feat:给动作添加了选择器,并添加了新api
This commit is contained in:
@@ -441,31 +441,33 @@ class HeartFChatting:
|
||||
"observations": self.observations,
|
||||
}
|
||||
|
||||
with Timer("调整动作", cycle_timers):
|
||||
# 处理特殊的观察
|
||||
await self.action_modifier.modify_actions(observations=self.observations)
|
||||
await self.action_observation.observe()
|
||||
self.observations.append(self.action_observation)
|
||||
# 根据配置决定是否并行执行调整动作、回忆和处理器阶段
|
||||
|
||||
# 根据配置决定是否并行执行回忆和处理器阶段
|
||||
# print(global_config.focus_chat.parallel_processing)
|
||||
if global_config.focus_chat.parallel_processing:
|
||||
# 并行执行回忆和处理器阶段
|
||||
with Timer("并行回忆和处理", cycle_timers):
|
||||
memory_task = asyncio.create_task(self.memory_activator.activate_memory(self.observations))
|
||||
processor_task = asyncio.create_task(self._process_processors(self.observations, []))
|
||||
|
||||
# 等待两个任务完成
|
||||
running_memorys, (all_plan_info, processor_time_costs) = await asyncio.gather(
|
||||
memory_task, processor_task
|
||||
# 并行执行调整动作、回忆和处理器阶段
|
||||
with Timer("并行调整动作、处理", cycle_timers):
|
||||
# 创建并行任务
|
||||
async def modify_actions_task():
|
||||
# 调用完整的动作修改流程
|
||||
await self.action_modifier.modify_actions(
|
||||
observations=self.observations,
|
||||
)
|
||||
else:
|
||||
# 串行执行
|
||||
with Timer("回忆", cycle_timers):
|
||||
running_memorys = await self.memory_activator.activate_memory(self.observations)
|
||||
|
||||
await self.action_observation.observe()
|
||||
self.observations.append(self.action_observation)
|
||||
return True
|
||||
|
||||
# 创建三个并行任务
|
||||
action_modify_task = asyncio.create_task(modify_actions_task())
|
||||
memory_task = asyncio.create_task(self.memory_activator.activate_memory(self.observations))
|
||||
processor_task = asyncio.create_task(self._process_processors(self.observations, []))
|
||||
|
||||
# 等待三个任务完成
|
||||
_, running_memorys, (all_plan_info, processor_time_costs) = await asyncio.gather(
|
||||
action_modify_task, memory_task, processor_task
|
||||
)
|
||||
|
||||
|
||||
|
||||
with Timer("执行 信息处理器", cycle_timers):
|
||||
all_plan_info, processor_time_costs = await self._process_processors(self.observations, running_memorys)
|
||||
|
||||
loop_processor_info = {
|
||||
"all_plan_info": all_plan_info,
|
||||
|
||||
@@ -60,6 +60,13 @@ class ActionManager:
|
||||
action_require: list[str] = getattr(action_class, "action_require", [])
|
||||
associated_types: list[str] = getattr(action_class, "associated_types", [])
|
||||
is_default: bool = getattr(action_class, "default", False)
|
||||
|
||||
# 获取激活类型相关属性
|
||||
activation_type: str = getattr(action_class, "action_activation_type", "always")
|
||||
random_probability: float = getattr(action_class, "random_activation_probability", 0.3)
|
||||
llm_judge_prompt: str = getattr(action_class, "llm_judge_prompt", "")
|
||||
activation_keywords: list[str] = getattr(action_class, "activation_keywords", [])
|
||||
keyword_case_sensitive: bool = getattr(action_class, "keyword_case_sensitive", False)
|
||||
|
||||
if action_name and action_description:
|
||||
# 创建动作信息字典
|
||||
@@ -68,6 +75,11 @@ class ActionManager:
|
||||
"parameters": action_parameters,
|
||||
"require": action_require,
|
||||
"associated_types": associated_types,
|
||||
"activation_type": activation_type,
|
||||
"random_probability": random_probability,
|
||||
"llm_judge_prompt": llm_judge_prompt,
|
||||
"activation_keywords": activation_keywords,
|
||||
"keyword_case_sensitive": keyword_case_sensitive,
|
||||
}
|
||||
|
||||
# 添加到所有已注册的动作
|
||||
|
||||
@@ -8,6 +8,12 @@ logger = get_logger("base_action")
|
||||
_ACTION_REGISTRY: Dict[str, Type["BaseAction"]] = {}
|
||||
_DEFAULT_ACTIONS: Dict[str, str] = {}
|
||||
|
||||
# 动作激活类型枚举
|
||||
class ActionActivationType:
|
||||
ALWAYS = "always" # 默认参与到planner
|
||||
LLM_JUDGE = "llm_judge" # LLM判定是否启动该action到planner
|
||||
RANDOM = "random" # 随机启用action到planner
|
||||
KEYWORD = "keyword" # 关键词触发启用action到planner
|
||||
|
||||
def register_action(cls):
|
||||
"""
|
||||
@@ -18,6 +24,7 @@ def register_action(cls):
|
||||
class MyAction(BaseAction):
|
||||
action_name = "my_action"
|
||||
action_description = "我的动作"
|
||||
action_activation_type = ActionActivationType.ALWAYS
|
||||
...
