初始化

This commit is contained in:
雅诺狐
2025-08-11 19:34:18 +08:00
parent ff7d1177fa
commit 2d4745cd58
257 changed files with 69069 additions and 0 deletions

View File

@@ -0,0 +1,592 @@
from dataclasses import dataclass
import json
import os
import math
import asyncio
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Dict, List, Tuple
import numpy as np
import pandas as pd
# import tqdm
import faiss
from .utils.hash import get_sha256
from .global_logger import logger
from rich.traceback import install
from rich.progress import (
Progress,
BarColumn,
TimeElapsedColumn,
TimeRemainingColumn,
TaskProgressColumn,
MofNCompleteColumn,
SpinnerColumn,
TextColumn,
)
from src.chat.utils.utils import get_embedding
from src.config.config import global_config
install(extra_lines=3)
# 多线程embedding配置常量
DEFAULT_MAX_WORKERS = 10 # 默认最大线程数
DEFAULT_CHUNK_SIZE = 10 # 默认每个线程处理的数据块大小
MIN_CHUNK_SIZE = 1 # 最小分块大小
MAX_CHUNK_SIZE = 50 # 最大分块大小
MIN_WORKERS = 1 # 最小线程数
MAX_WORKERS = 20 # 最大线程数
ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", ".."))
EMBEDDING_DATA_DIR = os.path.join(ROOT_PATH, "data", "embedding")
EMBEDDING_DATA_DIR_STR = str(EMBEDDING_DATA_DIR).replace("\\", "/")
TOTAL_EMBEDDING_TIMES = 3 # 统计嵌入次数
# 嵌入模型测试字符串,测试模型一致性,来自开发群的聊天记录
# 这些字符串的嵌入结果应该是固定的,不能随时间变化
EMBEDDING_TEST_STRINGS = [
"阿卡伊真的太好玩了,神秘性感大女同等着你",
"你怎么知道我arc12.64了",
"我是蕾缪乐小姐的狗",
"关注Oct谢谢喵",
"不是w6我不草",
"关注千石可乐谢谢喵",
"来玩CLANNADAIR樱之诗樱之刻谢谢喵",
"关注墨梓柒谢谢喵",
"Ciallo~",
"来玩巧克甜恋谢谢喵",
"水印",
"我也在纠结晚饭,铁锅炒鸡听着就香!",
"test你妈喵",
]
EMBEDDING_TEST_FILE = os.path.join(ROOT_PATH, "data", "embedding_model_test.json")
EMBEDDING_SIM_THRESHOLD = 0.99
def cosine_similarity(a, b):
# 计算余弦相似度
dot = sum(x * y for x, y in zip(a, b, strict=False))
norm_a = math.sqrt(sum(x * x for x in a))
norm_b = math.sqrt(sum(x * x for x in b))
if norm_a == 0 or norm_b == 0:
return 0.0
return dot / (norm_a * norm_b)
@dataclass
class EmbeddingStoreItem:
"""嵌入库中的项"""
def __init__(self, item_hash: str, embedding: List[float], content: str):
self.hash = item_hash
self.embedding = embedding
self.str = content
def to_dict(self) -> dict:
"""转为dict"""
return {
"hash": self.hash,
"embedding": self.embedding,
"str": self.str,
}
class EmbeddingStore:
def __init__(self, namespace: str, dir_path: str, max_workers: int = DEFAULT_MAX_WORKERS, chunk_size: int = DEFAULT_CHUNK_SIZE):
self.namespace = namespace
self.dir = dir_path
self.embedding_file_path = f"{dir_path}/{namespace}.parquet"
self.index_file_path = f"{dir_path}/{namespace}.index"
self.idx2hash_file_path = dir_path + "/" + namespace + "_i2h.json"
# 多线程配置参数验证和设置
self.max_workers = max(MIN_WORKERS, min(MAX_WORKERS, max_workers))
self.chunk_size = max(MIN_CHUNK_SIZE, min(MAX_CHUNK_SIZE, chunk_size))
# 如果配置值被调整,记录日志
if self.max_workers != max_workers:
logger.warning(f"max_workers 已从 {max_workers} 调整为 {self.max_workers} (范围: {MIN_WORKERS}-{MAX_WORKERS})")
if self.chunk_size != chunk_size:
logger.warning(f"chunk_size 已从 {chunk_size} 调整为 {self.chunk_size} (范围: {MIN_CHUNK_SIZE}-{MAX_CHUNK_SIZE})")
self.store = {}
self.faiss_index = None
