初始化

This commit is contained in:
雅诺狐
2025-08-11 19:34:18 +08:00
parent ff7d1177fa
commit 2d4745cd58
257 changed files with 69069 additions and 0 deletions

51
docs/Bing.md Normal file
View File

@@ -0,0 +1,51 @@
- **参数化与动态调整聊天行为**:
-`NormalChatInstance``HeartFlowChatInstance` 中的关键行为参数(例如:回复概率、思考频率、兴趣度阈值、状态转换条件等)提取出来,使其更易于配置。
- 允许每个 `SubHeartflow` (即每个聊天场景) 拥有其独立的参数配置,实现"千群千面"。
- 开发机制,使得这些参数能够被动态调整:
- 基于外部反馈:例如,根据用户评价("话太多"或"太冷淡")调整回复频率。
- 基于环境分析:例如,根据群消息的活跃度自动调整参与度。
- 基于学习:通过分析历史交互数据,优化特定群聊下的行为模式。
- 目标是让 Mai 在不同群聊中展现出更适应环境、更个性化的交互风格。
- **动态 Prompt 生成与人格塑造**:
- 当前 Prompt (提示词) 相对静态。计划实现动态或半结构化的 Prompt 生成。
- Prompt 内容可根据以下因素调整:
- **人格特质**: 通过参数化配置(如友善度、严谨性等),影响 Prompt 的措辞、语气和思考倾向,塑造更稳定和独特的人格。
- **当前情绪**: 将实时情绪状态融入 Prompt使回复更符合当下心境。
- 目标:提升 `HeartFlowChatInstance` (HFC) 回复的多样性、一致性和真实感。
- 前置:需要重构 Prompt 构建逻辑,可能引入 `PromptBuilder` 并提供标准接口 (认为是必须步骤)。
- **增强工具调用能力 (Enhanced Tool Usage)**:
- 扩展 `HeartFlowChatInstance` (HFC) 可用的工具集。
- 考虑引入"元工具"或分层工具机制,允许 HFC 在需要时(如深度思考)访问更强大的工具,例如:
- 修改自身或其他 `SubHeartflow` 的聊天参数。
- 请求改变 Mai 的全局状态 (`MaiState`)。
- 管理日程或执行更复杂的分析任务。
- 目标:提升 HFC 的自主决策和行动能力,即使会增加一定的延迟。
- **标准化人设生成 (Standardized Persona Generation)**:
- **目标**: 解决手动配置 `人设` 文件缺乏标准、难以全面描述个性的问题,并生成更丰富、可操作的人格资源。
- **方法**: 利用大型语言模型 (LLM) 辅助生成标准化的、结构化的人格**资源包**。
- **生成内容**: 不仅生成描述性文本(替代现有 `individual` 配置),还可以同时生成与该人格配套的:
- **相关工具 (Tools)**: 该人格倾向于使用的工具或能力。
- **初始记忆/知识库 (Memories/Knowledge)**: 定义其背景和知识基础。
- **核心行为模式 (Core Behavior Patterns)**: 预置一些典型的行为方式,可作为行为学习的起点。
- **实现途径**:
- 通过与 LLM 的交互式对话来定义和细化人格及其配套资源。
- 让 LLM 分析提供的文本材料(如小说、背景故事)来提取人格特质和相关信息。
- **优势**: 替代易出错且标准不一的手动配置,生成更丰富、一致、包含配套资源且易于系统理解和应用的人格包。
- **探索高级记忆检索机制 (GE 系统概念):**
- 研究超越简单关键词/近期性检索的记忆模型。
- 考虑引入基于事件关联、相对时间线索和绝对时间锚点的检索方式。
- 可能涉及设计新的事件表示或记忆结构。
- **基于人格生成预设知识:**
- 开发利用 LLM 和人格配置生成背景知识的功能。
- 这些知识应符合角色的行为风格和可能的经历。
- 作为一种"冷启动"或丰富角色深度的方式。
1.更nb的工作记忆直接开一个play_ground通过llm进行内容检索这个play_ground可以容纳巨量信息并且十分通用化十分好。

88
docs/CONTRIBUTE.md Normal file
View File

@@ -0,0 +1,88 @@
# 如何给MaiCore做贡献v1.0
修改时间2025/4/5
如有修改建议或疑问请在github上建立issue
首先,非常感谢你抽出时间来做贡献!❤️
这份文档是告诉你当你想向MaiCore提交代码或者想要以其他形式加入MaiCore的开发或周边插件的开发你可以怎么做。
我们鼓励并重视任何形式的贡献,但无序的贡献只会使麦麦的维护与更新变成一团糟。因此,我们建议您在做出贡献之前,先查看本指南。
> 另外,如果您喜欢这个项目,但只是没有时间做贡献,那也没关系。还有其他简单的方式来支持本项目并表达您的感激之情,我们也会非常高兴:
> - 给我们点一颗小星星Star
> - 在您的项目的readme中引用这个项目
## 目录
● [我有问题](#我有问题)
● [我想做贡献](#我想做贡献)
● [我想提出建议](#提出建议)
## 我有问题
> 如果你想问一个问题,我们会假设你已经阅读了现有的文档。
在你提问之前,最好先搜索现有的[issue](/issues)看看是否有助于解决你的问题。如果你找到了匹配的issue但仍需要追加说明你可以在该issue下提出你的问题。同时我们还建议你先在互联网上搜索答案。
如果你仍然觉得有必要提问并需要进行说明,我们建议你:
● 开一个[新Issue](/issues/new)。并尽可能详细地描述你的问题。
● 提供尽可能多的上下文信息,让我们更好地理解你遇到的问题。比如:提供版本信息(哪个分支,版本号是多少,运行环境有哪些等),具体取决于你认为相关的内容。
只要你提出的issue明确且合理我们都会回复并尝试解决您的问题。
## 我想做贡献
> ### 项目所有权与维护
> MaiMBot项目现更名为MaiBot核心为MaiCore由千石可乐SengokuCola创建采用GPL3开源协议。
> MaiBot项目现已移动至MaiM-with-u组织下目前主要内容由核心开发组维护整体由核心开发组、reviewer和所有贡献者共同维护该部分在未来将会明确
> 为了保证设计的统一和节省不必要的精力,以及为了对项目有整体的把控,我们对不同类型的贡献采取不同的审核策略:
>
> #### 功能新增
> - 定义:涉及新功能添加、架构调整、重要模块重构等
> - 要求原则上暂不接收你可以发布issue提供新功能建议。
>
> #### Bug修复
> - 定义修复现有功能中的错误包括非预期行为需要发布issue进行确认和运行错误不涉及新功能或架构变动
> - 要求由核心组成员或2名及以上reviewer同时确认才会被合并
> - 关闭包含预期行为改动新功能破坏原有功能数据库破坏性改动等的pr将会被关闭
>
> #### 文档修补
> - 定义:修复现有文档中的错误,提供新的帮助文档
> - 要求现需要提交至组织下docs仓库由reviewer确认后合并
> ### 法律声明
> 当你为本项目贡献代码/文档时,你必须确认:
> 1. 你贡献的内容100%是由你创作;
> 2. 你对这些内容拥有相应的权利;
> 3. 你贡献的内容将按项目许可协议使用。
## 提出建议
这一部分指导您如何为MaiCore/MaiBot提交一个建议包括全新的功能和对现有功能的小改进。遵循这些指南将有助于维护人员和社区了解您的建议并找到相关的建议。
在提交建议之前
● 请确保您正在使用最新版本正式版请查看main分支测试版查看dev分支
● 请确保您已经阅读了文档,以确认您的建议是否已经被实现,也许是通过单独的配置。
● 仔细阅读文档并了解项目目前是否支持该功能,也许可以通过单独的配置来实现。
● 进行一番[搜索](/issues)以查看是否已经有人提出了这个建议。如果有请在现有的issue下添加评论而不是新开一个issue。
● 请确保您的建议符合项目的范围和目标。你需要提出一个强有力的理由来说服项目的开发者这个功能的优点。请记住,我们希望的功能是对大多数用户有用的,而不仅仅是少数用户。如果你只是针对少数用户,请考虑编写一个插件。
### 附(暂定):
核心组成员:@SengokuCola @tcmofashi @Rikki-Zero
reviewer核心组+MaiBot主仓库合作者/权限者
贡献者:所有提交过贡献的用户

BIN
docs/image-1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

BIN
docs/image.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.9 KiB

View File

@@ -0,0 +1,333 @@
# 模型配置指南
本文档将指导您如何配置 `model_config.toml` 文件,该文件用于配置 MaiBot 的各种AI模型和API服务提供商。
## 配置文件结构
配置文件主要包含以下几个部分:
- 版本信息
- API服务提供商配置
- 模型配置
- 模型任务配置
## 1. 版本信息
```toml
[inner]
version = "1.1.1"
```
用于标识配置文件的版本,遵循语义化版本规则。
## 2. API服务提供商配置
### 2.1 基本配置
使用 `[[api_providers]]` 数组配置多个API服务提供商
```toml
[[api_providers]]
name = "DeepSeek" # 服务商名称(自定义)
base_url = "https://api.deepseek.cn/v1" # API服务的基础URL
api_key = "your-api-key-here" # API密钥
client_type = "openai" # 客户端类型
max_retry = 2 # 最大重试次数
timeout = 30 # 超时时间(秒)
retry_interval = 10 # 重试间隔(秒)
```
### 2.2 配置参数说明
| 参数 | 必填 | 说明 | 默认值 |
|------|------|------|--------|
| `name` | ✅ | 服务商名称,需要在模型配置中引用 | - |
| `base_url` | ✅ | API服务的基础URL | - |
| `api_key` | ✅ | API密钥请替换为实际密钥 | - |
| `client_type` | ❌ | 客户端类型:`openai`OpenAI格式`gemini`Gemini格式现在支持不良好 | `openai` |
| `max_retry` | ❌ | API调用失败时的最大重试次数 | 2 |
| `timeout` | ❌ | API请求超时时间 | 30 |
| `retry_interval` | ❌ | 重试间隔时间(秒) | 10 |
**请注意,对于`client_type`为`gemini`的模型,`base_url`字段无效。**
### 2.3 支持的服务商示例
#### DeepSeek
```toml
[[api_providers]]
name = "DeepSeek"
base_url = "https://api.deepseek.cn/v1"
api_key = "your-deepseek-api-key"
client_type = "openai"
```
#### SiliconFlow
```toml
[[api_providers]]
name = "SiliconFlow"
base_url = "https://api.siliconflow.cn/v1"
api_key = "your-siliconflow-api-key"
client_type = "openai"
```
#### Google Gemini
```toml
[[api_providers]]
name = "Google"
base_url = "https://api.google.com/v1"
api_key = "your-google-api-key"
client_type = "gemini" # 注意Gemini需要使用特殊客户端
```
## 3. 模型配置
### 3.1 基本模型配置
使用 `[[models]]` 数组配置多个模型:
```toml
[[models]]
model_identifier = "deepseek-chat" # 模型在API服务商中的标识符
name = "deepseek-v3" # 自定义模型名称
api_provider = "DeepSeek" # 引用的API服务商名称
price_in = 2.0 # 输入价格(元/M token
price_out = 8.0 # 输出价格(元/M token
```
### 3.2 高级模型配置
#### 强制流式输出
对于不支持非流式输出的模型:
```toml
[[models]]
model_identifier = "some-model"
name = "custom-name"
api_provider = "Provider"
force_stream_mode = true # 启用强制流式输出
```
#### 额外参数配置`extra_params`
```toml
[[models]]
model_identifier = "Qwen/Qwen3-8B"
name = "qwen3-8b"
api_provider = "SiliconFlow"
[models.extra_params]
enable_thinking = false # 禁用思考
```
这里的 `extra_params` 可以包含任何API服务商支持的额外参数配置**配置时应参考相应的API文档**。
比如上面就是参考SiliconFlow的文档配置配置的`Qwen3`禁用思考参数。
![SiliconFlow文档截图](image-1.png)
以豆包文档为另一个例子
![豆包文档截图](image.png)
得到豆包`"doubao-seed-1-6-250615"`的禁用思考配置方法为
```toml
[[models]]
# 你的模型
[models.extra_params]
thinking = {type = "disabled"} # 禁用思考
```
请注意,`extra_params` 的配置应该构成一个合法的TOML字典结构具体内容取决于API服务商的要求。
**请注意,对于`client_type`为`gemini`的模型,此字段无效。**
### 3.3 配置参数说明
| 参数 | 必填 | 说明 |
|------|------|------|
| `model_identifier` | ✅ | API服务商提供的模型标识符 |
| `name` | ✅ | 自定义模型名称,用于在任务配置中引用 |
| `api_provider` | ✅ | 对应的API服务商名称 |
| `price_in` | ❌ | 输入价格(元/M token用于成本统计 |
| `price_out` | ❌ | 输出价格(元/M token用于成本统计 |
| `force_stream_mode` | ❌ | 是否强制使用流式输出 |
| `extra_params` | ❌ | 额外的模型参数配置 |
## 4. 模型任务配置
### utils - 工具模型
用于表情包模块、取名模块、关系模块等核心功能:
```toml
[model_task_config.utils]
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.2
max_tokens = 800
```
### utils_small - 小型工具模型
用于高频率调用的场景,建议使用速度快的小模型:
```toml
[model_task_config.utils_small]
model_list = ["qwen3-8b"]
temperature = 0.7
max_tokens = 800
```
### replyer_1 - 主要回复模型
首要回复模型,也用于表达器和表达方式学习:
```toml
[model_task_config.replyer_1]
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.2
max_tokens = 800
```
### replyer_2 - 次要回复模型
```toml
[model_task_config.replyer_2]
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.7
max_tokens = 800
```
### planner - 决策模型
负责决定MaiBot该做什么
```toml
[model_task_config.planner]
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.3
max_tokens = 800
```
### emotion - 情绪模型
负责MaiBot的情绪变化
```toml
[model_task_config.emotion]
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.3
max_tokens = 800
```
### memory - 记忆模型
```toml
[model_task_config.memory]
model_list = ["qwen3-30b"]
temperature = 0.7
max_tokens = 800
```
### vlm - 视觉语言模型
用于图像识别:
```toml
[model_task_config.vlm]
model_list = ["qwen2.5-vl-72b"]
max_tokens = 800
```
### voice - 语音识别模型
```toml
[model_task_config.voice]
model_list = ["sensevoice-small"]
```
### embedding - 嵌入模型
```toml
[model_task_config.embedding]
model_list = ["bge-m3"]
```
### tool_use - 工具调用模型
需要使用支持工具调用的模型:
```toml
[model_task_config.tool_use]
model_list = ["qwen3-14b"]
temperature = 0.7
max_tokens = 800
```
### lpmm_entity_extract - 实体提取模型
```toml
[model_task_config.lpmm_entity_extract]
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.2
max_tokens = 800
```
### lpmm_rdf_build - RDF构建模型
```toml
[model_task_config.lpmm_rdf_build]
model_list = ["siliconflow-deepseek-v3"]
temperature = 0.2
max_tokens = 800
```
### lpmm_qa - 问答模型
```toml
[model_task_config.lpmm_qa]
model_list = ["deepseek-r1-distill-qwen-32b"]
temperature = 0.7
max_tokens = 800
```
## 5. 配置建议
### 5.1 Temperature 参数选择
| 任务类型 | 推荐温度 | 说明 |
|----------|----------|------|
| 精确任务(工具调用、实体提取) | 0.1-0.3 | 需要准确性和一致性 |
| 创意任务(对话、记忆) | 0.5-0.8 | 需要多样性和创造性 |
| 平衡任务(决策、情绪) | 0.3-0.5 | 平衡准确性和灵活性 |
### 5.2 模型选择建议
| 任务类型 | 推荐模型类型 | 示例 |
|----------|--------------|------|
| 高精度任务 | 大模型 | DeepSeek-V3, GPT-4 |
| 高频率任务 | 小模型 | Qwen3-8B |
| 多模态任务 | 专用模型 | Qwen2.5-VL, SenseVoice |
| 工具调用 | 支持Function Call的模型 | Qwen3-14B |
### 5.3 成本优化
1. **分层使用**:核心功能使用高质量模型,辅助功能使用经济模型
2. **合理配置max_tokens**:根据实际需求设置,避免浪费
3. **选择免费模型**对于测试环境优先使用price为0的模型
## 6. 配置验证
### 6.1 必要检查项
1. ✅ API密钥是否正确配置
2. ✅ 模型标识符是否与API服务商提供的一致
3. ✅ 任务配置中引用的模型名称是否在models中定义
4. ✅ 多模态任务是否配置了对应的专用模型
### 6.2 测试配置
建议在正式使用前:
1. 使用少量测试数据验证配置
2. 检查API调用是否正常
3. 确认成本统计功能正常工作
## 7. 故障排除
### 7.1 常见问题
**问题1**: API调用失败
- 检查API密钥是否正确
- 确认base_url是否可访问
- 检查模型标识符是否正确
**问题2**: 模型未找到
- 确认模型名称在任务配置和模型定义中一致
- 检查api_provider名称是否匹配
**问题3**: 响应异常
- 检查温度参数是否合理0-1之间
- 确认max_tokens设置是否合适
- 验证模型是否支持所需功能
### 7.2 日志查看
查看 `logs/` 目录下的日志文件,寻找相关错误信息。
## 8. 更新和维护
1. **定期更新**: 关注API服务商的模型更新及时调整配置
2. **性能监控**: 监控模型调用的成本和性能
3. **备份配置**: 在修改前备份当前配置文件