|
||||
"""
|
||||
# 检查类是否有必要的属性
|
||||
@@ -65,6 +72,17 @@ class BaseAction(ABC):
|
||||
self.action_description: str = "基础动作"
|
||||
self.action_parameters: dict = {}
|
||||
self.action_require: list[str] = []
|
||||
|
||||
# 动作激活类型,默认为always
|
||||
self.action_activation_type: str = ActionActivationType.ALWAYS
|
||||
# 随机激活的概率(0.0-1.0),仅当activation_type为random时有效
|
||||
self.random_activation_probability: float = 0.3
|
||||
# LLM判定的提示词,仅当activation_type为llm_judge时有效
|
||||
self.llm_judge_prompt: str = ""
|
||||
# 关键词触发列表,仅当activation_type为keyword时有效
|
||||
self.activation_keywords: list[str] = []
|
||||
# 关键词匹配是否区分大小写
|
||||
self.keyword_case_sensitive: bool = False
|
||||
|
||||
self.associated_types: list[str] = []
|
||||
|
||||
|
||||
@@ -2,7 +2,7 @@ import asyncio
|
||||
import traceback
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.chat.utils.timer_calculator import Timer
|
||||
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action
|
||||
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ActionActivationType
|
||||
from typing import Tuple, List
|
||||
from src.chat.heart_flow.observation.observation import Observation
|
||||
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
|
||||
@@ -29,6 +29,9 @@ class NoReplyAction(BaseAction):
|
||||
"想要休息一下",
|
||||
]
|
||||
default = True
|
||||
|
||||
# 激活类型设置
|
||||
action_activation_type = ActionActivationType.ALWAYS
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import traceback
|
||||
from typing import Tuple, Dict, List, Any, Optional, Union, Type
|
||||
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action # noqa F401
|
||||
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ActionActivationType # noqa F401
|
||||
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
|
||||
from src.chat.focus_chat.hfc_utils import create_empty_anchor_message
|
||||
from src.common.logger_manager import get_logger
|
||||
@@ -33,6 +33,13 @@ class PluginAction(BaseAction):
|
||||
"""
|
||||
|
||||
action_config_file_name: Optional[str] = None # 插件可以覆盖此属性来指定配置文件名
|
||||
|
||||
# 默认激活类型设置,插件可以覆盖
|
||||
action_activation_type = ActionActivationType.ALWAYS
|
||||
random_activation_probability: float = 0.3
|
||||
llm_judge_prompt: str = ""
|
||||
activation_keywords: list[str] = []
|
||||
keyword_case_sensitive: bool = False
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action
|
||||
from src.chat.focus_chat.planners.actions.base_action import BaseAction, register_action, ActionActivationType
|
||||
from typing import Tuple, List
|
||||
from src.chat.heart_flow.observation.observation import Observation
|
||||
from src.chat.focus_chat.replyer.default_replyer import DefaultReplyer
|
||||
@@ -38,6 +38,9 @@ class ReplyAction(BaseAction):
|
||||
associated_types: list[str] = ["text", "emoji"]
|
||||
|
||||
default = True
|
||||
|
||||
# 激活类型设置
|
||||
action_activation_type = ActionActivationType.ALWAYS
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
||||
@@ -1,12 +1,16 @@
|
||||
from typing import List, Optional, Any
|
||||
from typing import List, Optional, Any, Dict
|
||||
from src.chat.heart_flow.observation.observation import Observation
|
||||
from src.common.logger_manager import get_logger
|
||||
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
|
||||
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
|
||||
from src.chat.message_receive.chat_stream import chat_manager
|
||||
from typing import Dict
|
||||
from src.config.config import global_config
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.chat.focus_chat.planners.actions.base_action import ActionActivationType
|
||||
import random
|
||||
import asyncio
|
||||
import hashlib
|
||||
import time
|
||||
from src.chat.focus_chat.planners.action_manager import ActionManager
|
||||
|
||||
logger = get_logger("action_manager")
|
||||
@@ -15,25 +19,47 @@ logger = get_logger("action_manager")
|
||||
class ActionModifier:
|
||||
"""动作处理器
|
||||
|
||||
用于处理Observation对象,将其转换为ObsInfo对象。
|
||||
用于处理Observation对象和根据激活类型处理actions。
|
||||
集成了原有的modify_actions功能和新的激活类型处理功能。
|
||||
支持并行判定和智能缓存优化。
|
||||
"""
|
||||
|
||||
log_prefix = "动作处理"
|
||||
|
||||
def __init__(self, action_manager: ActionManager):
|
||||
"""初始化观察处理器"""
|
||||
"""初始化动作处理器"""
|
||||
self.action_manager = action_manager
|
||||
self.all_actions = self.action_manager.get_registered_actions()
|
||||
|
||||
# 用于LLM判定的小模型
|
||||
self.llm_judge = LLMRequest(
|
||||
model=global_config.model.utils_small,
|
||||
request_type="action.judge",
|
||||
)
|
||||
|
||||
# 缓存相关属性
|
||||
self._llm_judge_cache = {} # 缓存LLM判定结果
|
||||
self._cache_expiry_time = 30 # 缓存过期时间(秒)
|
||||
self._last_context_hash = None # 上次上下文的哈希值
|
||||
|
||||
async def modify_actions(
|
||||
self,
|
||||
observations: Optional[List[Observation]] = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
# 处理Observation对象
|
||||
"""
|
||||
完整的动作修改流程,整合传统观察处理和新的激活类型判定
|
||||
|
||||
这个方法处理完整的动作管理流程:
|
||||
1. 基于观察的传统动作修改(循环历史分析、类型匹配等)
|
||||
2. 基于激活类型的智能动作判定,最终确定可用动作集
|
||||
|
||||
处理后,ActionManager 将包含最终的可用动作集,供规划器直接使用
|
||||
"""
|
||||
logger.debug(f"{self.log_prefix}开始完整动作修改流程")
|
||||
|
||||
# === 第一阶段:传统观察处理 ===
|
||||
if observations:
|
||||
# action_info = ActionInfo()
|
||||
# all_actions = None
|
||||
hfc_obs = None
|
||||
chat_obs = None
|
||||
|
||||
@@ -43,12 +69,13 @@ class ActionModifier:
|
||||
hfc_obs = obs
|
||||
if isinstance(obs, ChattingObservation):
|
||||
chat_obs = obs
|
||||
chat_content = obs.talking_message_str_truncate
|
||||
|
||||
# 合并所有动作变更
|
||||
merged_action_changes = {"add": [], "remove": []}
|
||||
reasons = []
|
||||
|
||||
# 处理HFCloopObservation
|
||||
# 处理HFCloopObservation - 传统的循环历史分析
|
||||
if hfc_obs:
|
||||
obs = hfc_obs
|
||||
all_actions = self.all_actions
|
||||
@@ -57,14 +84,15 @@ class ActionModifier:
|
||||
# 合并动作变更
|
||||
merged_action_changes["add"].extend(action_changes["add"])
|
||||
merged_action_changes["remove"].extend(action_changes["remove"])
|
||||
reasons.append("基于循环历史分析")
|
||||
|
||||
# 详细记录循环历史分析的变更原因
|
||||
for action_name in action_changes["add"]:
|
||||
logger.info(f"{self.log_prefix}添加动作: {action_name},原因: 循环历史分析建议添加")
|
||||
for action_name in action_changes["remove"]:
|
||||
logger.info(f"{self.log_prefix}移除动作: {action_name},原因: 循环历史分析建议移除")
|
||||
|
||||
# 收集变更原因
|
||||
# if action_changes["add"]:
|
||||
# reasons.append(f"添加动作{action_changes['add']}因为检测到大量无回复")
|
||||
# if action_changes["remove"]:
|
||||
# reasons.append(f"移除动作{action_changes['remove']}因为检测到连续回复")
|
||||
|
||||
# 处理ChattingObservation
|
||||
# 处理ChattingObservation - 传统的类型匹配检查
|
||||
if chat_obs:
|
||||
obs = chat_obs
|
||||
# 检查动作的关联类型
|
||||
@@ -76,30 +104,431 @@ class ActionModifier:
|
||||
if data.get("associated_types"):
|
||||
if not chat_context.check_types(data["associated_types"]):
|
||||
type_mismatched_actions.append(action_name)
|
||||
logger.debug(f"{self.log_prefix} 动作 {action_name} 关联类型不匹配,移除该动作")
|
||||
associated_types_str = ", ".join(data["associated_types"])
|
||||
logger.info(f"{self.log_prefix}移除动作: {action_name},原因: 关联类型不匹配(需要: {associated_types_str})")
|
||||
|
||||
if type_mismatched_actions:
|
||||
# 合并到移除列表中
|
||||
merged_action_changes["remove"].extend(type_mismatched_actions)
|
||||
reasons.append(f"移除动作{type_mismatched_actions}因为关联类型不匹配")
|
||||
reasons.append("基于关联类型检查")
|
||||
|
||||
# 应用传统的动作变更到ActionManager
|
||||
for action_name in merged_action_changes["add"]:
|
||||
if action_name in self.action_manager.get_registered_actions():
|
||||
self.action_manager.add_action_to_using(action_name)
|
||||
logger.debug(f"{self.log_prefix} 添加动作: {action_name}, 原因: {reasons}")
|
||||
logger.debug(f"{self.log_prefix}应用添加动作: {action_name},原因集合: {reasons}")
|
||||
|
||||
for action_name in merged_action_changes["remove"]:
|
||||
self.action_manager.remove_action_from_using(action_name)
|