self.idx2hash = None
def _get_embedding(self, s: str) -> List[float]:
"""获取字符串的嵌入向量,处理异步调用"""
try:
# 尝试获取当前事件循环
asyncio.get_running_loop()
# 如果在事件循环中,使用线程池执行
import concurrent.futures
def run_in_thread():
return asyncio.run(get_embedding(s))
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(run_in_thread)
result = future.result()
if result is None:
logger.error(f"获取嵌入失败: {s}")
return []
return result
except RuntimeError:
# 没有运行的事件循环,直接运行
result = asyncio.run(get_embedding(s))
if result is None:
logger.error(f"获取嵌入失败: {s}")
return []
return result
def _get_embeddings_batch_threaded(self, strs: List[str], chunk_size: int = 10, max_workers: int = 10, progress_callback=None) -> List[Tuple[str, List[float]]]:
"""使用多线程批量获取嵌入向量
Args:
strs: 要获取嵌入的字符串列表
chunk_size: 每个线程处理的数据块大小
max_workers: 最大线程数
progress_callback: 进度回调函数,接收一个参数表示完成的数量
Returns:
包含(原始字符串, 嵌入向量)的元组列表,保持与输入顺序一致
"""
if not strs:
return []
# 分块
chunks = []
for i in range(0, len(strs), chunk_size):
chunk = strs[i:i + chunk_size]
chunks.append((i, chunk)) # 保存起始索引以维持顺序
# 结果存储,使用字典按索引存储以保证顺序
results = {}
def process_chunk(chunk_data):
"""处理单个数据块的函数"""
start_idx, chunk_strs = chunk_data
chunk_results = []
# 为每个线程创建独立的LLMRequest实例
from src.llm_models.utils_model import LLMRequest
from src.config.config import model_config
try:
# 创建线程专用的LLM实例
llm = LLMRequest(model_set=model_config.model_task_config.embedding, request_type="embedding")
for i, s in enumerate(chunk_strs):
try:
# 直接使用异步函数
embedding = asyncio.run(llm.get_embedding(s))
if embedding and len(embedding) > 0:
chunk_results.append((start_idx + i, s, embedding[0])) # embedding[0] 是实际的向量
else:
logger.error(f"获取嵌入失败: {s}")
chunk_results.append((start_idx + i, s, []))
# 每完成一个嵌入立即更新进度
if progress_callback:
progress_callback(1)
except Exception as e:
logger.error(f"获取嵌入时发生异常: {s}, 错误: {e}")
chunk_results.append((start_idx + i, s, []))
# 即使失败也要更新进度
if progress_callback:
progress_callback(1)
except Exception as e:
logger.error(f"创建LLM实例失败: {e}")
# 如果创建LLM实例失败返回空结果
for i, s in enumerate(chunk_strs):
chunk_results.append((start_idx + i, s, []))
# 即使失败也要更新进度
if progress_callback:
progress_callback(1)
return chunk_results
# 使用线程池处理
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# 提交所有任务
future_to_chunk = {executor.submit(process_chunk, chunk): chunk for chunk in chunks}
# 收集结果进度已在process_chunk中实时更新
for future in as_completed(future_to_chunk):
try:
chunk_results = future.result()
for idx, s, embedding in chunk_results:
results[idx] = (s, embedding)
except Exception as e:
chunk = future_to_chunk[future]
logger.error(f"处理数据块时发生异常: {chunk}, 错误: {e}")
# 为失败的块添加空结果
start_idx, chunk_strs = chunk
for i, s in enumerate(chunk_strs):
results[start_idx + i] = (s, [])
# 按原始顺序返回结果
ordered_results = []
for i in range(len(strs)):
if i in results:
ordered_results.append(results[i])
else:
# 防止遗漏
ordered_results.append((strs[i], []))
return ordered_results
def get_test_file_path(self):
return EMBEDDING_TEST_FILE
def save_embedding_test_vectors(self):
"""保存测试字符串的嵌入到本地(使用多线程优化)"""
logger.info("开始保存测试字符串的嵌入向量...")