View File

@@ -0,0 +1,297 @@
# ⚡ Action组件详解
## 📖 什么是Action
Action是给麦麦在回复之外提供额外功能的智能组件**由麦麦的决策系统自主选择是否使用**具有随机性和拟人化的调用特点。Action不是直接响应用户命令而是让麦麦根据聊天情境智能地选择合适的动作使其行为更加自然和真实。
### Action的特点
- 🧠 **智能激活**:麦麦根据多种条件智能判断是否使用
- 🎲 **可随机性**:可以使用随机数激活,增加行为的不可预测性,更接近真人交流
- 🤖 **拟人化**:让麦麦的回应更自然、更有个性
- 🔄 **情境感知**:基于聊天上下文做出合适的反应
---
## 🎯 Action组件的基本结构
首先所有的Action都应该继承`BaseAction`类。
其次每个Action组件都应该实现以下基本信息
```python
class ExampleAction(BaseAction):
action_name = "example_action" # 动作的唯一标识符
action_description = "这是一个示例动作" # 动作描述
activation_type = ActionActivationType.ALWAYS # 这里以 ALWAYS 为例
mode_enable = ChatMode.ALL # 一般取ALL表示在所有聊天模式下都可用
associated_types = ["text", "emoji", ...] # 关联类型
parallel_action = False # 是否允许与其他Action并行执行
action_parameters = {"param1": "参数1的说明", "param2": "参数2的说明", ...}
# Action使用场景描述 - 帮助LLM判断何时"选择"使用
action_require = ["使用场景描述1", "使用场景描述2", ...]
async def execute(self) -> Tuple[bool, str]:
"""
执行Action的主要逻辑
Returns:
Tuple[bool, str]: (是否成功, 执行结果描述)
"""
# ---- 执行动作的逻辑 ----
return True, "执行成功"
```
#### associated_types: 该Action会发送的消息类型例如文本、表情等。
这部分由Adapter传递给处理器。
以 MaiBot-Napcat-Adapter 为例,可选项目如下:
| 类型 | 说明 | 格式 |
| --- | --- | --- |
| text | 文本消息 | str |
| emoji | 表情消息 | str: 表情包的无头base64|
| image | 图片消息 | str: 图片的无头base64 |
| reply | 回复消息 | str: 回复的消息ID |
| voice | 语音消息 | str: wav格式语音的无头base64 |
| command | 命令消息 | 参见Adapter文档 |
| voiceurl | 语音URL消息 | str: wav格式语音的URL |
| music | 音乐消息 | str: 这首歌在网易云音乐的音乐id |
| videourl | 视频URL消息 | str: 视频的URL |
| file | 文件消息 | str: 文件的路径 |
**请知悉,对于不同的处理器,其支持的消息类型可能会有所不同。在开发时请注意。**
#### action_parameters: 该Action的参数说明。
这是一个字典键为参数名值为参数说明。这个字段可以帮助LLM理解如何使用这个Action并由LLM返回对应的参数最后传递到 Action 的 **`action_data`** 属性中。其格式与你定义的格式完全相同 **除非LLM哈气了返回了错误的内容**。
---
## 🎯 Action 调用的决策机制
Action采用**两层决策机制**来优化性能和决策质量:
> 设计目的在加载许多插件的时候降低LLM决策压力避免让麦麦在过多的选项中纠结。
**第一层激活控制Activation Control**
激活决定麦麦是否 **“知道”** 这个Action的存在即这个Action是否进入决策候选池。不被激活的Action麦麦永远不会选择。
**第二层使用决策Usage Decision**
在Action被激活后使用条件决定麦麦什么时候会 **“选择”** 使用这个Action。
### 决策参数详解 🔧
#### 第一层ActivationType 激活类型说明
| 激活类型 | 说明 | 使用场景 |
| ----------- | ---------------------------------------- | ---------------------- |
| [`NEVER`](#never-激活) | 从不激活Action对麦麦不可见 | 临时禁用某个Action |
| [`ALWAYS`](#always-激活) | 永远激活Action总是在麦麦的候选池中 | 核心功能,如回复、不回复 |
| [`LLM_JUDGE`](#llm_judge-激活) | 通过LLM智能判断当前情境是否需要激活此Action | 需要智能判断的复杂场景 |
| `RANDOM` | 基于随机概率决定是否激活 | 增加行为随机性的功能 |
| `KEYWORD` | 当检测到特定关键词时激活 | 明确触发条件的功能 |
#### `NEVER` 激活
`ActionActivationType.NEVER` 会使得 Action 永远不会被激活
```python
class DisabledAction(BaseAction):
activation_type = ActionActivationType.NEVER # 永远不激活
async def execute(self) -> Tuple[bool, str]:
# 这个Action永远不会被执行
return False, "这个Action被禁用"
```
#### `ALWAYS` 激活
`ActionActivationType.ALWAYS` 会使得 Action 永远会被激活,即一直在 Action 候选池中
这种激活方式常用于核心功能,如回复或不回复。
```python
class AlwaysActivatedAction(BaseAction):
activation_type = ActionActivationType.ALWAYS # 永远激活
async def execute(self) -> Tuple[bool, str]:
# 执行核心功能
return True, "执行了核心功能"
```
#### `LLM_JUDGE` 激活
`ActionActivationType.LLM_JUDGE`会使得这个 Action 根据 LLM 的判断来决定是否加入候选池。
而 LLM 的判断是基于代码中预设的`llm_judge_prompt`和自动提供的聊天上下文进行的。
因此使用此种方法需要实现`llm_judge_prompt`属性。
```python
class LLMJudgedAction(BaseAction):
activation_type = ActionActivationType.LLM_JUDGE # 通过LLM判断激活
# LLM判断提示词
llm_judge_prompt = (
"判定是否需要使用这个动作的条件:\n"
"1. 用户希望调用XXX这个动作\n"
"...\n"
"请回答\"\"\"\"\n"
)
async def execute(self) -> Tuple[bool, str]:
# 根据LLM判断是否执行
return True, "执行了LLM判断功能"
```
#### `RANDOM` 激活
`ActionActivationType.RANDOM`会使得这个 Action 根据随机概率决定是否加入候选池。
概率则由代码中的`random_activation_probability`控制。在内部实现中我们使用了`random.random()`来生成一个0到1之间的随机数并与这个概率进行比较。
因此使用这个方法需要实现`random_activation_probability`属性。
```python
class SurpriseAction(BaseAction):
activation_type = ActionActivationType.RANDOM # 基于随机概率激活
# 随机激活概率
random_activation_probability = 0.1 # 10%概率激活
async def execute(self) -> Tuple[bool, str]:
# 执行惊喜动作
return True, "发送了惊喜内容"
```
#### `KEYWORD` 激活
`ActionActivationType.KEYWORD`会使得这个 Action 在检测到特定关键词时激活。
关键词由代码中的`activation_keywords`定义,而`keyword_case_sensitive`则控制关键词匹配时是否区分大小写。在内部实现中,我们使用了`in`操作符来检查消息内容是否包含这些关键词。
因此,使用此种方法需要实现`activation_keywords``keyword_case_sensitive`属性。
```python
class GreetingAction(BaseAction):
activation_type = ActionActivationType.KEYWORD # 关键词激活
activation_keywords = ["你好", "hello", "hi", "嗨"] # 关键词配置
keyword_case_sensitive = False # 不区分大小写
async def execute(self) -> Tuple[bool, str]:
# 执行问候逻辑
return True, "发送了问候"
```
一个完整的使用`ActionActivationType.KEYWORD`的例子请参考`plugins/hello_world_plugin`中的`ByeAction`
#### 第二层:使用决策
**在Action被激活后使用条件决定麦麦什么时候会"选择"使用这个Action**
这一层由以下因素综合决定:
- `action_require`使用场景描述帮助LLM判断何时选择
- `action_parameters`所需参数影响Action的可执行性
- 当前聊天上下文和麦麦的决策逻辑
---
### 决策流程示例
```python
class EmojiAction(BaseAction):
# 第一层:激活控制
activation_type = ActionActivationType.RANDOM # 随机激活
random_activation_probability = 0.1 # 10%概率激活
# 第二层:使用决策
action_require = [
"表达情绪时可以选择使用",
"增加聊天趣味性",
"不要连续发送多个表情"
]
```
**决策流程**
1. **第一层激活判断**
- 使用随机数进行决策,当`random.random() < self.random_activation_probability`时,麦麦才"知道"可以使用这个Action
2. **第二层使用决策**
- 即使Action被激活麦麦还会根据 `action_require` 中的条件判断是否真正选择使用
- 例如:如果刚刚已经发过表情,根据"不要连续发送多个表情"的要求麦麦可能不会选择这个Action
---
## Action 内置属性说明
```python
class BaseAction:
def __init__(self):
# 消息相关属性
self.log_prefix: str # 日志前缀
self.group_id: str # 群组ID
self.group_name: str # 群组名称
self.user_id: str # 用户ID
self.user_nickname: str # 用户昵称
self.platform: str # 平台类型 (qq, telegram等)
self.chat_id: str # 聊天ID
self.chat_stream: ChatStream # 聊天流对象
self.is_group: bool # 是否群聊
# 消息体
self.action_message: dict # 消息数据
# Action相关属性
self.action_data: dict # Action执行时的数据
self.thinking_id: str # 思考ID
```
action_message为一个字典包含的键值对如下省略了不必要的键值对
```python
{
"message_id": "1234567890", # 消息idstr
"time": 1627545600.0, # 时间戳float
"chat_id": "abcdef123456", # 聊天IDstr
"reply_to": None, # 回复消息idstr或None
"interest_value": 0.85, # 兴趣值float
"is_mentioned": True, # 是否被提及bool
"chat_info_last_active_time": 1627548600.0, # 最后活跃时间float
"processed_plain_text": None, # 处理后的文本str或None
"additional_config": None, # Adapter传来的additional_configdict或None
"is_emoji": False, # 是否为表情bool
"is_picid": False, # 是否为图片IDbool
"is_command": False # 是否为命令bool
}
```
部分值的格式请自行查询数据库。
---
## Action 内置方法说明
```python
class BaseAction:
def get_config(self, key: str, default=None):
"""获取插件配置值,使用嵌套键访问"""
async def wait_for_new_message(self, timeout: int = 1200) -> Tuple[bool, str]:
"""等待新消息或超时"""
async def send_text(self, content: str, reply_to: str = "", reply_to_platform_id: str = "", typing: bool = False) -> bool:
"""发送文本消息"""
async def send_emoji(self, emoji_base64: str) -> bool:
"""发送表情包"""
async def send_image(self, image_base64: str) -> bool:
"""发送图片"""
async def send_custom(self, message_type: str, content: str, typing: bool = False, reply_to: str = "") -> bool:
"""发送自定义类型消息"""
async def store_action_info(self, action_build_into_prompt: bool = False, action_prompt_display: str = "", action_done: bool = True) -> None:
"""存储动作信息到数据库"""
async def send_command(self, command_name: str, args: Optional[dict] = None, display_message: str = "", storage_message: bool = True) -> bool:
"""发送命令消息"""
```
具体参数与用法参见`BaseAction`基类的定义。

View File

@@ -0,0 +1,130 @@
# 聊天API
聊天API模块专门负责聊天信息的查询和管理帮助插件获取和管理不同的聊天流。
## 导入方式
```python
from src.plugin_system import chat_api
# 或者
from src.plugin_system.apis import chat_api
```
一种**Deprecated**方式:
```python
from src.plugin_system.apis.chat_api import ChatManager
```
## 主要功能
### 1. 获取所有的聊天流
```python
def get_all_streams(platform: Optional[str] | SpecialTypes = "qq") -> List[ChatStream]:
```
**Args**:
- `platform`:平台筛选,默认为"qq",可以使用`SpecialTypes`枚举类中的`SpecialTypes.ALL_PLATFORMS`来获取所有平台的聊天流。
**Returns**:
- `List[ChatStream]`:聊天流列表
### 2. 获取群聊聊天流
```python
def get_group_streams(platform: Optional[str] | SpecialTypes = "qq") -> List[ChatStream]:
```
**Args**:
- `platform`:平台筛选,默认为"qq",可以使用`SpecialTypes`枚举类中的`SpecialTypes.ALL_PLATFORMS`来获取所有平台的群聊流。
**Returns**:
- `List[ChatStream]`:群聊聊天流列表
### 3. 获取私聊聊天流
```python
def get_private_streams(platform: Optional[str] | SpecialTypes = "qq") -> List[ChatStream]:
```
**Args**:
- `platform`:平台筛选,默认为"qq",可以使用`SpecialTypes`枚举类中的`SpecialTypes.ALL_PLATFORMS`来获取所有平台的私聊流。
**Returns**:
- `List[ChatStream]`:私聊聊天流列表
### 4. 根据群ID获取聊天流
```python
def get_stream_by_group_id(group_id: str, platform: Optional[str] | SpecialTypes = "qq") -> Optional[ChatStream]:
```
**Args**:
- `group_id`群聊ID
- `platform`:平台筛选,默认为"qq",可以使用`SpecialTypes`枚举类中的`SpecialTypes.ALL_PLATFORMS`来获取所有平台的群聊流。
**Returns**:
- `Optional[ChatStream]`聊天流对象如果未找到返回None
### 5. 根据用户ID获取私聊流
```python
def get_stream_by_user_id(user_id: str, platform: Optional[str] | SpecialTypes = "qq") -> Optional[ChatStream]:
```
**Args**:
- `user_id`用户ID
- `platform`:平台筛选,默认为"qq",可以使用`SpecialTypes`枚举类中的`SpecialTypes.ALL_PLATFORMS`来获取所有平台的私聊流。
**Returns**:
- `Optional[ChatStream]`聊天流对象如果未找到返回None
### 6. 获取聊天流类型
```python
def get_stream_type(chat_stream: ChatStream) -> str:
```
**Args**:
- `chat_stream`:聊天流对象
**Returns**:
- `str`:聊天流类型,可能的值包括`private`(私聊流),`group`(群聊流)以及`unknown`(未知类型)。
### 7. 获取聊天流信息
```python
def get_stream_info(chat_stream: ChatStream) -> Dict[str, Any]:
```
**Args**:
- `chat_stream`:聊天流对象
**Returns**:
- `Dict[str, Any]`:聊天流的详细信息,包括但不限于:
- `stream_id`聊天流ID
- `platform`:平台名称
- `type`:聊天流类型
- `group_id`群聊ID
- `group_name`:群聊名称
- `user_id`用户ID
- `user_name`:用户名称
### 8. 获取聊天流统计摘要
```python
def get_streams_summary() -> Dict[str, int]:
```
**Returns**:
- `Dict[str, int]`:聊天流统计信息摘要,包含以下键:
- `total_streams`:总聊天流数量
- `group_streams`:群聊流数量
- `private_streams`:私聊流数量
- `qq_streams`QQ平台流数量
## 注意事项
1. 大部分函数在参数不合法时候会抛出异常,请确保你的程序进行了捕获。
2. `ChatStream`对象包含了聊天的完整信息,包括用户信息、群信息等。