||||
logger.debug(f"{self.log_prefix} 移除动作: {action_name}, 原因: {reasons}")
|
||||
logger.debug(f"{self.log_prefix}应用移除动作: {action_name},原因集合: {reasons}")
|
||||
|
||||
# 如果有任何动作变更,设置到action_info中
|
||||
# if merged_action_changes["add"] or merged_action_changes["remove"]:
|
||||
# action_info.set_action_changes(merged_action_changes)
|
||||
# action_info.set_reason(" | ".join(reasons))
|
||||
logger.info(f"{self.log_prefix}传统动作修改完成,当前使用动作: {list(self.action_manager.get_using_actions().keys())}")
|
||||
|
||||
# processed_infos.append(action_info)
|
||||
# === 第二阶段:激活类型判定 ===
|
||||
# 如果提供了聊天上下文,则进行激活类型判定
|
||||
if chat_content is not None:
|
||||
logger.debug(f"{self.log_prefix}开始激活类型判定阶段")
|
||||
|
||||
# 获取当前使用的动作集(经过第一阶段处理)
|
||||
current_using_actions = self.action_manager.get_using_actions()
|
||||
all_registered_actions = self.action_manager.get_registered_actions()
|
||||
|
||||
# 构建完整的动作信息
|
||||
current_actions_with_info = {}
|
||||
for action_name in current_using_actions.keys():
|
||||
if action_name in all_registered_actions:
|
||||
current_actions_with_info[action_name] = all_registered_actions[action_name]
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix}使用中的动作 {action_name} 未在已注册动作中找到")
|
||||
|
||||
# 应用激活类型判定
|
||||
final_activated_actions = await self._apply_activation_type_filtering(
|
||||
current_actions_with_info,
|
||||
chat_content,
|
||||
)
|
||||
|
||||
# 更新ActionManager,移除未激活的动作
|
||||
actions_to_remove = []
|
||||
removal_reasons = {}
|
||||
|
||||
for action_name in current_using_actions.keys():
|
||||
if action_name not in final_activated_actions:
|
||||
actions_to_remove.append(action_name)
|
||||
# 确定移除原因
|
||||
if action_name in all_registered_actions:
|
||||
action_info = all_registered_actions[action_name]
|
||||
activation_type = action_info.get("activation_type", ActionActivationType.ALWAYS)
|
||||
|
||||
if activation_type == ActionActivationType.RANDOM:
|
||||
probability = action_info.get("random_probability", 0.3)
|
||||
removal_reasons[action_name] = f"RANDOM类型未触发(概率{probability})"
|
||||
elif activation_type == ActionActivationType.LLM_JUDGE:
|
||||
removal_reasons[action_name] = "LLM判定未激活"
|
||||
elif activation_type == ActionActivationType.KEYWORD:
|
||||
keywords = action_info.get("activation_keywords", [])
|
||||
removal_reasons[action_name] = f"关键词未匹配(关键词: {keywords})"
|
||||
else:
|
||||
removal_reasons[action_name] = "激活判定未通过"
|
||||
else:
|
||||
removal_reasons[action_name] = "动作信息不完整"
|
||||
|
||||
for action_name in actions_to_remove:
|
||||
self.action_manager.remove_action_from_using(action_name)
|
||||
reason = removal_reasons.get(action_name, "未知原因")
|
||||
logger.info(f"{self.log_prefix}移除动作: {action_name},原因: {reason}")
|
||||
|
||||
logger.info(f"{self.log_prefix}激活类型判定完成,最终可用动作: {list(final_activated_actions.keys())}")
|
||||
|
||||
logger.info(f"{self.log_prefix}完整动作修改流程结束,最终动作集: {list(self.action_manager.get_using_actions().keys())}")
|
||||
|
||||
# return processed_infos
|
||||
async def _apply_activation_type_filtering(
|
||||
self,
|
||||
actions_with_info: Dict[str, Any],
|
||||
chat_content: str = "",
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
应用激活类型过滤逻辑,支持四种激活类型的并行处理
|
||||
|
||||
Args:
|
||||
actions_with_info: 带完整信息的动作字典
|
||||
observed_messages_str: 观察到的聊天消息
|
||||
chat_context: 聊天上下文信息
|
||||
extra_context: 额外的上下文信息
|
||||
|
||||
Returns:
|
||||
Dict[str, Any]: 过滤后激活的actions字典
|
||||
"""
|
||||
activated_actions = {}
|
||||
|
||||
# 分类处理不同激活类型的actions
|
||||
always_actions = {}
|
||||
random_actions = {}
|
||||
llm_judge_actions = {}
|
||||
keyword_actions = {}
|
||||
|
||||
for action_name, action_info in actions_with_info.items():
|
||||
activation_type = action_info.get("activation_type", ActionActivationType.ALWAYS)
|
||||
|
||||
if activation_type == ActionActivationType.ALWAYS:
|
||||
always_actions[action_name] = action_info
|
||||