# 使用多线程批量获取测试字符串的嵌入
embedding_results = self._get_embeddings_batch_threaded(
EMBEDDING_TEST_STRINGS,
chunk_size=min(self.chunk_size, len(EMBEDDING_TEST_STRINGS)),
max_workers=min(self.max_workers, len(EMBEDDING_TEST_STRINGS))
)
# 构建测试向量字典
test_vectors = {}
for idx, (s, embedding) in enumerate(embedding_results):
if embedding:
test_vectors[str(idx)] = embedding
else:
logger.error(f"获取测试字符串嵌入失败: {s}")
# 使用原始单线程方法作为后备
test_vectors[str(idx)] = self._get_embedding(s)
with open(self.get_test_file_path(), "w", encoding="utf-8") as f:
json.dump(test_vectors, f, ensure_ascii=False, indent=2)
logger.info("测试字符串嵌入向量保存完成")
def load_embedding_test_vectors(self):
"""加载本地保存的测试字符串嵌入"""
path = self.get_test_file_path()
if not os.path.exists(path):
return None
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
def check_embedding_model_consistency(self):
"""校验当前模型与本地嵌入模型是否一致(使用多线程优化)"""
local_vectors = self.load_embedding_test_vectors()
if local_vectors is None:
logger.warning("未检测到本地嵌入模型测试文件,将保存当前模型的测试嵌入。")
self.save_embedding_test_vectors()
return True
# 检查本地向量完整性
for idx in range(len(EMBEDDING_TEST_STRINGS)):
if local_vectors.get(str(idx)) is None:
logger.warning("本地嵌入模型测试文件缺失部分测试字符串,将重新保存。")
self.save_embedding_test_vectors()
return True
logger.info("开始检验嵌入模型一致性...")
# 使用多线程批量获取当前模型的嵌入
embedding_results = self._get_embeddings_batch_threaded(
EMBEDDING_TEST_STRINGS,
chunk_size=min(self.chunk_size, len(EMBEDDING_TEST_STRINGS)),
max_workers=min(self.max_workers, len(EMBEDDING_TEST_STRINGS))
)
# 检查一致性
for idx, (s, new_emb) in enumerate(embedding_results):
local_emb = local_vectors.get(str(idx))
if not new_emb:
logger.error(f"获取测试字符串嵌入失败: {s}")
return False
sim = cosine_similarity(local_emb, new_emb)
if sim < EMBEDDING_SIM_THRESHOLD:
logger.error(f"嵌入模型一致性校验失败,字符串: {s}, 相似度: {sim:.4f}")
return False
logger.info("嵌入模型一致性校验通过。")
return True
def batch_insert_strs(self, strs: List[str], times: int) -> None:
"""向库中存入字符串(使用多线程优化)"""
if not strs:
return
total = len(strs)
# 过滤已存在的字符串
new_strs = []
for s in strs:
item_hash = self.namespace + "-" + get_sha256(s)
if item_hash not in self.store:
new_strs.append(s)
if not new_strs:
logger.info(f"所有字符串已存在于{self.namespace}嵌入库中,跳过处理")
return
logger.info(f"需要处理 {len(new_strs)}/{total} 个新字符串")
with Progress(
SpinnerColumn(),
TextColumn("[progress.description]{task.description}"),
BarColumn(),
TaskProgressColumn(),
MofNCompleteColumn(),
"",
TimeElapsedColumn(),
"<",
TimeRemainingColumn(),
transient=False,
) as progress:
task = progress.add_task(f"存入嵌入库:({times}/{TOTAL_EMBEDDING_TIMES})", total=total)
# 首先更新已存在项的进度
already_processed = total - len(new_strs)
if already_processed > 0:
progress.update(task, advance=already_processed)
if new_strs:
# 使用实例配置的参数,智能调整分块和线程数
optimal_chunk_size = max(MIN_CHUNK_SIZE, min(self.chunk_size, len(new_strs) // self.max_workers if self.max_workers > 0 else self.chunk_size))
optimal_max_workers = min(self.max_workers, max(MIN_WORKERS, len(new_strs) // optimal_chunk_size if optimal_chunk_size > 0 else 1))
logger.debug(f"使用多线程处理: chunk_size={optimal_chunk_size}, max_workers={optimal_max_workers}")
# 定义进度更新回调函数
def update_progress(count):
progress.update(task, advance=count)
# 批量获取嵌入,并实时更新进度
embedding_results = self._get_embeddings_batch_threaded(
new_strs,
chunk_size=optimal_chunk_size,
max_workers=optimal_max_workers,
progress_callback=update_progress
)
# 存入结果(不再需要在这里更新进度,因为已经在回调中更新了)
for s, embedding in embedding_results:
item_hash = self.namespace + "-" + get_sha256(s)
if embedding: # 只有成功获取到嵌入才存入
self.store[item_hash] = EmbeddingStoreItem(item_hash, embedding, s)
else:
logger.warning(f"跳过存储失败的嵌入: {s[:50]}...")