View File

@@ -0,0 +1,194 @@
# 组件管理API
组件管理API模块提供了对插件组件的查询和管理功能使得插件能够获取和使用组件相关的信息。
## 导入方式
```python
from src.plugin_system.apis import component_manage_api
# 或者
from src.plugin_system import component_manage_api
```
## 功能概述
组件管理API主要提供以下功能
- **插件信息查询** - 获取所有插件或指定插件的信息。
- **组件查询** - 按名称或类型查询组件信息。
- **组件管理** - 启用或禁用组件,支持全局和局部操作。
## 主要功能
### 1. 获取所有插件信息
```python
def get_all_plugin_info() -> Dict[str, PluginInfo]:
```
获取所有插件的信息。
**Returns:**
- `Dict[str, PluginInfo]` - 包含所有插件信息的字典,键为插件名称,值为 `PluginInfo` 对象。
### 2. 获取指定插件信息
```python
def get_plugin_info(plugin_name: str) -> Optional[PluginInfo]:
```
获取指定插件的信息。
**Args:**
- `plugin_name` (str): 插件名称。
**Returns:**
- `Optional[PluginInfo]`: 插件信息对象,如果插件不存在则返回 `None`
### 3. 获取指定组件信息
```python
def get_component_info(component_name: str, component_type: ComponentType) -> Optional[Union[CommandInfo, ActionInfo, EventHandlerInfo]]:
```
获取指定组件的信息。
**Args:**
- `component_name` (str): 组件名称。
- `component_type` (ComponentType): 组件类型。
**Returns:**
- `Optional[Union[CommandInfo, ActionInfo, EventHandlerInfo]]`: 组件信息对象,如果组件不存在则返回 `None`
### 4. 获取指定类型的所有组件信息
```python
def get_components_info_by_type(component_type: ComponentType) -> Dict[str, Union[CommandInfo, ActionInfo, EventHandlerInfo]]:
```
获取指定类型的所有组件信息。
**Args:**
- `component_type` (ComponentType): 组件类型。
**Returns:**
- `Dict[str, Union[CommandInfo, ActionInfo, EventHandlerInfo]]`: 包含指定类型组件信息的字典,键为组件名称,值为对应的组件信息对象。
### 5. 获取指定类型的所有启用的组件信息
```python
def get_enabled_components_info_by_type(component_type: ComponentType) -> Dict[str, Union[CommandInfo, ActionInfo, EventHandlerInfo]]:
```
获取指定类型的所有启用的组件信息。
**Args:**
- `component_type` (ComponentType): 组件类型。
**Returns:**
- `Dict[str, Union[CommandInfo, ActionInfo, EventHandlerInfo]]`: 包含指定类型启用组件信息的字典,键为组件名称,值为对应的组件信息对象。
### 6. 获取指定 Action 的注册信息
```python
def get_registered_action_info(action_name: str) -> Optional[ActionInfo]:
```
获取指定 Action 的注册信息。
**Args:**
- `action_name` (str): Action 名称。
**Returns:**
- `Optional[ActionInfo]` - Action 信息对象,如果 Action 不存在则返回 `None`
### 7. 获取指定 Command 的注册信息
```python
def get_registered_command_info(command_name: str) -> Optional[CommandInfo]:
```
获取指定 Command 的注册信息。
**Args:**
- `command_name` (str): Command 名称。
**Returns:**
- `Optional[CommandInfo]` - Command 信息对象,如果 Command 不存在则返回 `None`
### 8. 获取指定 Tool 的注册信息
```python
def get_registered_tool_info(tool_name: str) -> Optional[ToolInfo]:
```
获取指定 Tool 的注册信息。
**Args:**
- `tool_name` (str): Tool 名称。
**Returns:**
- `Optional[ToolInfo]` - Tool 信息对象,如果 Tool 不存在则返回 `None`
### 9. 获取指定 EventHandler 的注册信息
```python
def get_registered_event_handler_info(event_handler_name: str) -> Optional[EventHandlerInfo]:
```
获取指定 EventHandler 的注册信息。
**Args:**
- `event_handler_name` (str): EventHandler 名称。
**Returns:**
- `Optional[EventHandlerInfo]` - EventHandler 信息对象,如果 EventHandler 不存在则返回 `None`
### 10. 全局启用指定组件
```python
def globally_enable_component(component_name: str, component_type: ComponentType) -> bool:
```
全局启用指定组件。
**Args:**
- `component_name` (str): 组件名称。
- `component_type` (ComponentType): 组件类型。
**Returns:**
- `bool` - 启用成功返回 `True`,否则返回 `False`
### 11. 全局禁用指定组件
```python
async def globally_disable_component(component_name: str, component_type: ComponentType) -> bool:
```
全局禁用指定组件。
**此函数是异步的,确保在异步环境中调用。**
**Args:**
- `component_name` (str): 组件名称。
- `component_type` (ComponentType): 组件类型。
**Returns:**
- `bool` - 禁用成功返回 `True`,否则返回 `False`
### 12. 局部启用指定组件
```python
def locally_enable_component(component_name: str, component_type: ComponentType, stream_id: str) -> bool:
```
局部启用指定组件。
**Args:**
- `component_name` (str): 组件名称。
- `component_type` (ComponentType): 组件类型。
- `stream_id` (str): 消息流 ID。
**Returns:**
- `bool` - 启用成功返回 `True`,否则返回 `False`
### 13. 局部禁用指定组件
```python
def locally_disable_component(component_name: str, component_type: ComponentType, stream_id: str) -> bool:
```
局部禁用指定组件。
**Args:**
- `component_name` (str): 组件名称。
- `component_type` (ComponentType): 组件类型。
- `stream_id` (str): 消息流 ID。
**Returns:**
- `bool` - 禁用成功返回 `True`,否则返回 `False`
### 14. 获取指定消息流中禁用的组件列表
```python
def get_locally_disabled_components(stream_id: str, component_type: ComponentType) -> list[str]:
```
获取指定消息流中禁用的组件列表。
**Args:**
- `stream_id` (str): 消息流 ID。
- `component_type` (ComponentType): 组件类型。
**Returns:**
- `list[str]` - 禁用的组件名称列表。

View File

@@ -0,0 +1,52 @@
# 配置API
配置API模块提供了配置读取功能让插件能够安全地访问全局配置和插件配置。
## 导入方式
```python
from src.plugin_system.apis import config_api
# 或者
from src.plugin_system import config_api
```
## 主要功能
### 1. 访问全局配置
```python
def get_global_config(key: str, default: Any = None) -> Any:
```
**Args**:
- `key`: 命名空间式配置键名,使用嵌套访问,如 "section.subsection.key",大小写敏感
- `default`: 如果配置不存在时返回的默认值
**Returns**:
- `Any`: 配置值或默认值
#### 示例:
获取机器人昵称
```python
bot_name = config_api.get_global_config("bot.nickname", "MaiBot")
```
### 2. 获取插件配置
```python
def get_plugin_config(plugin_config: dict, key: str, default: Any = None) -> Any:
```
**Args**:
- `plugin_config`: 插件配置字典
- `key`: 配置键名,支持嵌套访问如 "section.subsection.key",大小写敏感
- `default`: 如果配置不存在时返回的默认值
**Returns**:
- `Any`: 配置值或默认值
## 注意事项
1. **只读访问**配置API只提供读取功能插件不能修改全局配置
2. **错误处理**:所有函数都有错误处理,失败时会记录日志并返回默认值
3. **安全性**插件通过此API访问配置是安全和隔离的
4. **性能**:频繁访问的配置建议在插件初始化时获取并缓存

View File

@@ -0,0 +1,216 @@
# 数据库API
数据库API模块提供通用的数据库操作功能支持查询、创建、更新和删除记录采用Peewee ORM模型。
## 导入方式
```python
from src.plugin_system.apis import database_api
# 或者
from src.plugin_system import database_api
```
## 主要功能
### 1. 通用数据库操作
```python
async def db_query(
model_class: Type[Model],
data: Optional[Dict[str, Any]] = None,
query_type: Optional[str] = "get",
filters: Optional[Dict[str, Any]] = None,
limit: Optional[int] = None,
order_by: Optional[List[str]] = None,
single_result: Optional[bool] = False,
) -> Union[List[Dict[str, Any]], Dict[str, Any], None]:
```
执行数据库查询操作的通用接口。
**Args:**
- `model_class`: Peewee模型类。
- Peewee模型类可以在`src.common.database.database_model`模块中找到,如`ActionRecords``Messages`等。
- `data`: 用于创建或更新的数据
- `query_type`: 查询类型
- 可选值: `get`, `create`, `update`, `delete`, `count`
- `filters`: 过滤条件字典,键为字段名,值为要匹配的值。
- `limit`: 限制结果数量。
- `order_by`: 排序字段列表,使用字段名,前缀'-'表示降序。
- 排序字段,前缀`-`表示降序,例如`-time`表示按时间字段(即`time`字段)降序
- `single_result`: 是否只返回单个结果。
**Returns:**
- 根据查询类型返回不同的结果:
- `get`: 返回查询结果列表或单个结果。(如果 `single_result=True`
- `create`: 返回创建的记录。
- `update`: 返回受影响的行数。
- `delete`: 返回受影响的行数。
- `count`: 返回记录数量。
#### 示例
1. 查询最近10条消息
```python
messages = await database_api.db_query(
Messages,
query_type="get",
filters={"chat_id": chat_stream.stream_id},
limit=10,
order_by=["-time"]
)
```
2. 创建一条记录
```python
new_record = await database_api.db_query(
ActionRecords,
data={"action_id": "123", "time": time.time(), "action_name": "TestAction"},
query_type="create",
)
```
3. 更新记录
```python
updated_count = await database_api.db_query(
ActionRecords,
data={"action_done": True},
query_type="update",
filters={"action_id": "123"},
)
```
4. 删除记录
```python
deleted_count = await database_api.db_query(
ActionRecords,
query_type="delete",
filters={"action_id": "123"}
)
```
5. 计数
```python
count = await database_api.db_query(
Messages,
query_type="count",
filters={"chat_id": chat_stream.stream_id}
)
```
### 2. 数据库保存
```python
async def db_save(
model_class: Type[Model], data: Dict[str, Any], key_field: Optional[str] = None, key_value: Optional[Any] = None
) -> Optional[Dict[str, Any]]:
```
保存数据到数据库(创建或更新)
如果提供了key_field和key_value会先尝试查找匹配的记录进行更新
如果没有找到匹配记录或未提供key_field和key_value则创建新记录。
**Args:**
- `model_class`: Peewee模型类。
- `data`: 要保存的数据字典。
- `key_field`: 用于查找现有记录的字段名,例如"action_id"。
- `key_value`: 用于查找现有记录的字段值。
**Returns:**
- `Optional[Dict[str, Any]]`: 保存后的记录数据失败时返回None。
#### 示例
创建或更新一条记录
```python
record = await database_api.db_save(
ActionRecords,
{
"action_id": "123",
"time": time.time(),
"action_name": "TestAction",
"action_done": True
},
key_field="action_id",
key_value="123"
)
```
### 3. 数据库获取
```python
async def db_get(
model_class: Type[Model],
filters: Optional[Dict[str, Any]] = None,
limit: Optional[int] = None,
order_by: Optional[str] = None,
single_result: Optional[bool] = False,
) -> Union[List[Dict[str, Any]], Dict[str, Any], None]:
```
从数据库获取记录
这是db_query方法的简化版本专注于数据检索操作。
**Args:**
- `model_class`: Peewee模型类。
- `filters`: 过滤条件字典,键为字段名,值为要匹配的值。
- `limit`: 限制结果数量。
- `order_by`: 排序字段,使用字段名,前缀'-'表示降序。
- `single_result`: 是否只返回单个结果如果为True则返回单个记录字典或None否则返回记录字典列表或空列表
**Returns:**
- `Union[List[Dict], Dict, None]`: 查询结果列表或单个结果(如果`single_result=True`失败时返回None。
#### 示例
1. 获取单个记录
```python
record = await database_api.db_get(
ActionRecords,
filters={"action_id": "123"},
limit=1
)
```
2. 获取最近10条记录
```python
records = await database_api.db_get(
Messages,
filters={"chat_id": chat_stream.stream_id},
limit=10,
order_by="-time",
)
```
### 4. 动作信息存储
```python
async def store_action_info(
chat_stream=None,
action_build_into_prompt: bool = False,
action_prompt_display: str = "",
action_done: bool = True,
thinking_id: str = "",
action_data: Optional[dict] = None,
action_name: str = "",
) -> Optional[Dict[str, Any]]:
```
存储动作信息到数据库,是一种针对 Action 的 `db_save()` 的封装函数。
将Action执行的相关信息保存到ActionRecords表中用于后续的记忆和上下文构建。
**Args:**
- `chat_stream`: 聊天流对象包含聊天ID等信息。
- `action_build_into_prompt`: 是否将动作信息构建到提示中。
- `action_prompt_display`: 动作提示的显示文本。
- `action_done`: 动作是否完成。
- `thinking_id`: 思考过程的ID。
- `action_data`: 动作的数据字典。
- `action_name`: 动作的名称。
**Returns:**
- `Optional[Dict[str, Any]]`: 存储后的记录数据失败时返回None。
#### 示例
```python
record = await database_api.store_action_info(
chat_stream=chat_stream,
action_build_into_prompt=True,
action_prompt_display="执行了回复动作",
action_done=True,
thinking_id="thinking_123",
action_data={"content": "Hello"},
action_name="reply_action"
)
```