elif activation_type == ActionActivationType.RANDOM:
|
||||
random_actions[action_name] = action_info
|
||||
elif activation_type == ActionActivationType.LLM_JUDGE:
|
||||
llm_judge_actions[action_name] = action_info
|
||||
elif activation_type == ActionActivationType.KEYWORD:
|
||||
keyword_actions[action_name] = action_info
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix}未知的激活类型: {activation_type},跳过处理")
|
||||
|
||||
# 1. 处理ALWAYS类型(直接激活)
|
||||
for action_name, action_info in always_actions.items():
|
||||
activated_actions[action_name] = action_info
|
||||
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: ALWAYS类型直接激活")
|
||||
|
||||
# 2. 处理RANDOM类型
|
||||
for action_name, action_info in random_actions.items():
|
||||
probability = action_info.get("random_probability", 0.3)
|
||||
should_activate = random.random() < probability
|
||||
if should_activate:
|
||||
activated_actions[action_name] = action_info
|
||||
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: RANDOM类型触发(概率{probability})")
|
||||
else:
|
||||
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: RANDOM类型未触发(概率{probability})")
|
||||
|
||||
# 3. 处理KEYWORD类型(快速判定)
|
||||
for action_name, action_info in keyword_actions.items():
|
||||
should_activate = self._check_keyword_activation(
|
||||
action_name,
|
||||
action_info,
|
||||
chat_content,
|
||||
)
|
||||
if should_activate:
|
||||
activated_actions[action_name] = action_info
|
||||
keywords = action_info.get("activation_keywords", [])
|
||||
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: KEYWORD类型匹配关键词({keywords})")
|
||||
else:
|
||||
keywords = action_info.get("activation_keywords", [])
|
||||
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: KEYWORD类型未匹配关键词({keywords})")
|
||||
|
||||
# 4. 处理LLM_JUDGE类型(并行判定)
|
||||
if llm_judge_actions:
|
||||
# 直接并行处理所有LLM判定actions
|
||||
llm_results = await self._process_llm_judge_actions_parallel(
|
||||
llm_judge_actions,
|
||||
chat_content,
|
||||
)
|
||||
|
||||
# 添加激活的LLM判定actions
|
||||
for action_name, should_activate in llm_results.items():
|
||||
if should_activate:
|
||||
activated_actions[action_name] = llm_judge_actions[action_name]
|
||||
logger.debug(f"{self.log_prefix}激活动作: {action_name},原因: LLM_JUDGE类型判定通过")
|
||||
else:
|
||||
logger.debug(f"{self.log_prefix}未激活动作: {action_name},原因: LLM_JUDGE类型判定未通过")
|
||||
|
||||
logger.debug(f"{self.log_prefix}激活类型过滤完成: {list(activated_actions.keys())}")
|
||||
return activated_actions
|
||||
|
||||
async def process_actions_for_planner(
|
||||
self,
|
||||
observed_messages_str: str = "",
|
||||
chat_context: Optional[str] = None,
|
||||
extra_context: Optional[str] = None
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
[已废弃] 此方法现在已被整合到 modify_actions() 中
|
||||
|
||||
为了保持向后兼容性而保留,但建议直接使用 ActionManager.get_using_actions()
|
||||
规划器应该直接从 ActionManager 获取最终的可用动作集,而不是调用此方法
|
||||
|
||||
新的架构:
|
||||
1. 主循环调用 modify_actions() 处理完整的动作管理流程
|
||||
2. 规划器直接使用 ActionManager.get_using_actions() 获取最终动作集
|
||||
"""
|
||||
logger.warning(f"{self.log_prefix}process_actions_for_planner() 已废弃,建议规划器直接使用 ActionManager.get_using_actions()")
|
||||
|
||||
# 为了向后兼容,仍然返回当前使用的动作集
|
||||
current_using_actions = self.action_manager.get_using_actions()
|
||||
all_registered_actions = self.action_manager.get_registered_actions()
|
||||
|
||||
# 构建完整的动作信息
|
||||
result = {}
|
||||
for action_name in current_using_actions.keys():
|
||||
if action_name in all_registered_actions:
|
||||
result[action_name] = all_registered_actions[action_name]
|
||||
|
||||
return result
|
||||
|
||||
def _generate_context_hash(self, chat_content: str) -> str:
|
||||
"""生成上下文的哈希值用于缓存"""
|
||||
context_content = f"{chat_content}"
|
||||
return hashlib.md5(context_content.encode('utf-8')).hexdigest()
|
||||
|
||||
|
||||
|
||||
async def _process_llm_judge_actions_parallel(
|
||||
self,
|
||||
llm_judge_actions: Dict[str, Any],
|
||||
chat_content: str = "",
|
||||
