON格式"""
entity_extract_context = prompt_template.build_entity_extract_context(paragraph)
# 使用 asyncio.run 来运行异步方法
try:
# 如果当前已有事件循环在运行,使用它
loop = asyncio.get_running_loop()
future = asyncio.run_coroutine_threadsafe(llm_req.generate_response_async(entity_extract_context), loop)
response, _ = future.result()
except RuntimeError:
# 如果没有运行中的事件循环,直接使用 asyncio.run
response, _ = asyncio.run(llm_req.generate_response_async(entity_extract_context))
# 添加调试日志
logger.debug(f"LLM返回的原始响应: {response}")
entity_extract_result = _extract_json_from_text(response)
# 检查返回的是否为有效的实体列表
if not isinstance(entity_extract_result, list):
if not isinstance(entity_extract_result, dict):
raise ValueError(f"实体提取结果格式错误,期望列表但得到: {type(entity_extract_result)}")
# 尝试常见的键名
for key in ["entities", "result", "data", "items"]:
if key in entity_extract_result and isinstance(entity_extract_result[key], list):
entity_extract_result = entity_extract_result[key]
break
else:
# 如果找不到合适的列表,抛出异常
raise ValueError(f"实体提取结果格式错误,期望列表但得到: {type(entity_extract_result)}")
# 过滤无效实体
entity_extract_result = [
entity
for entity in entity_extract_result
if (entity is not None) and (entity != "") and (entity not in INVALID_ENTITY)
]
if not entity_extract_result:
raise ValueError("实体提取结果为空")
return entity_extract_result
def _rdf_triple_extract(llm_req: LLMRequest, paragraph: str, entities: list) -> List[List[str]]:
"""对段落进行实体提取返回提取出的实体列表JSON格式"""
rdf_extract_context = prompt_template.build_rdf_triple_extract_context(
paragraph, entities=json.dumps(entities, ensure_ascii=False)
)
# 使用 asyncio.run 来运行异步方法
try:
# 如果当前已有事件循环在运行,使用它
loop = asyncio.get_running_loop()
future = asyncio.run_coroutine_threadsafe(llm_req.generate_response_async(rdf_extract_context), loop)
response, _ = future.result()
except RuntimeError:
# 如果没有运行中的事件循环,直接使用 asyncio.run
response, _ = asyncio.run(llm_req.generate_response_async(rdf_extract_context))
# 添加调试日志
logger.debug(f"RDF LLM返回的原始响应: {response}")
rdf_triple_result = _extract_json_from_text(response)
# 检查返回的是否为有效的三元组列表
if not isinstance(rdf_triple_result, list):
if not isinstance(rdf_triple_result, dict):
raise ValueError(f"RDF三元组提取结果格式错误期望列表但得到: {type(rdf_triple_result)}")
# 尝试常见的键名
for key in ["triples", "result", "data", "items"]:
if key in rdf_triple_result and isinstance(rdf_triple_result[key], list):
rdf_triple_result = rdf_triple_result[key]
break
else:
# 如果找不到合适的列表,抛出异常
raise ValueError(f"RDF三元组提取结果格式错误期望列表但得到: {type(rdf_triple_result)}")
# 验证三元组格式
for triple in rdf_triple_result:
if (
not isinstance(triple, list)
or len(triple) != 3
or (triple[0] is None or triple[1] is None or triple[2] is None)
or "" in triple
):
raise ValueError("RDF提取结果格式错误")
return rdf_triple_result
def info_extract_from_str(
llm_client_for_ner: LLMRequest, llm_client_for_rdf: LLMRequest, paragraph: str
) -> Union[tuple[None, None], tuple[list[str], list[list[str]]]]:
try_count = 0
while True:
try:
entity_extract_result = _entity_extract(llm_client_for_ner, paragraph)
break
except Exception as e:
logger.warning(f"实体提取失败,错误信息:{e}")
try_count += 1
if try_count < 3:
logger.warning("将于5秒后重试")
time.sleep(5)
else:
logger.error("实体提取失败,已达最大重试次数")
return None, None
try_count = 0
while True:
try:
rdf_triple_extract_result = _rdf_triple_extract(llm_client_for_rdf, paragraph, entity_extract_result)
break
except Exception as e:
logger.warning(f"实体提取失败,错误信息:{e}")
try_count += 1
if try_count < 3:
logger.warning("将于5秒后重试")
time.sleep(5)
else:
logger.error("实体提取失败,已达最大重试次数")
return None, None
return entity_extract_result, rdf_triple_extract_result