View File

@@ -0,0 +1,141 @@
# 表情包API
表情包API模块提供表情包的获取、查询和管理功能让插件能够智能地选择和使用表情包。
## 导入方式
```python
from src.plugin_system.apis import emoji_api
# 或者
from src.plugin_system import emoji_api
```
## 二步走识别优化
从新版本开始,表情包识别系统采用了**二步走识别 + 智能缓存**的优化方案:
### **收到表情包时的识别流程**
1. **第一步**VLM视觉分析 - 生成详细描述
2. **第二步**LLM情感分析 - 基于详细描述提取核心情感标签
3. **缓存机制**将情感标签缓存到数据库详细描述保存到Images表
### **注册表情包时的优化**
- **智能复用**优先从Images表获取已有的详细描述
- **避免重复**如果表情包之前被收到过跳过VLM调用
- **性能提升**减少不必要的AI调用降低延时和成本
### **缓存策略**
- **ImageDescriptions表**:缓存最终的情感标签(用于快速显示)
- **Images表**:保存详细描述(用于注册时复用)
- **双重检查**:防止并发情况下的重复生成
## 主要功能
### 1. 表情包获取
```python
async def get_by_description(description: str) -> Optional[Tuple[str, str, str]]:
```
根据场景描述选择表情包
**Args**
- `description`:表情包的描述文本,例如"开心"、"难过"、"愤怒"等
**Returns**
- `Optional[Tuple[str, str, str]]`:一个元组: (表情包的base64编码, 描述, 情感标签)如果未找到匹配的表情包则返回None
#### 示例
```python
emoji_result = await emoji_api.get_by_description("大笑")
if emoji_result:
emoji_base64, description, matched_scene = emoji_result
print(f"获取到表情包: {description}, 场景: {matched_scene}")
# 可以将emoji_base64用于发送表情包
```
### 2. 随机获取表情包
```python
async def get_random(count: Optional[int] = 1) -> List[Tuple[str, str, str]]:
```
随机获取指定数量的表情包
**Args**
- `count`要获取的表情包数量默认为1
**Returns**
- `List[Tuple[str, str, str]]`:一个包含多个表情包的列表,每个元素是一个元组: (表情包的base64编码, 描述, 情感标签),如果未找到或出错则返回空列表
### 3. 根据情感获取表情包
```python
async def get_by_emotion(emotion: str) -> Optional[Tuple[str, str, str]]:
```
根据情感标签获取表情包
**Args**
- `emotion`:情感标签,例如"开心"、"悲伤"、"愤怒"等
**Returns**
- `Optional[Tuple[str, str, str]]`:一个元组: (表情包的base64编码, 描述, 情感标签)如果未找到则返回None
### 4. 获取表情包数量
```python
def get_count() -> int:
```
获取当前可用表情包的数量
### 5. 获取表情包系统信息
```python
def get_info() -> Dict[str, Any]:
```
获取表情包系统的基本信息
**Returns**
- `Dict[str, Any]`:包含表情包数量、描述等信息的字典,包含以下键:
- `current_count`:当前表情包数量
- `max_count`:最大表情包数量
- `available_emojis`:当前可用的表情包数量
### 6. 获取所有可用的情感标签
```python
def get_emotions() -> List[str]:
```
获取所有可用的情感标签 **(已经去重)**
### 7. 获取所有表情包描述
```python
def get_descriptions() -> List[str]:
```
获取所有表情包的描述列表
## 场景描述说明
### 常用场景描述
表情包系统支持多种具体的场景描述,举例如下:
- **开心类场景**:开心的大笑、满意的微笑、兴奋的手舞足蹈
- **无奈类场景**:表示无奈和沮丧、轻微的讽刺、无语的摇头
- **愤怒类场景**:愤怒和不满、生气的瞪视、暴躁的抓狂
- **惊讶类场景**:震惊的表情、意外的发现、困惑的思考
- **可爱类场景**:卖萌的表情、撒娇的动作、害羞的样子
### 情感关键词示例
系统支持的情感关键词举例如下:
- 大笑、微笑、兴奋、手舞足蹈
- 无奈、沮丧、讽刺、无语、摇头
- 愤怒、不满、生气、瞪视、抓狂
- 震惊、意外、困惑、思考
- 卖萌、撒娇、害羞、可爱
### 匹配机制
- **精确匹配**:优先匹配完整的场景描述,如"开心的大笑"
- **关键词匹配**:如果没有精确匹配,则根据关键词进行模糊匹配
- **语义匹配**:系统会理解场景的语义含义进行智能匹配
## 注意事项
1. **异步函数**:部分函数是异步的,需要使用 `await`
2. **返回格式**表情包以base64编码返回可直接用于发送
3. **错误处理**所有函数都有错误处理失败时返回None空列表或默认值
4. **使用统计**:系统会记录表情包的使用次数
5. **文件依赖**:表情包依赖于本地文件,确保表情包文件存在
6. **编码格式**返回的是base64编码的图片数据可直接用于网络传输
7. **场景理解**:系统能理解具体的场景描述,比简单的情感分类更准确

View File

@@ -0,0 +1,201 @@
# 回复生成器API
回复生成器API模块提供智能回复生成功能让插件能够使用系统的回复生成器来产生自然的聊天回复。
## 导入方式
```python
from src.plugin_system.apis import generator_api
# 或者
from src.plugin_system import generator_api
```
## 主要功能
### 1. 回复器获取
```python
def get_replyer(
chat_stream: Optional[ChatStream] = None,
chat_id: Optional[str] = None,
model_set_with_weight: Optional[List[Tuple[TaskConfig, float]]] = None,
request_type: str = "replyer",
) -> Optional[DefaultReplyer]:
```
获取回复器对象
优先使用chat_stream如果没有则使用chat_id直接查找。
使用 ReplyerManager 来管理实例,避免重复创建。
**Args:**
- `chat_stream`: 聊天流对象
- `chat_id`: 聊天ID实际上就是`stream_id`
- `model_set_with_weight`: 模型配置列表,每个元素为 `(TaskConfig, weight)` 元组
- `request_type`: 请求类型用于记录LLM使用情况可以不写
**Returns:**
- `DefaultReplyer`: 回复器对象如果获取失败则返回None
#### 示例
```python
# 使用聊天流获取回复器
replyer = generator_api.get_replyer(chat_stream=chat_stream)
# 使用平台和ID获取回复器
replyer = generator_api.get_replyer(chat_id="123456789")
```
### 2. 回复生成
```python
async def generate_reply(
chat_stream: Optional[ChatStream] = None,
chat_id: Optional[str] = None,
action_data: Optional[Dict[str, Any]] = None,
reply_to: str = "",
extra_info: str = "",
available_actions: Optional[Dict[str, ActionInfo]] = None,
enable_tool: bool = False,
enable_splitter: bool = True,
enable_chinese_typo: bool = True,
return_prompt: bool = False,
model_set_with_weight: Optional[List[Tuple[TaskConfig, float]]] = None,
request_type: str = "generator_api",
) -> Tuple[bool, List[Tuple[str, Any]], Optional[str]]:
```
生成回复
优先使用chat_stream如果没有则使用chat_id直接查找。
**Args:**
- `chat_stream`: 聊天流对象
- `chat_id`: 聊天ID实际上就是`stream_id`
- `action_data`: 动作数据(向下兼容,包含`reply_to``extra_info`
- `reply_to`: 回复目标,格式为 `{发送者的person_name:消息内容}`
- `extra_info`: 附加信息
- `available_actions`: 可用动作字典,格式为 `{"action_name": ActionInfo}`
- `enable_tool`: 是否启用工具
- `enable_splitter`: 是否启用分割器
- `enable_chinese_typo`: 是否启用中文错别字
- `return_prompt`: 是否返回提示词
- `model_set_with_weight`: 模型配置列表,每个元素为 `(TaskConfig, weight)` 元组
- `request_type`: 请求类型可选记录LLM使用
- `request_type`: 请求类型用于记录LLM使用情况
**Returns:**
- `Tuple[bool, List[Tuple[str, Any]], Optional[str]]`: (是否成功, 回复集合, 提示词)
#### 示例
```python
success, reply_set, prompt = await generator_api.generate_reply(
chat_stream=chat_stream,
action_data=action_data,
reply_to="麦麦:你好",
available_actions=action_info,
enable_tool=True,
return_prompt=True
)
if success:
for reply_type, reply_content in reply_set:
print(f"回复类型: {reply_type}, 内容: {reply_content}")
if prompt:
print(f"使用的提示词: {prompt}")
```
### 3. 回复重写
```python
async def rewrite_reply(
chat_stream: Optional[ChatStream] = None,
reply_data: Optional[Dict[str, Any]] = None,
chat_id: Optional[str] = None,
enable_splitter: bool = True,
enable_chinese_typo: bool = True,
model_set_with_weight: Optional[List[Tuple[TaskConfig, float]]] = None,
raw_reply: str = "",
reason: str = "",
reply_to: str = "",
return_prompt: bool = False,
) -> Tuple[bool, List[Tuple[str, Any]], Optional[str]]:
```
重写回复,使用新的内容替换旧的回复内容。
优先使用chat_stream如果没有则使用chat_id直接查找。
**Args:**
- `chat_stream`: 聊天流对象
- `reply_data`: 回复数据,包含`raw_reply`, `reason``reply_to`**(向下兼容备用,当其他参数缺失时从此获取)**
- `chat_id`: 聊天ID实际上就是`stream_id`
- `enable_splitter`: 是否启用分割器
- `enable_chinese_typo`: 是否启用中文错别字
- `model_set_with_weight`: 模型配置列表,每个元素为 (TaskConfig, weight) 元组
- `raw_reply`: 原始回复内容
- `reason`: 重写原因
- `reply_to`: 回复目标,格式为 `{发送者的person_name:消息内容}`
**Returns:**
- `Tuple[bool, List[Tuple[str, Any]], Optional[str]]`: (是否成功, 回复集合, 提示词)
#### 示例
```python
success, reply_set, prompt = await generator_api.rewrite_reply(
chat_stream=chat_stream,
raw_reply="原始回复内容",
reason="重写原因",
reply_to="麦麦:你好",
return_prompt=True
)
if success:
for reply_type, reply_content in reply_set:
print(f"回复类型: {reply_type}, 内容: {reply_content}")
if prompt:
print(f"使用的提示词: {prompt}")
```
## 回复集合`reply_set`格式
### 回复类型
生成的回复集合包含多种类型的回复:
- `"text"`:纯文本回复
- `"emoji"`:表情包回复
- `"image"`:图片回复
- `"mixed"`:混合类型回复
### 回复集合结构
```python
# 示例回复集合
reply_set = [
("text", "很高兴见到你!"),
("emoji", "emoji_base64_data"),
("text", "有什么可以帮助你的吗?")
]
```
### 4. 自定义提示词回复
```python
async def generate_response_custom(
chat_stream: Optional[ChatStream] = None,
chat_id: Optional[str] = None,
model_set_with_weight: Optional[List[Tuple[TaskConfig, float]]] = None,
prompt: str = "",
) -> Optional[str]:
```
生成自定义提示词回复
优先使用chat_stream如果没有则使用chat_id直接查找。
**Args:**
- `chat_stream`: 聊天流对象
- `chat_id`: 聊天ID备用
- `model_set_with_weight`: 模型集合配置列表
- `prompt`: 自定义提示词
**Returns:**
- `Optional[str]`: 生成的自定义回复内容如果生成失败则返回None
## 注意事项
1. **异步操作**:部分函数是异步的,须使用`await`
2. **聊天流依赖**:需要有效的聊天流对象才能正常工作
3. **性能考虑**回复生成可能需要一些时间特别是使用LLM时
4. **回复格式**:返回的回复集合是元组列表,包含类型和内容
5. **上下文感知**:生成器会考虑聊天上下文和历史消息,除非你用的是自定义提示词。

View File

@@ -0,0 +1,65 @@
# LLM API
LLM API模块提供与大语言模型交互的功能让插件能够使用系统配置的LLM模型进行内容生成。
## 导入方式
```python
from src.plugin_system.apis import llm_api
# 或者
from src.plugin_system import llm_api
```
## 主要功能
### 1. 查询可用模型
```python
def get_available_models() -> Dict[str, TaskConfig]:
```
获取所有可用的模型配置。
**Return**
- `Dict[str, TaskConfig]`模型配置字典key为模型名称value为模型配置对象。
### 2. 使用模型生成内容
```python
async def generate_with_model(
prompt: str,
model_config: TaskConfig,
request_type: str = "plugin.generate",
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
) -> Tuple[bool, str, str, str]:
```
使用指定模型生成内容。
**Args:**
- `prompt`:提示词。
- `model_config`:模型配置对象(从 `get_available_models` 获取)。
- `request_type`:请求类型标识,默认为 `"plugin.generate"`
- `temperature`:生成内容的温度设置,影响输出的随机性。
- `max_tokens`生成内容的最大token数。
**Return**
- `Tuple[bool, str, str, str]`:返回一个元组,包含(是否成功, 生成的内容, 推理过程, 模型名称)。
### 3. 有Tool情况下使用模型生成内容
```python
async def generate_with_model_with_tools(
prompt: str,
model_config: TaskConfig,
tool_options: List[Dict[str, Any]] | None = None,
request_type: str = "plugin.generate",
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
) -> Tuple[bool, str, str, str, List[ToolCall] | None]:
```
使用指定模型生成内容,并支持工具调用。
**Args:**
- `prompt`:提示词。
- `model_config`:模型配置对象(从 `get_available_models` 获取)。
- `tool_options`:工具选项列表,包含可用工具的配置,字典为每一个工具的定义,参见[tool-components.md](../tool-components.md#属性说明),可用`tool_api.get_llm_available_tool_definitions()`获取并选择。
- `request_type`:请求类型标识,默认为 `"plugin.generate"`
- `temperature`:生成内容的温度设置,影响输出的随机性。
- `max_tokens`生成内容的最大token数。

View File

@@ -0,0 +1,29 @@
# Logging API
Logging API模块提供了获取本体logger的功能允许插件记录日志信息。
## 导入方式
```python
from src.plugin_system.apis import get_logger
# 或者
from src.plugin_system import get_logger
```
## 主要功能
### 1. 获取本体logger
```python
def get_logger(name: str) -> structlog.stdlib.BoundLogger:
```
获取本体logger实例。
**Args:**
- `name` (str): 日志记录器的名称。
**Returns:**
- 一个logger实例有以下方法:
- `debug`
- `info`
- `warning`
- `error`
- `critical`