) -> Dict[str, bool]:
|
||||
"""
|
||||
并行处理LLM判定actions,支持智能缓存
|
||||
|
||||
Args:
|
||||
llm_judge_actions: 需要LLM判定的actions
|
||||
observed_messages_str: 观察到的聊天消息
|
||||
chat_context: 聊天上下文
|
||||
extra_context: 额外上下文
|
||||
|
||||
Returns:
|
||||
Dict[str, bool]: action名称到激活结果的映射
|
||||
"""
|
||||
|
||||
# 生成当前上下文的哈希值
|
||||
current_context_hash = self._generate_context_hash(chat_content)
|
||||
current_time = time.time()
|
||||
|
||||
results = {}
|
||||
tasks_to_run = {}
|
||||
|
||||
# 检查缓存
|
||||
for action_name, action_info in llm_judge_actions.items():
|
||||
cache_key = f"{action_name}_{current_context_hash}"
|
||||
|
||||
# 检查是否有有效的缓存
|
||||
if (cache_key in self._llm_judge_cache and
|
||||
current_time - self._llm_judge_cache[cache_key]["timestamp"] < self._cache_expiry_time):
|
||||
|
||||
results[action_name] = self._llm_judge_cache[cache_key]["result"]
|
||||
logger.debug(f"{self.log_prefix}使用缓存结果 {action_name}: {'激活' if results[action_name] else '未激活'}")
|
||||
else:
|
||||
# 需要进行LLM判定
|
||||
tasks_to_run[action_name] = action_info
|
||||
|
||||
# 如果有需要运行的任务,并行执行
|
||||
if tasks_to_run:
|
||||
logger.debug(f"{self.log_prefix}并行执行LLM判定,任务数: {len(tasks_to_run)}")
|
||||
|
||||
# 创建并行任务
|
||||
tasks = []
|
||||
task_names = []
|
||||
|
||||
for action_name, action_info in tasks_to_run.items():
|
||||
task = self._llm_judge_action(
|
||||
action_name,
|
||||
action_info,
|
||||
chat_content,
|
||||
)
|
||||
tasks.append(task)
|
||||
task_names.append(action_name)
|
||||
|
||||
# 并行执行所有任务
|
||||
try:
|
||||
task_results = await asyncio.gather(*tasks, return_exceptions=True)
|
||||
|
||||
# 处理结果并更新缓存
|
||||
for i, (action_name, result) in enumerate(zip(task_names, task_results)):
|
||||
if isinstance(result, Exception):
|
||||
logger.error(f"{self.log_prefix}LLM判定action {action_name} 时出错: {result}")
|
||||
results[action_name] = False
|
||||
else:
|
||||
results[action_name] = result
|
||||
|
||||
# 更新缓存
|
||||
cache_key = f"{action_name}_{current_context_hash}"
|
||||
self._llm_judge_cache[cache_key] = {
|
||||
"result": result,
|
||||
"timestamp": current_time
|
||||
}
|
||||
|
||||
logger.debug(f"{self.log_prefix}并行LLM判定完成,耗时: {time.time() - current_time:.2f}s")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}并行LLM判定失败: {e}")
|
||||
# 如果并行执行失败,为所有任务返回False
|
||||
for action_name in tasks_to_run.keys():
|
||||
results[action_name] = False
|
||||
|
||||
# 清理过期缓存
|
||||
self._cleanup_expired_cache(current_time)
|
||||
|
||||
return results
|
||||
|
||||
def _cleanup_expired_cache(self, current_time: float):
|
||||
"""清理过期的缓存条目"""
|
||||
expired_keys = []
|
||||
for cache_key, cache_data in self._llm_judge_cache.items():
|
||||
if current_time - cache_data["timestamp"] > self._cache_expiry_time:
|
||||
expired_keys.append(cache_key)
|
||||
|
||||
for key in expired_keys:
|
||||
del self._llm_judge_cache[key]
|
||||
|
||||
if expired_keys:
|
||||
logger.debug(f"{self.log_prefix}清理了 {len(expired_keys)} 个过期缓存条目")
|
||||
|
||||
async def _llm_judge_action(
|
||||
self,
|
||||
action_name: str,
|
||||
action_info: Dict[str, Any],
|
||||
chat_content: str = "",
|
||||
) -> bool:
|
||||
"""
|
||||
使用LLM判定是否应该激活某个action
|
||||
|
||||
Args:
|
||||
action_name: 动作名称
|
||||
action_info: 动作信息
|
||||
observed_messages_str: 观察到的聊天消息
|
||||
chat_context: 聊天上下文
|
||||
extra_context: 额外上下文
|
||||
|
||||
Returns:
|
||||
bool: 是否应该激活此action
|
||||
"""
|
||||
|
||||
try:
|
||||
# 构建判定提示词
|
||||
action_description = action_info.get("description", "")
|
||||
action_require = action_info.get("require", [])
|
||||
custom_prompt = action_info.get("llm_judge_prompt", "")
|
||||
|
||||
# 构建基础判定提示词
|
||||
base_prompt = f"""
|
||||
你需要判断在当前聊天情况下,是否应该激活名为"{action_name}"的动作。
|
||||
|
||||
动作描述:{action_description}
|
||||
|
||||
动作使用场景:
|
||||
"""
|
||||
for req in action_require:
|
||||
base_prompt += f"- {req}\n"
|
||||
|
||||
if custom_prompt:
|
||||