def save_to_file(self) -> None:
"""保存到文件"""
data = []
logger.info(f"正在保存{self.namespace}嵌入库到文件{self.embedding_file_path}")
for item in self.store.values():
data.append(item.to_dict())
data_frame = pd.DataFrame(data)
if not os.path.exists(self.dir):
os.makedirs(self.dir, exist_ok=True)
if not os.path.exists(self.embedding_file_path):
open(self.embedding_file_path, "w").close()
data_frame.to_parquet(self.embedding_file_path, engine="pyarrow", index=False)
logger.info(f"{self.namespace}嵌入库保存成功")
if self.faiss_index is not None and self.idx2hash is not None:
logger.info(f"正在保存{self.namespace}嵌入库的FaissIndex到文件{self.index_file_path}")
faiss.write_index(self.faiss_index, self.index_file_path)
logger.info(f"{self.namespace}嵌入库的FaissIndex保存成功")
logger.info(f"正在保存{self.namespace}嵌入库的idx2hash映射到文件{self.idx2hash_file_path}")
with open(self.idx2hash_file_path, "w", encoding="utf-8") as f:
f.write(json.dumps(self.idx2hash, ensure_ascii=False, indent=4))
logger.info(f"{self.namespace}嵌入库的idx2hash映射保存成功")
def load_from_file(self) -> None:
"""从文件中加载"""
if not os.path.exists(self.embedding_file_path):
raise Exception(f"文件{self.embedding_file_path}不存在")
logger.info("正在加载嵌入库...")
logger.debug(f"正在从文件{self.embedding_file_path}中加载{self.namespace}嵌入库")
data_frame = pd.read_parquet(self.embedding_file_path, engine="pyarrow")
total = len(data_frame)
with Progress(
SpinnerColumn(),
TextColumn("[progress.description]{task.description}"),
BarColumn(),
TaskProgressColumn(),
MofNCompleteColumn(),
"",
TimeElapsedColumn(),
"<",
TimeRemainingColumn(),
transient=False,
) as progress:
task = progress.add_task("加载嵌入库", total=total)
for _, row in data_frame.iterrows():
self.store[row["hash"]] = EmbeddingStoreItem(row["hash"], row["embedding"], row["str"])
progress.update(task, advance=1)
logger.info(f"{self.namespace}嵌入库加载成功")
try:
if os.path.exists(self.index_file_path):
logger.info(f"正在加载{self.namespace}嵌入库的FaissIndex...")
logger.debug(f"正在从文件{self.index_file_path}中加载{self.namespace}嵌入库的FaissIndex")
self.faiss_index = faiss.read_index(self.index_file_path)
logger.info(f"{self.namespace}嵌入库的FaissIndex加载成功")
else:
raise Exception(f"文件{self.index_file_path}不存在")
if os.path.exists(self.idx2hash_file_path):
logger.info(f"正在加载{self.namespace}嵌入库的idx2hash映射...")