View File

@@ -0,0 +1,372 @@
# 消息API
消息API提供了强大的消息查询、计数和格式化功能让你轻松处理聊天消息数据。
## 导入方式
```python
from src.plugin_system.apis import message_api
# 或者
from src.plugin_system import message_api
```
## 功能概述
消息API主要提供三大类功能
- **消息查询** - 按时间、聊天、用户等条件查询消息
- **消息计数** - 统计新消息数量
- **消息格式化** - 将消息转换为可读格式
## 主要功能
### 1. 按照事件查询消息
```python
def get_messages_by_time(
start_time: float, end_time: float, limit: int = 0, limit_mode: str = "latest", filter_mai: bool = False
) -> List[Dict[str, Any]]:
```
获取指定时间范围内的消息。
**Args:**
- `start_time` (float): 开始时间戳
- `end_time` (float): 结束时间戳
- `limit` (int): 限制返回消息数量0为不限制
- `limit_mode` (str): 限制模式,`"earliest"`获取最早记录,`"latest"`获取最新记录
- `filter_mai` (bool): 是否过滤掉机器人的消息默认False
**Returns:**
- `List[Dict[str, Any]]` - 消息列表
消息列表中包含的键与`Messages`类的属性一致。(位于`src.common.database.database_model`
### 2. 获取指定聊天中指定时间范围内的信息
```python
def get_messages_by_time_in_chat(
chat_id: str,
start_time: float,
end_time: float,
limit: int = 0,
limit_mode: str = "latest",
filter_mai: bool = False,
) -> List[Dict[str, Any]]:
```
获取指定聊天中指定时间范围内的消息。
**Args:**
- `chat_id` (str): 聊天ID
- `start_time` (float): 开始时间戳
- `end_time` (float): 结束时间戳
- `limit` (int): 限制返回消息数量0为不限制
- `limit_mode` (str): 限制模式,`"earliest"`获取最早记录,`"latest"`获取最新记录
- `filter_mai` (bool): 是否过滤掉机器人的消息默认False
**Returns:**
- `List[Dict[str, Any]]` - 消息列表
### 3. 获取指定聊天中指定时间范围内的信息(包含边界)
```python
def get_messages_by_time_in_chat_inclusive(
chat_id: str,
start_time: float,
end_time: float,
limit: int = 0,
limit_mode: str = "latest",
filter_mai: bool = False,
filter_command: bool = False,
) -> List[Dict[str, Any]]:
```
获取指定聊天中指定时间范围内的消息(包含边界)。
**Args:**
- `chat_id` (str): 聊天ID
- `start_time` (float): 开始时间戳(包含)
- `end_time` (float): 结束时间戳(包含)
- `limit` (int): 限制返回消息数量0为不限制
- `limit_mode` (str): 限制模式,`"earliest"`获取最早记录,`"latest"`获取最新记录
- `filter_mai` (bool): 是否过滤掉机器人的消息默认False
- `filter_command` (bool): 是否过滤命令消息默认False
**Returns:**
- `List[Dict[str, Any]]` - 消息列表
### 4. 获取指定聊天中指定用户在指定时间范围内的消息
```python
def get_messages_by_time_in_chat_for_users(
chat_id: str,
start_time: float,
end_time: float,
person_ids: List[str],
limit: int = 0,
limit_mode: str = "latest",
) -> List[Dict[str, Any]]:
```
获取指定聊天中指定用户在指定时间范围内的消息。
**Args:**
- `chat_id` (str): 聊天ID
- `start_time` (float): 开始时间戳
- `end_time` (float): 结束时间戳
- `person_ids` (List[str]): 用户ID列表
- `limit` (int): 限制返回消息数量0为不限制
- `limit_mode` (str): 限制模式,`"earliest"`获取最早记录,`"latest"`获取最新记录
**Returns:**
- `List[Dict[str, Any]]` - 消息列表
### 5. 随机选择一个聊天,返回该聊天在指定时间范围内的消息
```python
def get_random_chat_messages(
start_time: float,
end_time: float,
limit: int = 0,
limit_mode: str = "latest",
filter_mai: bool = False,
) -> List[Dict[str, Any]]:
```
随机选择一个聊天,返回该聊天在指定时间范围内的消息。
**Args:**
- `start_time` (float): 开始时间戳
- `end_time` (float): 结束时间戳
- `limit` (int): 限制返回消息数量0为不限制
- `limit_mode` (str): 限制模式,`"earliest"`获取最早记录,`"latest"`获取最新记录
- `filter_mai` (bool): 是否过滤掉机器人的消息默认False
**Returns:**
- `List[Dict[str, Any]]` - 消息列表
### 6. 获取指定用户在所有聊天中指定时间范围内的消息
```python
def get_messages_by_time_for_users(
start_time: float,
end_time: float,
person_ids: List[str],
limit: int = 0,
limit_mode: str = "latest",
) -> List[Dict[str, Any]]:
```
获取指定用户在所有聊天中指定时间范围内的消息。
**Args:**
- `start_time` (float): 开始时间戳
- `end_time` (float): 结束时间戳
- `person_ids` (List[str]): 用户ID列表
- `limit` (int): 限制返回消息数量0为不限制
- `limit_mode` (str): 限制模式,`"earliest"`获取最早记录,`"latest"`获取最新记录
**Returns:**
- `List[Dict[str, Any]]` - 消息列表
### 7. 获取指定时间戳之前的消息
```python
def get_messages_before_time(
timestamp: float,
limit: int = 0,
filter_mai: bool = False,
) -> List[Dict[str, Any]]:
```
获取指定时间戳之前的消息。
**Args:**
- `timestamp` (float): 时间戳
- `limit` (int): 限制返回消息数量0为不限制
- `filter_mai` (bool): 是否过滤掉机器人的消息默认False
**Returns:**
- `List[Dict[str, Any]]` - 消息列表
### 8. 获取指定聊天中指定时间戳之前的消息
```python
def get_messages_before_time_in_chat(
chat_id: str,
timestamp: float,
limit: int = 0,
filter_mai: bool = False,
) -> List[Dict[str, Any]]:
```
获取指定聊天中指定时间戳之前的消息。
**Args:**
- `chat_id` (str): 聊天ID
- `timestamp` (float): 时间戳
- `limit` (int): 限制返回消息数量0为不限制
- `filter_mai` (bool): 是否过滤掉机器人的消息默认False
**Returns:**
- `List[Dict[str, Any]]` - 消息列表
### 9. 获取指定用户在指定时间戳之前的消息
```python
def get_messages_before_time_for_users(
timestamp: float,
person_ids: List[str],
limit: int = 0,
) -> List[Dict[str, Any]]:
```
获取指定用户在指定时间戳之前的消息。
**Args:**
- `timestamp` (float): 时间戳
- `person_ids` (List[str]): 用户ID列表
- `limit` (int): 限制返回消息数量0为不限制
**Returns:**
- `List[Dict[str, Any]]` - 消息列表
### 10. 获取指定聊天中最近一段时间的消息
```python
def get_recent_messages(
chat_id: str,
hours: float = 24.0,
limit: int = 100,
limit_mode: str = "latest",
filter_mai: bool = False,
) -> List[Dict[str, Any]]:
```
获取指定聊天中最近一段时间的消息。
**Args:**
- `chat_id` (str): 聊天ID
- `hours` (float): 最近多少小时默认24小时
- `limit` (int): 限制返回消息数量默认100条
- `limit_mode` (str): 限制模式,`"earliest"`获取最早记录,`"latest"`获取最新记录
- `filter_mai` (bool): 是否过滤掉机器人的消息默认False
**Returns:**
- `List[Dict[str, Any]]` - 消息列表
### 11. 计算指定聊天中从开始时间到结束时间的新消息数量
```python
def count_new_messages(
chat_id: str,
start_time: float = 0.0,
end_time: Optional[float] = None,
) -> int:
```
计算指定聊天中从开始时间到结束时间的新消息数量。
**Args:**
- `chat_id` (str): 聊天ID
- `start_time` (float): 开始时间戳
- `end_time` (Optional[float]): 结束时间戳如果为None则使用当前时间
**Returns:**
- `int` - 新消息数量
### 12. 计算指定聊天中指定用户从开始时间到结束时间的新消息数量
```python
def count_new_messages_for_users(
chat_id: str,
start_time: float,
end_time: float,
person_ids: List[str],
) -> int:
```
计算指定聊天中指定用户从开始时间到结束时间的新消息数量。
**Args:**
- `chat_id` (str): 聊天ID
- `start_time` (float): 开始时间戳
- `end_time` (float): 结束时间戳
- `person_ids` (List[str]): 用户ID列表
**Returns:**
- `int` - 新消息数量
### 13. 将消息列表构建成可读的字符串
```python
def build_readable_messages_to_str(
messages: List[Dict[str, Any]],
replace_bot_name: bool = True,
merge_messages: bool = False,
timestamp_mode: str = "relative",
read_mark: float = 0.0,
truncate: bool = False,
show_actions: bool = False,
) -> str:
```
将消息列表构建成可读的字符串。
**Args:**
- `messages` (List[Dict[str, Any]]): 消息列表
- `replace_bot_name` (bool): 是否将机器人的名称替换为"你"
- `merge_messages` (bool): 是否合并连续消息
- `timestamp_mode` (str): 时间戳显示模式,`"relative"``"absolute"`
- `read_mark` (float): 已读标记时间戳,用于分割已读和未读消息
- `truncate` (bool): 是否截断长消息
- `show_actions` (bool): 是否显示动作记录
**Returns:**
- `str` - 格式化后的可读字符串
### 14. 将消息列表构建成可读的字符串,并返回详细信息
```python
async def build_readable_messages_with_details(
messages: List[Dict[str, Any]],
replace_bot_name: bool = True,
merge_messages: bool = False,
timestamp_mode: str = "relative",
truncate: bool = False,
) -> Tuple[str, List[Tuple[float, str, str]]]:
```
将消息列表构建成可读的字符串,并返回详细信息。
**Args:**
- `messages` (List[Dict[str, Any]]): 消息列表
- `replace_bot_name` (bool): 是否将机器人的名称替换为"你"
- `merge_messages` (bool): 是否合并连续消息
- `timestamp_mode` (str): 时间戳显示模式,`"relative"``"absolute"`
- `truncate` (bool): 是否截断长消息
**Returns:**
- `Tuple[str, List[Tuple[float, str, str]]]` - 格式化后的可读字符串和详细信息元组列表(时间戳, 昵称, 内容)
### 15. 从消息列表中提取不重复的用户ID列表
```python
async def get_person_ids_from_messages(
messages: List[Dict[str, Any]],
) -> List[str]:
```
从消息列表中提取不重复的用户ID列表。
**Args:**
- `messages` (List[Dict[str, Any]]): 消息列表
**Returns:**
- `List[str]` - 用户ID列表
### 16. 从消息列表中移除机器人的消息
```python
def filter_mai_messages(
messages: List[Dict[str, Any]],
) -> List[Dict[str, Any]]:
```
从消息列表中移除机器人的消息。
**Args:**
- `messages` (List[Dict[str, Any]]): 消息列表,每个元素是消息字典
**Returns:**
- `List[Dict[str, Any]]` - 过滤后的消息列表
## 注意事项
1. **时间戳格式**所有时间参数都使用Unix时间戳float类型
2. **异步函数**:部分函数是异步函数,需要使用 `await`
3. **性能考虑**:查询大量消息时建议设置合理的 `limit` 参数
4. **消息格式**:返回的消息是字典格式,包含时间戳、发送者、内容等信息
5. **用户ID**`person_ids` 参数接受字符串列表,用于筛选特定用户的消息

View File

@@ -0,0 +1,119 @@
# 个人信息API
个人信息API模块提供用户信息查询和管理功能让插件能够获取和使用用户的相关信息。
## 导入方式
```python
from src.plugin_system.apis import person_api
# 或者
from src.plugin_system import person_api
```
## 主要功能
### 1. Person ID 获取
```python
def get_person_id(platform: str, user_id: int) -> str:
```
根据平台和用户ID获取person_id
**Args:**
- `platform`:平台名称,如 "qq", "telegram" 等
- `user_id`用户ID
**Returns:**
- `str`唯一的person_idMD5哈希值
#### 示例
```python
person_id = person_api.get_person_id("qq", 123456)
```
### 2. 用户信息查询
```python
async def get_person_value(person_id: str, field_name: str, default: Any = None) -> Any:
```
查询单个用户信息字段值
**Args:**
- `person_id`用户的唯一标识ID
- `field_name`:要获取的字段名
- `default`:字段值不存在时的默认值
**Returns:**
- `Any`:字段值或默认值
#### 示例
```python
nickname = await person_api.get_person_value(person_id, "nickname", "未知用户")
impression = await person_api.get_person_value(person_id, "impression")
```
### 3. 批量用户信息查询
```python
async def get_person_values(person_id: str, field_names: list, default_dict: Optional[dict] = None) -> dict:
```
批量获取用户信息字段值
**Args:**
- `person_id`用户的唯一标识ID
- `field_names`:要获取的字段名列表
- `default_dict`:默认值字典,键为字段名,值为默认值
**Returns:**
- `dict`:字段名到值的映射字典
#### 示例
```python
values = await person_api.get_person_values(
person_id,
["nickname", "impression", "know_times"],
{"nickname": "未知用户", "know_times": 0}
)
```
### 4. 判断用户是否已知
```python
async def is_person_known(platform: str, user_id: int) -> bool:
```
判断是否认识某个用户
**Args:**
- `platform`:平台名称
- `user_id`用户ID
**Returns:**
- `bool`:是否认识该用户
### 5. 根据用户名获取Person ID
```python
def get_person_id_by_name(person_name: str) -> str:
```
根据用户名获取person_id
**Args:**
- `person_name`:用户名
**Returns:**
- `str`person_id如果未找到返回空字符串
## 常用字段说明
### 基础信息字段
- `nickname`:用户昵称
- `platform`:平台信息
- `user_id`用户ID
### 关系信息字段
- `impression`:对用户的印象
- `points`: 用户特征点
其他字段可以参考`PersonInfo`类的属性(位于`src.common.database.database_model`
## 注意事项
1. **异步操作**:部分查询函数都是异步的,需要使用`await`
2. **性能考虑**:批量查询优于单个查询
3. **隐私保护**:确保用户信息的使用符合隐私政策
4. **数据一致性**person_id是用户的唯一标识应妥善保存和使用

View File

@@ -0,0 +1,105 @@
# 插件管理API
插件管理API模块提供了对插件的加载、卸载、重新加载以及目录管理功能。
## 导入方式
```python
from src.plugin_system.apis import plugin_manage_api
# 或者
from src.plugin_system import plugin_manage_api
```
## 功能概述
插件管理API主要提供以下功能
- **插件查询** - 列出当前加载的插件或已注册的插件。
- **插件管理** - 加载、卸载、重新加载插件。
- **插件目录管理** - 添加插件目录并重新扫描。
## 主要功能
### 1. 列出当前加载的插件
```python
def list_loaded_plugins() -> List[str]:
```
列出所有当前加载的插件。
**Returns:**
- `List[str]` - 当前加载的插件名称列表。
### 2. 列出所有已注册的插件
```python
def list_registered_plugins() -> List[str]:
```
列出所有已注册的插件。
**Returns:**
- `List[str]` - 已注册的插件名称列表。
### 3. 获取插件路径
```python
def get_plugin_path(plugin_name: str) -> str:
```
获取指定插件的路径。
**Args:**
- `plugin_name` (str): 要查询的插件名称。
**Returns:**
- `str` - 插件的路径,如果插件不存在则 raise ValueError。
### 4. 卸载指定的插件
```python
async def remove_plugin(plugin_name: str) -> bool:
```
卸载指定的插件。
**Args:**
- `plugin_name` (str): 要卸载的插件名称。
**Returns:**
- `bool` - 卸载是否成功。
### 5. 重新加载指定的插件
```python
async def reload_plugin(plugin_name: str) -> bool:
```
重新加载指定的插件。
**Args:**
- `plugin_name` (str): 要重新加载的插件名称。
**Returns:**
- `bool` - 重新加载是否成功。
### 6. 加载指定的插件
```python
def load_plugin(plugin_name: str) -> Tuple[bool, int]:
```
加载指定的插件。
**Args:**
- `plugin_name` (str): 要加载的插件名称。
**Returns:**
- `Tuple[bool, int]` - 加载是否成功,成功或失败的个数。
### 7. 添加插件目录
```python
def add_plugin_directory(plugin_directory: str) -> bool:
```
添加插件目录。
**Args:**
- `plugin_directory` (str): 要添加的插件目录路径。
**Returns:**
- `bool` - 添加是否成功。
### 8. 重新扫描插件目录
```python
def rescan_plugin_directory() -> Tuple[int, int]:
```
重新扫描插件目录,加载新插件。
**Returns:**
- `Tuple[int, int]` - 成功加载的插件数量和失败的插件数量。

View File

@@ -0,0 +1,175 @@
# 消息发送API
消息发送API模块专门负责发送各种类型的消息支持文本、表情包、图片等多种消息类型。
## 导入方式
```python
from src.plugin_system.apis import send_api
# 或者
from src.plugin_system import send_api
```
## 主要功能
### 1. 发送文本消息
```python
async def text_to_stream(
text: str,
stream_id: str,
typing: bool = False,
reply_to: str = "",
storage_message: bool = True,
) -> bool:
```
发送文本消息到指定的流
**Args:**
- `text` (str): 要发送的文本内容
- `stream_id` (str): 聊天流ID
- `typing` (bool): 是否显示正在输入
- `reply_to` (str): 回复消息,格式为"发送者:消息内容"
- `storage_message` (bool): 是否存储消息到数据库
**Returns:**
- `bool` - 是否发送成功
### 2. 发送表情包
```python
async def emoji_to_stream(emoji_base64: str, stream_id: str, storage_message: bool = True) -> bool:
```
向指定流发送表情包。
**Args:**
- `emoji_base64` (str): 表情包的base64编码
- `stream_id` (str): 聊天流ID
- `storage_message` (bool): 是否存储消息到数据库
**Returns:**
- `bool` - 是否发送成功
### 3. 发送图片
```python
async def image_to_stream(image_base64: str, stream_id: str, storage_message: bool = True) -> bool:
```
向指定流发送图片。
**Args:**
- `image_base64` (str): 图片的base64编码
- `stream_id` (str): 聊天流ID
- `storage_message` (bool): 是否存储消息到数据库
**Returns:**
- `bool` - 是否发送成功
### 4. 发送命令
```python
async def command_to_stream(command: Union[str, dict], stream_id: str, storage_message: bool = True, display_message: str = "") -> bool:
```
向指定流发送命令。
**Args:**
- `command` (Union[str, dict]): 命令内容
- `stream_id` (str): 聊天流ID
- `storage_message` (bool): 是否存储消息到数据库
- `display_message` (str): 显示消息
**Returns:**
- `bool` - 是否发送成功
### 5. 发送自定义类型消息
```python
async def custom_to_stream(
message_type: str,
content: str,
stream_id: str,
display_message: str = "",
typing: bool = False,
reply_to: str = "",
storage_message: bool = True,
show_log: bool = True,
) -> bool:
```
向指定流发送自定义类型消息。
**Args:**
- `message_type` (str): 消息类型,如"text"、"image"、"emoji"、"video"、"file"等
- `content` (str): 消息内容通常是base64编码或文本
- `stream_id` (str): 聊天流ID
- `display_message` (str): 显示消息
- `typing` (bool): 是否显示正在输入
- `reply_to` (str): 回复消息,格式为"发送者:消息内容"
- `storage_message` (bool): 是否存储消息到数据库
- `show_log` (bool): 是否显示日志
**Returns:**
- `bool` - 是否发送成功
## 使用示例
### 1. 基础文本发送,并回复消息
```python
from src.plugin_system.apis import send_api
async def send_hello(chat_stream):
"""发送问候消息"""
success = await send_api.text_to_stream(
text="Hello, world!",
stream_id=chat_stream.stream_id,
typing=True,
reply_to="User:How are you?",
storage_message=True
)
return success
```
### 2. 发送表情包
```python
from src.plugin_system.apis import emoji_api
async def send_emoji_reaction(chat_stream, emotion):
"""根据情感发送表情包"""
# 获取表情包
emoji_result = await emoji_api.get_by_emotion(emotion)
if not emoji_result:
return False
emoji_base64, description, matched_emotion = emoji_result
# 发送表情包
success = await send_api.emoji_to_stream(
emoji_base64=emoji_base64,
stream_id=chat_stream.stream_id,
storage_message=False # 不存储到数据库
)
return success
```
## 消息类型说明
### 支持的消息类型
- `"text"`:纯文本消息
- `"emoji"`:表情包消息
- `"image"`:图片消息
- `"command"`:命令消息
- `"video"`:视频消息(如果支持)
- `"audio"`:音频消息(如果支持)
### 回复格式
回复消息使用格式:`"发送者:消息内容"``"发送者:消息内容"`
系统会自动查找匹配的原始消息并进行回复。
## 注意事项
1. **异步操作**:所有发送函数都是异步的,必须使用`await`
2. **错误处理**发送失败时返回False成功时返回True
3. **发送频率**:注意控制发送频率,避免被平台限制
4. **内容限制**:注意平台对消息内容和长度的限制
5. **权限检查**:确保机器人有发送消息的权限
6. **编码格式**图片和表情包需要使用base64编码
7. **存储选项**:可以选择是否将发送的消息存储到数据库