base_prompt += f"\n额外判定条件:\n{custom_prompt}\n"
|
||||
|
||||
if chat_content:
|
||||
base_prompt += f"\n当前聊天记录:\n{chat_content}\n"
|
||||
|
||||
|
||||
base_prompt += """
|
||||
请根据以上信息判断是否应该激活这个动作。
|
||||
只需要回答"是"或"否",不要有其他内容。
|
||||
"""
|
||||
|
||||
# 调用LLM进行判定
|
||||
response, _ = await self.llm_judge.generate_response_async(prompt=base_prompt)
|
||||
|
||||
# 解析响应
|
||||
response = response.strip().lower()
|
||||
|
||||
print(base_prompt)
|
||||
print(f"LLM判定动作 {action_name}:响应='{response}'")
|
||||
|
||||
|
||||
should_activate = "是" in response or "yes" in response or "true" in response
|
||||
|
||||
logger.debug(f"{self.log_prefix}LLM判定动作 {action_name}:响应='{response}',结果={'激活' if should_activate else '不激活'}")
|
||||
return should_activate
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}LLM判定动作 {action_name} 时出错: {e}")
|
||||
# 出错时默认不激活
|
||||
return False
|
||||
|
||||
def _check_keyword_activation(
|
||||
self,
|
||||
action_name: str,
|
||||
action_info: Dict[str, Any],
|
||||
chat_content: str = "",
|
||||
) -> bool:
|
||||
"""
|
||||
检查是否匹配关键词触发条件
|
||||
|
||||
Args:
|
||||
action_name: 动作名称
|
||||
action_info: 动作信息
|
||||
observed_messages_str: 观察到的聊天消息
|
||||
chat_context: 聊天上下文
|
||||
extra_context: 额外上下文
|
||||
|
||||
Returns:
|
||||
bool: 是否应该激活此action
|
||||
"""
|
||||
|
||||
activation_keywords = action_info.get("activation_keywords", [])
|
||||
case_sensitive = action_info.get("keyword_case_sensitive", False)
|
||||
|
||||
if not activation_keywords:
|
||||
logger.warning(f"{self.log_prefix}动作 {action_name} 设置为关键词触发但未配置关键词")
|
||||
return False
|
||||
|
||||
# 构建检索文本
|
||||
search_text = ""
|
||||
if chat_content:
|
||||
search_text += chat_content
|
||||
# if chat_context:
|
||||
# search_text += f" {chat_context}"
|
||||
# if extra_context:
|
||||
# search_text += f" {extra_context}"
|
||||
|
||||
# 如果不区分大小写,转换为小写
|
||||
if not case_sensitive:
|
||||
search_text = search_text.lower()
|
||||
|
||||
# 检查每个关键词
|
||||
matched_keywords = []
|
||||
for keyword in activation_keywords:
|
||||
check_keyword = keyword if case_sensitive else keyword.lower()
|
||||
if check_keyword in search_text:
|
||||
matched_keywords.append(keyword)
|
||||
|
||||
if matched_keywords:
|
||||
logger.debug(f"{self.log_prefix}动作 {action_name} 匹配到关键词: {matched_keywords}")
|
||||
return True
|
||||
else:
|
||||
logger.debug(f"{self.log_prefix}动作 {action_name} 未匹配到任何关键词: {activation_keywords}")
|
||||
return False
|
||||
|
||||
async def analyze_loop_actions(self, obs: HFCloopObservation) -> Dict[str, List[str]]:
|
||||
"""分析最近的循环内容并决定动作的增减
|
||||
@@ -129,8 +558,6 @@ class ActionModifier:
|
||||
reply_sequence.append(action_type == "reply")
|
||||
|
||||
# 检查no_reply比例
|
||||
# print(f"no_reply_count: {no_reply_count}, len(recent_cycles): {len(recent_cycles)}")
|
||||
# print(1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111)
|
||||
if len(recent_cycles) >= (5 * global_config.chat.exit_focus_threshold) and (
|
||||
no_reply_count / len(recent_cycles)
|
||||
) >= (0.8 * global_config.chat.exit_focus_threshold):
|
||||
@@ -138,6 +565,8 @@ class ActionModifier:
|
||||
result["add"].append("exit_focus_chat")
|
||||
result["remove"].append("no_reply")
|
||||
result["remove"].append("reply")
|
||||
no_reply_ratio = no_reply_count / len(recent_cycles)
|
||||
logger.info(f"{self.log_prefix}检测到高no_reply比例: {no_reply_ratio:.2f},达到退出聊天阈值,将添加exit_focus_chat并移除no_reply/reply动作")
|
||||
|
||||
# 计算连续回复的相关阈值
|
||||
|
||||
@@ -162,34 +591,37 @@ class ActionModifier:
|
||||
if len(last_max_reply_num) >= max_reply_num and all(last_max_reply_num):
|
||||
# 如果最近max_reply_num次都是reply,直接移除
|
||||
result["remove"].append("reply")
|
||||
reply_count = len(last_max_reply_num) - no_reply_count
|
||||
logger.info(
|
||||
f"最近{len(last_max_reply_num)}次回复中,有{no_reply_count}次no_reply,{len(last_max_reply_num) - no_reply_count}次reply,直接移除"
|
||||
f"{self.log_prefix}移除reply动作,原因: 连续回复过多(最近{len(last_max_reply_num)}次全是reply,超过阈值{max_reply_num})"