logger.debug(f"正在从文件{self.idx2hash_file_path}中加载{self.namespace}嵌入库的idx2hash映射")
with open(self.idx2hash_file_path, "r") as f:
self.idx2hash = json.load(f)
logger.info(f"{self.namespace}嵌入库的idx2hash映射加载成功")
else:
raise Exception(f"文件{self.idx2hash_file_path}不存在")
except Exception as e:
logger.error(f"加载{self.namespace}嵌入库的FaissIndex时发生错误{e}")
logger.warning("正在重建Faiss索引")
self.build_faiss_index()
logger.info(f"{self.namespace}嵌入库的FaissIndex重建成功")
self.save_to_file()
def build_faiss_index(self) -> None:
"""重新构建Faiss索引以余弦相似度为度量"""
# 获取所有的embedding
array = []
self.idx2hash = dict()
for key in self.store:
array.append(self.store[key].embedding)
self.idx2hash[str(len(array) - 1)] = key
embeddings = np.array(array, dtype=np.float32)
# L2归一化
faiss.normalize_L2(embeddings)
# 构建索引
self.faiss_index = faiss.IndexFlatIP(global_config.lpmm_knowledge.embedding_dimension)
self.faiss_index.add(embeddings)
def search_top_k(self, query: List[float], k: int) -> List[Tuple[str, float]]:
"""搜索最相似的k个项以余弦相似度为度量
Args:
query: 查询的embedding
k: 返回的最相似的k个项
Returns:
result: 最相似的k个项的(hash, 余弦相似度)列表
"""
if self.faiss_index is None:
logger.debug("FaissIndex尚未构建,返回None")
return []
if self.idx2hash is None:
logger.warning("idx2hash尚未构建,返回None")
return []
# L2归一化
faiss.normalize_L2(np.array([query], dtype=np.float32))
# 搜索
distances, indices = self.faiss_index.search(np.array([query]), k)
# 整理结果
indices = list(indices.flatten())
distances = list(distances.flatten())
result = [
(self.idx2hash[str(int(idx))], float(sim))
for (idx, sim) in zip(indices, distances, strict=False)
if idx in range(len(self.idx2hash))
]
return result
class EmbeddingManager:
def __init__(self, max_workers: int = DEFAULT_MAX_WORKERS, chunk_size: int = DEFAULT_CHUNK_SIZE):
"""
初始化EmbeddingManager
Args:
max_workers: 最大线程数
chunk_size: 每个线程处理的数据块大小
"""
self.paragraphs_embedding_store = EmbeddingStore(
"paragraph", # type: ignore
EMBEDDING_DATA_DIR_STR,
max_workers=max_workers,
chunk_size=chunk_size,
)
self.entities_embedding_store = EmbeddingStore(
"entity", # type: ignore
EMBEDDING_DATA_DIR_STR,
max_workers=max_workers,
chunk_size=chunk_size,
)
self.relation_embedding_store = EmbeddingStore(
"relation", # type: ignore
EMBEDDING_DATA_DIR_STR,
max_workers=max_workers,
chunk_size=chunk_size,
)
self.stored_pg_hashes = set()
def check_all_embedding_model_consistency(self):
"""对所有嵌入库做模型一致性校验"""
return self.paragraphs_embedding_store.check_embedding_model_consistency()
def _store_pg_into_embedding(self, raw_paragraphs: Dict[str, str]):
"""将段落编码存入Embedding库"""
self.paragraphs_embedding_store.batch_insert_strs(list(raw_paragraphs.values()), times=1)
def _store_ent_into_embedding(self, triple_list_data: Dict[str, List[List[str]]]):
"""将实体编码存入Embedding库"""
entities = set()
for triple_list in triple_list_data.values():
for triple in triple_list:
entities.add(triple[0])
entities.add(triple[2])
self.entities_embedding_store.batch_insert_strs(list(entities), times=2)
def _store_rel_into_embedding(self, triple_list_data: Dict[str, List[List[str]]]):
"""将关系编码存入Embedding库"""
graph_triples = [] # a list of unique relation triple (in tuple) from all chunks
for triples in triple_list_data.values():
graph_triples.extend([tuple(t) for t in triples])
graph_triples = list(set(graph_triples))
self.relation_embedding_store.batch_insert_strs([str(triple) for triple in graph_triples], times=3)
def load_from_file(self):
"""从文件加载"""
self.paragraphs_embedding_store.load_from_file()
self.entities_embedding_store.load_from_file()
self.relation_embedding_store.load_from_file()
# 从段落库中获取已存储的hash
self.stored_pg_hashes = set(self.paragraphs_embedding_store.store.keys())
def store_new_data_set(
self,
raw_paragraphs: Dict[str, str],
triple_list_data: Dict[str, List[List[str]]],
):
if not self.check_all_embedding_model_consistency():
raise Exception("嵌入模型与本地存储不一致,请检查模型设置或清空嵌入库后重试。")
"""存储新的数据集"""
self._store_pg_into_embedding(raw_paragraphs)
self._store_ent_into_embedding(triple_list_data)
self._store_rel_into_embedding(triple_list_data)
self.stored_pg_hashes.update(raw_paragraphs.keys())
def save_to_file(self):
"""保存到文件"""
self.paragraphs_embedding_store.save_to_file()
self.entities_embedding_store.save_to_file()
self.relation_embedding_store.save_to_file()
def rebuild_faiss_index(self):
"""重建Faiss索引请在添加新数据后调用"""
self.paragraphs_embedding_store.build_faiss_index()
self.entities_embedding_store.build_faiss_index()
self.relation_embedding_store.build_faiss_index()