View File

@@ -0,0 +1,55 @@
# 工具API
工具API模块提供了获取和管理工具实例的功能让插件能够访问系统中注册的工具。
## 导入方式
```python
from src.plugin_system.apis import tool_api
# 或者
from src.plugin_system import tool_api
```
## 主要功能
### 1. 获取工具实例
```python
def get_tool_instance(tool_name: str) -> Optional[BaseTool]:
```
获取指定名称的工具实例。
**Args**:
- `tool_name`: 工具名称字符串
**Returns**:
- `Optional[BaseTool]`: 工具实例,如果工具不存在则返回 None
### 2. 获取LLM可用的工具定义
```python
def get_llm_available_tool_definitions():
```
获取所有LLM可用的工具定义列表。
**Returns**:
- `List[Tuple[str, Dict[str, Any]]]`: 工具定义列表,每个元素为 `(工具名称, 工具定义字典)` 的元组
- 其具体定义请参照[tool-components.md](../tool-components.md#属性说明)中的工具定义格式。
#### 示例:
```python
# 获取所有LLM可用的工具定义
tools = tool_api.get_llm_available_tool_definitions()
for tool_name, tool_definition in tools:
print(f"工具: {tool_name}")
print(f"定义: {tool_definition}")
```
## 注意事项
1. **工具存在性检查**:使用前请检查工具实例是否为 None
2. **权限控制**:某些工具可能有使用权限限制
3. **异步调用**:大多数工具方法是异步的,需要使用 await
4. **错误处理**:调用工具时请做好异常处理

View File

@@ -0,0 +1,89 @@
# 💻 Command组件详解
## 📖 什么是Command
Command是直接响应用户明确指令的组件与Action不同Command是**被动触发**的,当用户输入特定格式的命令时立即执行。
Command通过正则表达式匹配用户输入提供确定性的功能服务。
### 🎯 Command的特点
- 🎯 **确定性执行**:匹配到命令立即执行,无随机性
-**即时响应**:用户主动触发,快速响应
- 🔍 **正则匹配**:通过正则表达式精确匹配用户输入
- 🛑 **拦截控制**:可以控制是否阻止消息继续处理
- 📝 **参数解析**:支持从用户输入中提取参数
---
## 🛠️ Command组件的基本结构
首先Command组件需要继承自`BaseCommand`类,并实现必要的方法。
```python
class ExampleCommand(BaseCommand):
command_name = "example" # 命令名称,作为唯一标识符
command_description = "这是一个示例命令" # 命令描述
command_pattern = r"" # 命令匹配的正则表达式
async def execute(self) -> Tuple[bool, Optional[str], bool]:
"""
执行Command的主要逻辑
Returns:
Tuple[bool, str, bool]:
- 第一个bool表示是否成功执行
- 第二个str是执行结果消息
- 第三个bool表示是否需要阻止消息继续处理
"""
# ---- 执行命令的逻辑 ----
return True, "执行成功", False
```
**`command_pattern`**: 该Command匹配的正则表达式用于精确匹配用户输入。
请注意:如果希望能获取到命令中的参数,请在正则表达式中使用有命名的捕获组,例如`(?P<param_name>pattern)`
这样在匹配时,内部实现可以使用`re.match.groupdict()`方法获取到所有捕获组的参数,并以字典的形式存储在`self.matched_groups`中。
### 匹配样例
假设我们有一个命令`/example param1=value1 param2=value2`,对应的正则表达式可以是:
```python
class ExampleCommand(BaseCommand):
command_name = "example"
command_description = "这是一个示例命令"
command_pattern = r"/example (?P<param1>\w+) (?P<param2>\w+)"
async def execute(self) -> Tuple[bool, Optional[str], bool]:
# 获取匹配的参数
param1 = self.matched_groups.get("param1")
param2 = self.matched_groups.get("param2")
# 执行逻辑
return True, f"参数1: {param1}, 参数2: {param2}", False
```
---
## Command 内置方法说明
```python
class BaseCommand:
def get_config(self, key: str, default=None):
"""获取插件配置值,使用嵌套键访问"""
async def send_text(self, content: str, reply_to: str = "") -> bool:
"""发送回复消息"""
async def send_type(self, message_type: str, content: str, display_message: str = "", typing: bool = False, reply_to: str = "") -> bool:
"""发送指定类型的回复消息到当前聊天环境"""
async def send_command(self, command_name: str, args: Optional[dict] = None, display_message: str = "", storage_message: bool = True) -> bool:
"""发送命令消息"""
async def send_emoji(self, emoji_base64: str) -> bool:
"""发送表情包"""
async def send_image(self, image_base64: str) -> bool:
"""发送图片"""
```
具体参数与用法参见`BaseCommand`基类的定义。

View File

@@ -0,0 +1,347 @@
# ⚙️ 插件配置完整指南
本文档将全面指导你如何为你的插件**定义配置**和在组件中**访问配置**,帮助你构建一个健壮、规范且自带文档的配置系统。
> **🚨 重要原则:任何时候都不要手动创建 config.toml 文件!**
>
> 系统会根据你在代码中定义的 `config_schema` 自动生成配置文件。手动创建配置文件会破坏自动化流程,导致配置不一致、缺失注释和文档等问题。
## 配置版本管理
### 🎯 版本管理概述
插件系统提供了强大的**配置版本管理机制**,可以在插件升级时自动处理配置文件的迁移和更新,确保配置结构始终与代码保持同步。
### 🔄 配置版本管理工作流程
```mermaid
graph TD
A[插件加载] --> B[检查配置文件]
B --> C{配置文件存在?}
C -->|不存在| D[生成默认配置]
C -->|存在| E[读取当前版本]
E --> F{有版本信息?}
F -->|无版本| G[跳过版本检查<br/>直接加载配置]
F -->|有版本| H{版本匹配?}
H -->|匹配| I[直接加载配置]
H -->|不匹配| J[配置迁移]
J --> K[生成新配置结构]
K --> L[迁移旧配置值]
L --> M[保存迁移后配置]
M --> N[配置加载完成]
D --> N
G --> N
I --> N
style J fill:#FFB6C1
style K fill:#90EE90
style G fill:#87CEEB
style N fill:#DDA0DD
```
### 📊 版本管理策略
#### 1. 配置版本定义
`config_schema``plugin` 节中定义 `config_version`
```python
config_schema = {
"plugin": {
"enabled": ConfigField(type=bool, default=False, description="是否启用插件"),
"config_version": ConfigField(type=str, default="1.2.0", description="配置文件版本"),
},
# 其他配置...
}
```
#### 2. 版本检查行为
- **无版本信息** (`config_version` 不存在)
- 系统会**跳过版本检查**,直接加载现有配置
- 适用于旧版本插件的兼容性处理
- 日志显示:`配置文件无版本信息,跳过版本检查`
- **有版本信息** (存在 `config_version` 字段)
- 比较当前版本与期望版本
- 版本不匹配时自动执行配置迁移
- 版本匹配时直接加载配置
#### 3. 配置迁移过程
当检测到版本不匹配时,系统会:
1. **生成新配置结构** - 根据最新的 `config_schema` 生成新的配置结构
2. **迁移配置值** - 将旧配置文件中的值迁移到新结构中
3. **处理新增字段** - 新增的配置项使用默认值
4. **更新版本号** - `config_version` 字段自动更新为最新版本
5. **保存配置文件** - 迁移后的配置直接覆盖原文件**(不保留备份)**
### 🔧 实际使用示例
#### 版本升级场景
假设你的插件从 v1.0 升级到 v1.1,新增了权限管理功能:
**旧版本配置 (v1.0.0):**
```toml
[plugin]
enabled = true
config_version = "1.0.0"
[mute]
min_duration = 60
max_duration = 3600
```
**新版本Schema (v1.1.0):**
```python
config_schema = {
"plugin": {
"enabled": ConfigField(type=bool, default=False, description="是否启用插件"),
"config_version": ConfigField(type=str, default="1.1.0", description="配置文件版本"),
},
"mute": {
"min_duration": ConfigField(type=int, default=60, description="最短禁言时长(秒)"),
"max_duration": ConfigField(type=int, default=2592000, description="最长禁言时长(秒)"),
},
"permissions": { # 新增的配置节
"allowed_users": ConfigField(type=list, default=[], description="允许的用户列表"),
"allowed_groups": ConfigField(type=list, default=[], description="允许的群组列表"),
}
}
```
**迁移后配置 (v1.1.0):**
```toml
[plugin]
enabled = true # 保留原值
config_version = "1.1.0" # 自动更新
[mute]
min_duration = 60 # 保留原值
max_duration = 3600 # 保留原值
[permissions] # 新增节,使用默认值
allowed_users = []
allowed_groups = []
```
#### 无版本配置的兼容性
对于没有版本信息的旧配置文件:
**旧配置文件(无版本):**
```toml
[plugin]
enabled = true
# 没有 config_version 字段
[mute]
min_duration = 120
```
**系统行为:**
- 检测到无版本信息
- 跳过版本检查和迁移
- 直接加载现有配置
- 新增的配置项在代码中使用默认值访问
- 系统会详细记录配置迁移过程。
### ⚠️ 重要注意事项
#### 1. 版本号管理
- 当你修改 `config_schema` 时,**必须同步更新** `config_version`
- 请使用语义化版本号 (例如:`1.0.0`, `1.1.0`, `2.0.0`)
#### 2. 迁移策略
- **保留原值优先**: 迁移时优先保留用户的原有配置值
- **新增字段默认值**: 新增的配置项使用Schema中定义的默认值
- **移除字段警告**: 如果某个配置项在新版本中被移除,会在日志中显示警告
#### 3. 兼容性考虑
- **旧版本兼容**: 无版本信息的配置文件会跳过版本检查
- **不保留备份**: 迁移后直接覆盖原配置文件,不保留备份
- **失败安全**: 如果迁移过程中出现错误,会回退到原配置
## 配置定义
配置的定义在你的插件主类(继承自 `BasePlugin`)中完成,主要通过两个类属性:
1. `config_section_descriptions`: 一个字典,用于描述配置文件的各个区段(`[section]`)。
2. `config_schema`: 核心部分,一个嵌套字典,用于定义每个区段下的具体配置项。
### `ConfigField`:配置项的基石
每个配置项都通过一个 `ConfigField` 对象来定义。
```python
from dataclasses import dataclass
from src.plugin_system.base.config_types import ConfigField
@dataclass
class ConfigField:
"""配置字段定义"""
type: type # 字段类型 (例如 str, int, float, bool, list)
default: Any # 默认值
description: str # 字段描述 (将作为注释生成到配置文件中)
example: Optional[str] = None # 示例值 (可选)
required: bool = False # 是否必需 (可选, 主要用于文档提示)
choices: Optional[List[Any]] = None # 可选值列表 (可选)
```
### 配置示例
让我们以一个功能丰富的 `MutePlugin` 为例,看看如何定义它的配置。
```python
# src/plugins/built_in/mute_plugin/plugin.py
from src.plugin_system import BasePlugin, register_plugin, ConfigField
from typing import List, Tuple, Type
@register_plugin
class MutePlugin(BasePlugin):
"""禁言插件"""
# 这里是插件基本信息,略去
# 步骤1: 定义配置节的描述
config_section_descriptions = {
"plugin": "插件启用配置",
"components": "组件启用控制",
"mute": "核心禁言功能配置",
"smart_mute": "智能禁言Action的专属配置",
"logging": "日志记录相关配置"
}
# 步骤2: 使用ConfigField定义详细的配置Schema
config_schema = {
"plugin": {
"enabled": ConfigField(type=bool, default=False, description="是否启用插件")
},
"components": {
"enable_smart_mute": ConfigField(type=bool, default=True, description="是否启用智能禁言Action"),
"enable_mute_command": ConfigField(type=bool, default=False, description="是否启用禁言命令Command")
},
"mute": {
"min_duration": ConfigField(type=int, default=60, description="最短禁言时长(秒)"),
"max_duration": ConfigField(type=int, default=2592000, description="最长禁言时长默认30天"),
"templates": ConfigField(
type=list,
default=["好的,禁言 {target} {duration},理由:{reason}", "收到,对 {target} 执行禁言 {duration}"],
description="成功禁言后发送的随机消息模板"
)
},
"smart_mute": {
"keyword_sensitivity": ConfigField(
type=str,
default="normal",
description="关键词激活的敏感度",
choices=["low", "normal", "high"] # 定义可选值
),
},
"logging": {
"level": ConfigField(
type=str,
default="INFO",
description="日志记录级别",
choices=["DEBUG", "INFO", "WARNING", "ERROR"]
),
"prefix": ConfigField(type=str, default="[MutePlugin]", description="日志记录前缀", example="[MyMutePlugin]")
}
}
# 这里是插件方法,略去
```
`mute_plugin` 首次加载且其目录中不存在 `config.toml` 时,系统会自动创建以下文件:
```toml
# mute_plugin - 自动生成的配置文件
# 群聊禁言管理插件,提供智能禁言功能
# 插件启用配置
[plugin]
# 是否启用插件
enabled = false
# 组件启用控制
[components]
# 是否启用智能禁言Action
enable_smart_mute = true
# 是否启用禁言命令Command
enable_mute_command = false
# 核心禁言功能配置
[mute]
# 最短禁言时长(秒)
min_duration = 60
# 最长禁言时长默认30天
max_duration = 2592000
# 成功禁言后发送的随机消息模板
templates = ["好的,禁言 {target} {duration},理由:{reason}", "收到,对 {target} 执行禁言 {duration}"]
# 智能禁言Action的专属配置
[smart_mute]
# 关键词激活的敏感度
# 可选值: low, normal, high
keyword_sensitivity = "normal"
# 日志记录相关配置
[logging]
# 日志记录级别
# 可选值: DEBUG, INFO, WARNING, ERROR
level = "INFO"
# 日志记录前缀
# 示例: [MyMutePlugin]
prefix = "[MutePlugin]"
```
---
## 配置访问
如果你想要在你的组件中访问配置,可以通过组件内置的 `get_config()` 方法访问配置。
其参数为一个命名空间化的字符串。以上面的 `MutePlugin` 为例,你可以这样访问配置:
```python
enable_smart_mute = self.get_config("components.enable_smart_mute", True)
```
如果尝试访问了一个不存在的配置项,系统会自动返回默认值(你传递的)或者 `None`
---
## 最佳实践与注意事项
**🚨 核心原则:永远不要手动创建 config.toml 文件!**
1. **🔥 绝不手动创建配置文件**: **任何时候都不要手动创建 `config.toml` 文件**!必须通过在 `plugin.py` 中定义 `config_schema` 让系统自动生成。
-**禁止**`touch config.toml`、手动编写配置文件
-**正确**:定义 `config_schema`,启动插件,让系统自动生成
2. **Schema优先**: 所有配置项都必须在 `config_schema` 中声明,包括类型、默认值和描述。
3. **描述清晰**: 为每个 `ConfigField``config_section_descriptions` 编写清晰、准确的描述。这会直接成为你的插件文档的一部分。
4. **提供合理默认值**: 确保你的插件在默认配置下就能正常运行(或处于一个安全禁用的状态)。
5. **gitignore**: 将 `plugins/*/config.toml``src/plugins/built_in/*/config.toml` 加入 `.gitignore`,以避免提交个人敏感信息。
6. **配置文件只供修改**: 自动生成的 `config.toml` 文件只应该被用户**修改**,而不是从零创建。