|
||||
)
|
||||
elif len(last_max_reply_num) >= sec_thres_reply_num and all(last_max_reply_num[-sec_thres_reply_num:]):
|
||||
# 如果最近sec_thres_reply_num次都是reply,40%概率移除
|
||||
if random.random() < 0.4 / global_config.focus_chat.consecutive_replies:
|
||||
removal_probability = 0.4 / global_config.focus_chat.consecutive_replies
|
||||
if random.random() < removal_probability:
|
||||
result["remove"].append("reply")
|
||||
logger.info(
|
||||
f"最近{len(last_max_reply_num)}次回复中,有{no_reply_count}次no_reply,{len(last_max_reply_num) - no_reply_count}次reply,{0.4 / global_config.focus_chat.consecutive_replies}概率移除,移除"
|
||||
f"{self.log_prefix}移除reply动作,原因: 连续回复较多(最近{sec_thres_reply_num}次全是reply,{removal_probability:.2f}概率移除,触发移除)"
|
||||
)
|
||||
else:
|
||||
logger.debug(
|
||||
f"最近{len(last_max_reply_num)}次回复中,有{no_reply_count}次no_reply,{len(last_max_reply_num) - no_reply_count}次reply,{0.4 / global_config.focus_chat.consecutive_replies}概率移除,不移除"
|
||||
f"{self.log_prefix}连续回复检测:最近{sec_thres_reply_num}次全是reply,{removal_probability:.2f}概率移除,未触发"
|
||||
)
|
||||
elif len(last_max_reply_num) >= one_thres_reply_num and all(last_max_reply_num[-one_thres_reply_num:]):
|
||||
# 如果最近one_thres_reply_num次都是reply,20%概率移除
|
||||
if random.random() < 0.2 / global_config.focus_chat.consecutive_replies:
|
||||
removal_probability = 0.2 / global_config.focus_chat.consecutive_replies
|
||||
if random.random() < removal_probability:
|
||||
result["remove"].append("reply")
|
||||
logger.info(
|
||||
f"最近{len(last_max_reply_num)}次回复中,有{no_reply_count}次no_reply,{len(last_max_reply_num) - no_reply_count}次reply,{0.2 / global_config.focus_chat.consecutive_replies}概率移除,移除"
|
||||
f"{self.log_prefix}移除reply动作,原因: 连续回复检测(最近{one_thres_reply_num}次全是reply,{removal_probability:.2f}概率移除,触发移除)"
|
||||
)
|
||||
else:
|
||||
logger.debug(
|
||||
f"最近{len(last_max_reply_num)}次回复中,有{no_reply_count}次no_reply,{len(last_max_reply_num) - no_reply_count}次reply,{0.2 / global_config.focus_chat.consecutive_replies}概率移除,不移除"
|
||||
f"{self.log_prefix}连续回复检测:最近{one_thres_reply_num}次全是reply,{removal_probability:.2f}概率移除,未触发"
|
||||
)
|
||||
else:
|
||||
logger.debug(
|
||||
f"最近{len(last_max_reply_num)}次回复中,有{no_reply_count}次no_reply,{len(last_max_reply_num) - no_reply_count}次reply,无需移除"
|
||||
f"{self.log_prefix}连续回复检测:无需移除reply动作,最近回复模式正常"
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
@@ -15,6 +15,7 @@ from src.common.logger_manager import get_logger
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.individuality.individuality import individuality
|
||||
from src.chat.focus_chat.planners.action_manager import ActionManager
|
||||
from src.chat.focus_chat.planners.modify_actions import ActionModifier
|
||||
from json_repair import repair_json
|
||||
from src.chat.focus_chat.planners.base_planner import BasePlanner
|
||||
from datetime import datetime
|
||||
@@ -141,8 +142,18 @@ class ActionPlanner(BasePlanner):
|
||||
# elif not isinstance(info, ActionInfo): # 跳过已处理的ActionInfo
|
||||
# extra_info.append(info.get_processed_info())
|
||||
|
||||
# 获取当前可用的动作
|
||||
current_available_actions = self.action_manager.get_using_actions()
|
||||
# 获取经过modify_actions处理后的最终可用动作集
|
||||
# 注意:动作的激活判定现在在主循环的modify_actions中完成
|
||||
current_available_actions_dict = self.action_manager.get_using_actions()
|
||||
|
||||
# 获取完整的动作信息
|
||||
all_registered_actions = self.action_manager.get_registered_actions()
|
||||
current_available_actions = {}
|
||||
for action_name in current_available_actions_dict.keys():
|
||||
if action_name in all_registered_actions:
|
||||
current_available_actions[action_name] = all_registered_actions[action_name]
|
||||
else:
|
||||
logger.warning(f"{self.log_prefix}使用中的动作 {action_name} 未在已注册动作中找到")
|
||||
|
||||
# 如果没有可用动作或只有no_reply动作,直接返回no_reply
|
||||
if not current_available_actions or (
|
||||
|
||||
Reference in New Issue
Block a user