初始化

This commit is contained in:
雅诺狐
2025-08-11 19:34:18 +08:00
parent ff7d1177fa
commit 2d4745cd58
257 changed files with 69069 additions and 0 deletions

View File

@@ -0,0 +1,246 @@
# 🔧 工具组件详解
## 📖 什么是工具
工具是MaiBot的信息获取能力扩展组件。如果说Action组件功能五花八门可以拓展麦麦能做的事情那么Tool就是在某个过程中拓宽了麦麦能够获得的信息量。
### 🎯 工具的特点
- 🔍 **信息获取增强**:扩展麦麦获取外部信息的能力
- 📊 **数据丰富**:帮助麦麦获得更多背景信息和实时数据
- 🔌 **插件式架构**:支持独立开发和注册新工具
-**自动发现**:工具会被系统自动识别和注册
### 🆚 Tool vs Action vs Command 区别
| 特征 | Action | Command | Tool |
|-----|-------|---------|------|
| **主要用途** | 扩展麦麦行为能力 | 响应用户指令 | 扩展麦麦信息获取 |
| **触发方式** | 麦麦智能决策 | 用户主动触发 | LLM根据需要调用 |
| **目标** | 让麦麦做更多事情 | 提供具体功能 | 让麦麦知道更多信息 |
| **使用场景** | 增强交互体验 | 功能服务 | 信息查询和分析 |
## 🏗️ Tool组件的基本结构
每个工具必须继承 `BaseTool` 基类并实现以下属性和方法:
```python
from src.plugin_system import BaseTool, ToolParamType
class MyTool(BaseTool):
# 工具名称,必须唯一
name = "my_tool"
# 工具描述告诉LLM这个工具的用途
description = "这个工具用于获取特定类型的信息"
# 参数定义,仅定义参数
# 比如想要定义一个类似下面的openai格式的参数表则可以这么定义:
# {
# "type": "object",
# "properties": {
# "query": {
# "type": "string",
# "description": "查询参数"
# },
# "limit": {
# "type": "integer",
# "description": "结果数量限制"
# "enum": [10, 20, 50] # 可选值
# }
# },
# "required": ["query"]
# }
parameters = [
("query", ToolParamType.STRING, "查询参数", True, None), # 必填参数
("limit", ToolParamType.INTEGER, "结果数量限制", False, ["10", "20", "50"]) # 可选参数
]
available_for_llm = True # 是否对LLM可用
async def execute(self, function_args: Dict[str, Any]):
"""执行工具逻辑"""
# 实现工具功能
result = f"查询结果: {function_args.get('query')}"
return {
"name": self.name,
"content": result
}
```
### 属性说明
| 属性 | 类型 | 说明 |
|-----|------|------|
| `name` | str | 工具的唯一标识名称 |
| `description` | str | 工具功能描述帮助LLM理解用途 |
| `parameters` | list[tuple] | 参数定义 |
其构造而成的工具定义为:
```python
definition: Dict[str, Any] = {"name": cls.name, "description": cls.description, "parameters": cls.parameters}
```
### 方法说明
| 方法 | 参数 | 返回值 | 说明 |
|-----|------|--------|------|
| `execute` | `function_args` | `dict` | 执行工具核心逻辑 |
---
## 🎨 完整工具示例
完成一个天气查询工具
```python
from src.plugin_system import BaseTool
import aiohttp
import json
class WeatherTool(BaseTool):
"""天气查询工具 - 获取指定城市的实时天气信息"""
name = "weather_query"
description = "查询指定城市的实时天气信息,包括温度、湿度、天气状况等"
available_for_llm = True # 允许LLM调用此工具
parameters = [
("city", ToolParamType.STRING, "要查询天气的城市名称,如:北京、上海、纽约", True, None),
("country", ToolParamType.STRING, "国家代码CN、US可选参数", False, None)
]
async def execute(self, function_args: dict):
"""执行天气查询"""
try:
city = function_args.get("city")
country = function_args.get("country", "")
# 构建查询参数
location = f"{city},{country}" if country else city
# 调用天气API示例
weather_data = await self._fetch_weather(location)
# 格式化结果
result = self._format_weather_data(weather_data)
return {
"name": self.name,
"content": result
}
except Exception as e:
return {
"name": self.name,
"content": f"天气查询失败: {str(e)}"
}
async def _fetch_weather(self, location: str) -> dict:
"""获取天气数据"""
# 这里是示例实际需要接入真实的天气API
api_url = f"http://api.weather.com/v1/current?q={location}"
async with aiohttp.ClientSession() as session:
async with session.get(api_url) as response:
return await response.json()
def _format_weather_data(self, data: dict) -> str:
"""格式化天气数据"""
if not data:
return "暂无天气数据"
# 提取关键信息
city = data.get("location", {}).get("name", "未知城市")
temp = data.get("current", {}).get("temp_c", "未知")
condition = data.get("current", {}).get("condition", {}).get("text", "未知")
humidity = data.get("current", {}).get("humidity", "未知")
# 格式化输出
return f"""
🌤️ {city} 实时天气
━━━━━━━━━━━━━━━━━━
🌡️ 温度: {temp}°C
☁️ 天气: {condition}
💧 湿度: {humidity}%
━━━━━━━━━━━━━━━━━━
""".strip()
```
---
## 🚨 注意事项和限制
### 当前限制
1. **适用范围**:主要适用于信息获取场景
2. **配置要求**:必须开启工具处理器
### 开发建议
1. **功能专一**:每个工具专注单一功能
2. **参数明确**:清晰定义工具参数和用途
3. **错误处理**:完善的异常处理和错误反馈
4. **性能考虑**:避免长时间阻塞操作
5. **信息准确**:确保获取信息的准确性和时效性
## 🎯 最佳实践
### 1. 工具命名规范
#### ✅ 好的命名
```python
name = "weather_query" # 清晰表达功能
name = "knowledge_search" # 描述性强
name = "stock_price_check" # 功能明确
```
#### ❌ 避免的命名
```python
name = "tool1" # 无意义
name = "wq" # 过于简短
name = "weather_and_news" # 功能过于复杂
```
### 2. 描述规范
#### ✅ 良好的描述
```python
description = "查询指定城市的实时天气信息,包括温度、湿度、天气状况"
```
#### ❌ 避免的描述
```python
description = "天气" # 过于简单
description = "获取信息" # 不够具体
```
### 3. 参数设计
#### ✅ 合理的参数设计
```python
parameters = [
("city", ToolParamType.STRING, "城市名称,如:北京、上海", True, None),
("unit", ToolParamType.STRING, "温度单位celsius 或 fahrenheit", False, ["celsius", "fahrenheit"])
]
```
#### ❌ 避免的参数设计
```python
parameters = [
("data", "string", "数据", True) # 参数过于模糊
]
```
### 4. 结果格式化
#### ✅ 良好的结果格式
```python
def _format_result(self, data):
return f"""
🔍 查询结果
━━━━━━━━━━━━
📊 数据: {data['value']}
📅 时间: {data['timestamp']}
📝 说明: {data['description']}
━━━━━━━━━━━━
""".strip()
```
#### ❌ 避免的结果格式
```python
def _format_result(self, data):
return str(data) # 直接返回原始数据
```