View File

@@ -0,0 +1,40 @@
# 📦 插件依赖管理系统
现在的Python依赖包管理依然存在问题请保留你的`python_dependencies`属性,等待后续重构。
## 📚 详细教程
### PythonDependency 类详解
`PythonDependency`是依赖声明的核心类:
```python
PythonDependency(
package_name="PIL", # 导入时的包名
version=">=11.2.0", # 版本要求
optional=False, # 是否为可选依赖
description="图像处理库", # 依赖描述
install_name="pillow" # pip安装时的包名可选
)
```
#### 参数说明
| 参数 | 类型 | 必需 | 说明 |
|------|------|------|------|
| `package_name` | str | ✅ | Python导入时使用的包名`requests` |
| `version` | str | ❌ | 版本要求使用pip格式`>=1.0.0`, `==2.1.3` |
| `optional` | bool | ❌ | 是否为可选依赖,默认`False` |
| `description` | str | ❌ | 依赖的用途描述 |
| `install_name` | str | ❌ | pip安装时的包名默认与`package_name`相同,用于处理安装名称和导入名称不一致的情况 |
#### 版本格式示例
```python
# 常用版本格式
PythonDependency("requests", ">=2.25.0") # 最小版本
PythonDependency("numpy", ">=1.20.0,<2.0.0") # 版本范围
PythonDependency("pillow", "==8.3.2") # 精确版本
PythonDependency("scipy", ">=1.7.0,!=1.8.0") # 排除特定版本
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

81
docs/plugins/index.md Normal file
View File

@@ -0,0 +1,81 @@
# MaiBot插件开发文档
> 欢迎来到MaiBot插件系统开发文档这里是你开始插件开发旅程的最佳起点。
## 新手入门
- [📖 快速开始指南](quick-start.md) - 快速创建你的第一个插件
## 组件功能详解
- [🧱 Action组件详解](action-components.md) - 掌握最核心的Action组件
- [💻 Command组件详解](command-components.md) - 学习直接响应命令的组件
- [🔧 Tool组件详解](tool-components.md) - 了解如何扩展信息获取能力
- [⚙️ 配置文件系统指南](configuration-guide.md) - 学会使用自动生成的插件配置文件
- [📄 Manifest系统指南](manifest-guide.md) - 了解插件元数据管理和配置架构
Command vs Action 选择指南
1. 使用Command的场景
- ✅ 用户需要明确调用特定功能
- ✅ 需要精确的参数控制
- ✅ 管理和配置操作
- ✅ 查询和信息显示
- ✅ 系统维护命令
2. 使用Action的场景
- ✅ 增强麦麦的智能行为
- ✅ 根据上下文自动触发
- ✅ 情绪和表情表达
- ✅ 智能建议和帮助
- ✅ 随机化的互动
## API浏览
### 消息发送与处理API
- [📤 发送API](api/send-api.md) - 各种类型消息发送接口
- [消息API](api/message-api.md) - 消息获取,消息构建,消息查询接口
- [聊天流API](api/chat-api.md) - 聊天流管理和查询接口
### AI与生成API
- [LLM API](api/llm-api.md) - 大语言模型交互接口可以使用内置LLM生成内容
- [✨ 回复生成器API](api/generator-api.md) - 智能回复生成接口,可以使用内置风格化生成器
### 表情包API
- [😊 表情包API](api/emoji-api.md) - 表情包选择和管理接口
### 关系系统API
- [人物信息API](api/person-api.md) - 用户信息,处理麦麦认识的人和关系的接口
### 数据与配置API
- [🗄️ 数据库API](api/database-api.md) - 数据库操作接口
- [⚙️ 配置API](api/config-api.md) - 配置读取和用户信息接口
### 插件和组件管理API
- [🔌 插件API](api/plugin-manage-api.md) - 插件加载和管理接口
- [🧩 组件API](api/component-manage-api.md) - 组件注册和管理接口
### 日志API
- [📜 日志API](api/logging-api.md) - logger实例获取接口
### 工具API
- [🔧 工具API](api/tool-api.md) - tool获取接口
## 支持
> 如果你在文档中发现错误或需要补充,请:
1. 检查最新的文档版本
2. 查看相关示例代码
3. 参考其他类似插件
4. 提交文档仓库issue
## 一个方便的小设计
我们在`__init__.py`中定义了一个`__all__`变量,包含了所有需要导出的类和函数。
这样在其他地方导入时,可以直接使用 `from src.plugin_system import *` 来导入所有插件相关的类和函数。
或者你可以直接使用 `from src.plugin_system import BasePlugin, register_plugin, ComponentInfo` 之类的方式来导入你需要的部分。

View File

@@ -0,0 +1,205 @@
# 📄 插件Manifest系统指南
## 概述
MaiBot插件系统现在强制要求每个插件都必须包含一个 `_manifest.json` 文件。这个文件描述了插件的基本信息、依赖关系、组件等重要元数据。
### 🔄 配置架构Manifest与Config的职责分离
为了避免信息重复和提高维护性,我们采用了**双文件架构**
- **`_manifest.json`** - 插件的**静态元数据**
- 插件身份信息(名称、版本、描述)
- 开发者信息(作者、许可证、仓库)
- 系统信息(兼容性、组件列表、分类)
- **`config.toml`** - 插件的**运行时配置**
- 启用状态 (`enabled`)
- 功能参数配置
- 用户可调整的行为设置
这种分离确保了:
- ✅ 元数据信息统一管理
- ✅ 运行时配置灵活调整
- ✅ 避免重复维护
- ✅ 更清晰的职责划分
## 🔧 Manifest文件结构
### 必需字段
以下字段是必需的,不能为空:
```json
{
"manifest_version": 1,
"name": "插件显示名称",
"version": "1.0.0",
"description": "插件功能描述",
"author": {
"name": "作者名称"
}
}
```
### 可选字段
以下字段都是可选的,可以根据需要添加:
```json
{
"license": "MIT",
"host_application": {
"min_version": "1.0.0",
"max_version": "4.0.0"
},
"homepage_url": "https://github.com/your-repo",
"repository_url": "https://github.com/your-repo",
"keywords": ["关键词1", "关键词2"],
"categories": ["分类1", "分类2"],
"default_locale": "zh-CN",
"locales_path": "_locales",
"plugin_info": {
"is_built_in": false,
"plugin_type": "general",
"components": [
{
"type": "action",
"name": "组件名称",
"description": "组件描述"
}
]
}
}
```
## 🛠️ 管理工具
### 使用manifest_tool.py
我们提供了一个命令行工具来帮助管理manifest文件
```bash
# 扫描缺少manifest的插件
python scripts/manifest_tool.py scan src/plugins
# 为插件创建最小化manifest文件
python scripts/manifest_tool.py create-minimal src/plugins/my_plugin --name "我的插件" --author "作者"
# 为插件创建完整manifest模板
python scripts/manifest_tool.py create-complete src/plugins/my_plugin --name "我的插件"
# 验证manifest文件
python scripts/manifest_tool.py validate src/plugins/my_plugin
```
### 验证示例
验证通过的示例:
```
✅ Manifest文件验证通过
```
验证失败的示例:
```
❌ 验证错误:
- 缺少必需字段: name
- 作者信息缺少name字段或为空
⚠️ 验证警告:
- 建议填写字段: license
- 建议填写字段: keywords
```
## 🔄 迁移指南
### 对于现有插件
1. **检查缺少manifest的插件**
```bash
python scripts/manifest_tool.py scan src/plugins
```
2. **为每个插件创建manifest**
```bash
python scripts/manifest_tool.py create-minimal src/plugins/your_plugin
```
3. **编辑manifest文件**,填写正确的信息。
4. **验证manifest**
```bash
python scripts/manifest_tool.py validate src/plugins/your_plugin
```
### 对于新插件
创建新插件时,建议的步骤:
1. **创建插件目录和基本文件**
2. **创建完整manifest模板**
```bash
python scripts/manifest_tool.py create-complete src/plugins/new_plugin
```
3. **根据实际情况修改manifest文件**
4. **编写插件代码**
5. **验证manifest文件**
## 📋 字段说明
### 基本信息
- `manifest_version`: manifest格式版本当前为1
- `name`: 插件显示名称(必需)
- `version`: 插件版本号(必需)
- `description`: 插件功能描述(必需)
- `author`: 作者信息(必需)
- `name`: 作者名称(必需)
- `url`: 作者主页(可选)
### 许可和URL
- `license`: 插件许可证(可选,建议填写)
- `homepage_url`: 插件主页(可选)
- `repository_url`: 源码仓库地址(可选)
### 分类和标签
- `keywords`: 关键词数组(可选,建议填写)
- `categories`: 分类数组(可选,建议填写)
### 兼容性
- `host_application`: 主机应用兼容性(可选,建议填写)
- `min_version`: 最低兼容版本
- `max_version`: 最高兼容版本
⚠️ 在不填写的情况下,插件将默认支持所有版本。**(由于我们在不同版本对插件系统进行了大量的重构,这种情况几乎不可能。)**
### 国际化
- `default_locale`: 默认语言(可选)
- `locales_path`: 语言文件目录(可选)
### 插件特定信息
- `plugin_info`: 插件详细信息(可选)
- `is_built_in`: 是否为内置插件
- `plugin_type`: 插件类型
- `components`: 组件列表
## ⚠️ 注意事项
1. **强制要求**:所有插件必须包含`_manifest.json`文件,否则无法加载
2. **编码格式**manifest文件必须使用UTF-8编码
3. **JSON格式**文件必须是有效的JSON格式
4. **必需字段**`manifest_version`、`name`、`version`、`description`、`author.name`是必需的
5. **版本兼容**:当前只支持`manifest_version = 1`
## 🔍 常见问题
### Q: 可以不填写可选字段吗?
A: 可以。所有标记为"可选"的字段都可以不填写,但建议至少填写`license`和`keywords`。
### Q: manifest验证失败怎么办
A: 根据验证器的错误提示修复相应问题。错误会导致插件加载失败,警告不会。
## 📚 参考示例
查看内置插件的manifest文件作为参考
- `src/plugins/built_in/core_actions/_manifest.json`
- `src/plugins/built_in/tts_plugin/_manifest.json`
- `src/plugins/hello_world_plugin/_manifest.json`

428
docs/plugins/quick-start.md Normal file
View File

@@ -0,0 +1,428 @@
# 🚀 快速开始指南
本指南将带你从零开始创建一个功能完整的MaiCore插件。
## 📖 概述
这个指南将带你快速创建你的第一个MaiCore插件。我们将创建一个简单的问候插件展示插件系统的基本概念。
以下代码都在我们的`plugins/hello_world_plugin/`目录下。
### 一个方便的小设计
在开发中,我们在`__init__.py`中定义了一个`__all__`变量,包含了所有需要导出的类和函数。
这样在其他地方导入时,可以直接使用 `from src.plugin_system import *` 来导入所有插件相关的类和函数。
或者你可以直接使用 `from src.plugin_system import BasePlugin, register_plugin, ComponentInfo` 之类的方式来导入你需要的部分。
### 📂 准备工作
确保你已经:
1. 克隆了MaiCore项目
2. 安装了Python依赖
3. 了解基本的Python语法
## 🏗️ 创建插件
### 1. 创建插件目录
在项目根目录的 `plugins/` 文件夹下创建你的插件目录
这里我们创建一个名为 `hello_world_plugin` 的目录
### 2. 创建`_manifest.json`文件
在插件目录下面创建一个 `_manifest.json` 文件,内容如下:
```json
{
"manifest_version": 1,
"name": "Hello World 插件",
"version": "1.0.0",
"description": "一个简单的 Hello World 插件",
"author": {
"name": "你的名字"
}
}
```
有关 `_manifest.json` 的详细说明,请参考 [Manifest文件指南](./manifest-guide.md)。
### 3. 创建最简单的插件
让我们从最基础的开始!创建 `plugin.py` 文件:
```python
from typing import List, Tuple, Type
from src.plugin_system import BasePlugin, register_plugin, ComponentInfo
@register_plugin # 注册插件
class HelloWorldPlugin(BasePlugin):
"""Hello World插件 - 你的第一个MaiCore插件"""
# 以下是插件基本信息和方法(必须填写)
plugin_name = "hello_world_plugin"
enable_plugin = True # 启用插件
dependencies = [] # 插件依赖列表(目前为空)
python_dependencies = [] # Python依赖列表目前为空
config_file_name = "config.toml" # 配置文件名
config_schema = {} # 配置文件模式(目前为空)
def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]: # 获取插件组件
"""返回插件包含的组件列表(目前是空的)"""
return []
```
🎉 恭喜你刚刚创建了一个最简单但完整的MaiCore插件
**解释一下这些代码:**
- 首先,我们在`plugin.py`中定义了一个HelloWorldPlugin插件类继承自 `BasePlugin` ,提供基本功能。
- 通过给类加上,`@register_plugin` 装饰器,我们告诉系统"这是一个插件"
- `plugin_name` 等是插件的基本信息,必须填写
- `get_plugin_components()` 返回插件的功能组件,现在我们没有定义任何 Action, Command 或者 EventHandler所以返回空列表。
### 4. 测试基础插件
现在就可以测试这个插件了启动MaiCore
直接通过启动器运行MaiCore或者 `python bot.py`
在日志中你应该能看到插件被加载的信息。虽然插件还没有任何功能,但它已经成功运行了!
![1750326700269](image/quick-start/1750326700269.png)
### 5. 添加第一个功能问候Action
现在我们要给插件加入一个有用的功能我们从最好玩的Action做起
Action是一类可以让MaiCore根据自身意愿选择使用的“动作”在MaiCore中不论是“回复”还是“不回复”或者“发送表情”以及“禁言”等等都是通过Action实现的。
你可以通过编写动作来拓展MaiCore的能力包括发送语音截图甚至操作文件编写代码......
现在让我们给插件添加第一个简单的功能。这个Action可以对用户发送一句问候语。
`plugin.py` 文件中添加Action组件完整代码如下
```python
from typing import List, Tuple, Type
from src.plugin_system import (
BasePlugin, register_plugin, BaseAction,
ComponentInfo, ActionActivationType, ChatMode
)
# ===== Action组件 =====
class HelloAction(BaseAction):
"""问候Action - 简单的问候动作"""
# === 基本信息(必须填写)===
action_name = "hello_greeting"
action_description = "向用户发送问候消息"
activation_type = ActionActivationType.ALWAYS # 始终激活
# === 功能描述(必须填写)===
action_parameters = {"greeting_message": "要发送的问候消息"}
action_require = ["需要发送友好问候时使用", "当有人向你问好时使用", "当你遇见没有见过的人时使用"]
associated_types = ["text"]
async def execute(self) -> Tuple[bool, str]:
"""执行问候动作 - 这是核心功能"""
# 发送问候消息
greeting_message = self.action_data.get("greeting_message", "")
base_message = self.get_config("greeting.message", "嗨!很开心见到你!😊")
message = base_message + greeting_message
await self.send_text(message)
return True, "发送了问候消息"
@register_plugin
class HelloWorldPlugin(BasePlugin):
"""Hello World插件 - 你的第一个MaiCore插件"""
# 插件基本信息
plugin_name = "hello_world_plugin"
enable_plugin = True
dependencies = []
python_dependencies = []
config_file_name = "config.toml"
config_schema = {}
def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]:
"""返回插件包含的组件列表"""
return [
# 添加我们的问候Action
(HelloAction.get_action_info(), HelloAction),
]
```
**解释一下这些代码:**
- `HelloAction` 是我们定义的问候动作类,继承自 `BaseAction`,并实现了核心功能。
-`HelloWorldPlugin` 中,我们通过 `get_plugin_components()` 方法,通过调用`get_action_info()`这个内置方法将 `HelloAction` 注册为插件的一个组件。
- 这样一来当插件被加载时问候动作也会被一并加载并可以在MaiCore中使用。
- `execute()` 函数是Action的核心定义了当Action被MaiCore选择后具体要做什么
- `self.send_text()` 是发送文本消息的便捷方法
Action 组件中有关`activation_type``action_parameters``action_require``associated_types` 等的详细说明请参考 [Action组件指南](./action-components.md)。
### 6. 测试问候Action
重启MaiCore然后在聊天中发送任意消息比如
```
你好
```
MaiCore可能会选择使用你的问候Action发送回复
```
嗨!很开心见到你!😊
```
![1750332508760](image/quick-start/1750332508760.png)
> **💡 小提示**MaiCore会智能地决定什么时候使用它。如果没有立即看到效果多试几次不同的消息。
🎉 太棒了!你的插件已经有实际功能了!
### 7. 添加第二个功能时间查询Command
现在让我们添加一个Command组件。Command和Action不同它是直接响应用户命令的
Command是最简单最直接的响应不由LLM判断选择使用
```python
# 在现有代码基础上添加Command组件
import datetime
from src.plugin_system import BaseCommand
#导入Command基类
class TimeCommand(BaseCommand):
"""时间查询Command - 响应/time命令"""
command_name = "time"
command_description = "查询当前时间"
# === 命令设置(必须填写)===
command_pattern = r"^/time$" # 精确匹配 "/time" 命令
async def execute(self) -> Tuple[bool, Optional[str], bool]:
"""执行时间查询"""
# 获取当前时间
time_format: str = "%Y-%m-%d %H:%M:%S"
now = datetime.datetime.now()
time_str = now.strftime(time_format)
# 发送时间信息
message = f"⏰ 当前时间:{time_str}"
await self.send_text(message)
return True, f"显示了当前时间: {time_str}", True
@register_plugin
class HelloWorldPlugin(BasePlugin):
"""Hello World插件 - 你的第一个MaiCore插件"""
# 插件基本信息
plugin_name = "hello_world_plugin"
enable_plugin = True
dependencies = []
python_dependencies = []
config_file_name = "config.toml"
config_schema = {}
def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]:
return [
(HelloAction.get_action_info(), HelloAction),
(TimeCommand.get_command_info(), TimeCommand),
]
```
同样的,我们通过 `get_plugin_components()` 方法,通过调用`get_action_info()`这个内置方法将 `TimeCommand` 注册为插件的一个组件。
**Command组件解释**
- `command_pattern` 使用正则表达式匹配用户输入
- `^/time$` 表示精确匹配 "/time"
有关 Command 组件的更多信息,请参考 [Command组件指南](./command-components.md)。
### 8. 测试时间查询Command
重启MaiCore发送命令
```
/time
```
你应该会收到回复:
```
⏰ 当前时间2024-01-01 12:00:00
```
🎉 太棒了!现在你已经了解了基本的 Action 和 Command 组件的使用方法。你可以根据自己的需求,继续扩展插件的功能,添加更多的 Action 和 Command 组件,让你的插件更加丰富和强大!
---
## 进阶教程
如果你想让插件更加灵活和强大,可以参考接下来的进阶教程。
### 1. 添加配置文件
想要为插件添加配置文件吗?让我们一起来配置`config_schema`属性!
> **🚨 重要不要手动创建config.toml文件**
>
> 我们需要在插件代码中定义配置Schema让系统自动生成配置文件。
首先在插件类中定义配置Schema
```python
from src.plugin_system import ConfigField
@register_plugin
class HelloWorldPlugin(BasePlugin):
"""Hello World插件 - 你的第一个MaiCore插件"""
# 插件基本信息
plugin_name: str = "hello_world_plugin" # 内部标识符
enable_plugin: bool = True
dependencies: List[str] = [] # 插件依赖列表
python_dependencies: List[str] = [] # Python包依赖列表
config_file_name: str = "config.toml" # 配置文件名
# 配置Schema定义
config_schema: dict = {
"plugin": {
"name": ConfigField(type=str, default="hello_world_plugin", description="插件名称"),
"version": ConfigField(type=str, default="1.0.0", description="插件版本"),
"enabled": ConfigField(type=bool, default=False, description="是否启用插件"),
},
"greeting": {
"message": ConfigField(type=str, default="嗨!很开心见到你!😊", description="默认问候消息"),
"enable_emoji": ConfigField(type=bool, default=True, description="是否启用表情符号"),
},
"time": {"format": ConfigField(type=str, default="%Y-%m-%d %H:%M:%S", description="时间显示格式")},
}
def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]:
return [
(HelloAction.get_action_info(), HelloAction),
(TimeCommand.get_command_info(), TimeCommand),
]
```
这会生成一个如下的 `config.toml` 文件:
```toml
# hello_world_plugin - 自动生成的配置文件
# 我的第一个MaiCore插件包含问候功能和时间查询等基础示例
# 插件基本信息
[plugin]
# 插件名称
name = "hello_world_plugin"
# 插件版本
version = "1.0.0"
# 是否启用插件
enabled = false
# 问候功能配置
[greeting]
# 默认问候消息
message = "嗨!很开心见到你!😊"
# 是否启用表情符号
enable_emoji = true
# 时间查询配置
[time]
# 时间显示格式
format = "%Y-%m-%d %H:%M:%S"
```
然后修改Action和Command代码通过 `get_config()` 方法让它们读取配置(配置的键是命名空间式的):
```python
class HelloAction(BaseAction):
"""问候Action - 简单的问候动作"""
# === 基本信息(必须填写)===
action_name = "hello_greeting"
action_description = "向用户发送问候消息"
activation_type = ActionActivationType.ALWAYS # 始终激活
# === 功能描述(必须填写)===
action_parameters = {"greeting_message": "要发送的问候消息"}
action_require = ["需要发送友好问候时使用", "当有人向你问好时使用", "当你遇见没有见过的人时使用"]
associated_types = ["text"]
async def execute(self) -> Tuple[bool, str]:
"""执行问候动作 - 这是核心功能"""
# 发送问候消息
greeting_message = self.action_data.get("greeting_message", "")
base_message = self.get_config("greeting.message", "嗨!很开心见到你!😊")
message = base_message + greeting_message
await self.send_text(message)
return True, "发送了问候消息"
class TimeCommand(BaseCommand):
"""时间查询Command - 响应/time命令"""
command_name = "time"
command_description = "查询当前时间"
# === 命令设置(必须填写)===
command_pattern = r"^/time$" # 精确匹配 "/time" 命令
async def execute(self) -> Tuple[bool, str, bool]:
"""执行时间查询"""
import datetime
# 获取当前时间
time_format: str = self.get_config("time.format", "%Y-%m-%d %H:%M:%S") # type: ignore
now = datetime.datetime.now()
time_str = now.strftime(time_format)
# 发送时间信息
message = f"⏰ 当前时间:{time_str}"
await self.send_text(message)
return True, f"显示了当前时间: {time_str}", True
```
**配置系统工作流程:**
1. **定义Schema**: 在插件代码中定义配置结构
2. **自动生成**: 启动插件时,系统会自动生成 `config.toml` 文件
3. **用户修改**: 用户可以修改生成的配置文件
4. **代码读取**: 使用 `self.get_config()` 读取配置值
**绝对不要手动创建 `config.toml` 文件!**
更详细的配置系统介绍请参考 [配置指南](./configuration-guide.md)。
### 2. 创建说明文档
你可以创建一个 `README.md` 文件,描述插件的功能和使用方法。
### 3. 发布到插件市场
如果你想让更多人使用你的插件可以将它发布到MaiCore的插件市场。
这部分请参考 [plugin-repo](https://github.com/Maim-with-u/plugin-repo) 的文档。
---
🎉 恭喜你!你已经成功的创建了自己的插件了!

View File

@@ -0,0 +1,246 @@
# 🔧 工具组件详解
## 📖 什么是工具
工具是MaiBot的信息获取能力扩展组件。如果说Action组件功能五花八门可以拓展麦麦能做的事情那么Tool就是在某个过程中拓宽了麦麦能够获得的信息量。
### 🎯 工具的特点
- 🔍 **信息获取增强**:扩展麦麦获取外部信息的能力
- 📊 **数据丰富**:帮助麦麦获得更多背景信息和实时数据
- 🔌 **插件式架构**:支持独立开发和注册新工具
-**自动发现**:工具会被系统自动识别和注册
### 🆚 Tool vs Action vs Command 区别
| 特征 | Action | Command | Tool |
|-----|-------|---------|------|
| **主要用途** | 扩展麦麦行为能力 | 响应用户指令 | 扩展麦麦信息获取 |
| **触发方式** | 麦麦智能决策 | 用户主动触发 | LLM根据需要调用 |
| **目标** | 让麦麦做更多事情 | 提供具体功能 | 让麦麦知道更多信息 |
| **使用场景** | 增强交互体验 | 功能服务 | 信息查询和分析 |
## 🏗️ Tool组件的基本结构
每个工具必须继承 `BaseTool` 基类并实现以下属性和方法:
```python
from src.plugin_system import BaseTool, ToolParamType
class MyTool(BaseTool):
# 工具名称,必须唯一
name = "my_tool"
# 工具描述告诉LLM这个工具的用途
description = "这个工具用于获取特定类型的信息"
# 参数定义,仅定义参数
# 比如想要定义一个类似下面的openai格式的参数表则可以这么定义:
# {
# "type": "object",
# "properties": {
# "query": {
# "type": "string",
# "description": "查询参数"
# },
# "limit": {
# "type": "integer",
# "description": "结果数量限制"
# "enum": [10, 20, 50] # 可选值
# }
# },
# "required": ["query"]
# }
parameters = [
("query", ToolParamType.STRING, "查询参数", True, None), # 必填参数
("limit", ToolParamType.INTEGER, "结果数量限制", False, ["10", "20", "50"]) # 可选参数
]
available_for_llm = True # 是否对LLM可用
async def execute(self, function_args: Dict[str, Any]):
"""执行工具逻辑"""
# 实现工具功能
result = f"查询结果: {function_args.get('query')}"
return {
"name": self.name,
"content": result
}
```
### 属性说明
| 属性 | 类型 | 说明 |
|-----|------|------|
| `name` | str | 工具的唯一标识名称 |
| `description` | str | 工具功能描述帮助LLM理解用途 |
| `parameters` | list[tuple] | 参数定义 |
其构造而成的工具定义为:
```python
definition: Dict[str, Any] = {"name": cls.name, "description": cls.description, "parameters": cls.parameters}
```
### 方法说明
| 方法 | 参数 | 返回值 | 说明 |
|-----|------|--------|------|
| `execute` | `function_args` | `dict` | 执行工具核心逻辑 |
---
## 🎨 完整工具示例
完成一个天气查询工具
```python
from src.plugin_system import BaseTool
import aiohttp
import json
class WeatherTool(BaseTool):
"""天气查询工具 - 获取指定城市的实时天气信息"""
name = "weather_query"
description = "查询指定城市的实时天气信息,包括温度、湿度、天气状况等"
available_for_llm = True # 允许LLM调用此工具
parameters = [
("city", ToolParamType.STRING, "要查询天气的城市名称,如:北京、上海、纽约", True, None),
("country", ToolParamType.STRING, "国家代码CN、US可选参数", False, None)
]
async def execute(self, function_args: dict):
"""执行天气查询"""
try:
city = function_args.get("city")
country = function_args.get("country", "")
# 构建查询参数
location = f"{city},{country}" if country else city
# 调用天气API示例
weather_data = await self._fetch_weather(location)
# 格式化结果
result = self._format_weather_data(weather_data)
return {
"name": self.name,
"content": result
}
except Exception as e:
return {
"name": self.name,
"content": f"天气查询失败: {str(e)}"
}
async def _fetch_weather(self, location: str) -> dict:
"""获取天气数据"""
# 这里是示例实际需要接入真实的天气API
api_url = f"http://api.weather.com/v1/current?q={location}"
async with aiohttp.ClientSession() as session:
async with session.get(api_url) as response:
return await response.json()
def _format_weather_data(self, data: dict) -> str:
"""格式化天气数据"""
if not data:
return "暂无天气数据"
# 提取关键信息
city = data.get("location", {}).get("name", "未知城市")
temp = data.get("current", {}).get("temp_c", "未知")
condition = data.get("current", {}).get("condition", {}).get("text", "未知")
humidity = data.get("current", {}).get("humidity", "未知")
# 格式化输出
return f"""
🌤️ {city} 实时天气
━━━━━━━━━━━━━━━━━━
🌡️ 温度: {temp}°C
☁️ 天气: {condition}
💧 湿度: {humidity}%
━━━━━━━━━━━━━━━━━━
""".strip()
```
---
## 🚨 注意事项和限制
### 当前限制
1. **适用范围**:主要适用于信息获取场景
2. **配置要求**:必须开启工具处理器
### 开发建议
1. **功能专一**:每个工具专注单一功能
2. **参数明确**:清晰定义工具参数和用途
3. **错误处理**:完善的异常处理和错误反馈
4. **性能考虑**:避免长时间阻塞操作
5. **信息准确**:确保获取信息的准确性和时效性
## 🎯 最佳实践
### 1. 工具命名规范
#### ✅ 好的命名
```python
name = "weather_query" # 清晰表达功能
name = "knowledge_search" # 描述性强
name = "stock_price_check" # 功能明确
```
#### ❌ 避免的命名
```python
name = "tool1" # 无意义
name = "wq" # 过于简短
name = "weather_and_news" # 功能过于复杂
```
### 2. 描述规范
#### ✅ 良好的描述
```python
description = "查询指定城市的实时天气信息,包括温度、湿度、天气状况"
```
#### ❌ 避免的描述
```python
description = "天气" # 过于简单
description = "获取信息" # 不够具体
```
### 3. 参数设计
#### ✅ 合理的参数设计
```python
parameters = [
("city", ToolParamType.STRING, "城市名称,如:北京、上海", True, None),
("unit", ToolParamType.STRING, "温度单位celsius 或 fahrenheit", False, ["celsius", "fahrenheit"])
]
```
#### ❌ 避免的参数设计
```python
parameters = [
("data", "string", "数据", True) # 参数过于模糊
]
```
### 4. 结果格式化
#### ✅ 良好的结果格式
```python
def _format_result(self, data):
return f"""
🔍 查询结果
━━━━━━━━━━━━
📊 数据: {data['value']}
📅 时间: {data['timestamp']}
📝 说明: {data['description']}
━━━━━━━━━━━━
""".strip()
```
#### ❌ 避免的结果格式
```python
def _format_result(self, data):
return str(data) # 直接返回原始数据
```