feat:给动作添加了选择器,并添加了新api

This commit is contained in:
SengokuCola
2025-06-09 12:55:23 +08:00
parent 5ef3139654
commit 2ce5114b8c
19 changed files with 1660 additions and 103 deletions

189
CORRECTED_ARCHITECTURE.md Normal file
View File

@@ -0,0 +1,189 @@
# 修正后的动作激活架构
## 架构原则
### 正确的职责分工
- **主循环 (`modify_actions`)**: 负责完整的动作管理,包括传统观察处理和新的激活类型判定
- **规划器 (`Planner`)**: 专注于从最终确定的动作集中进行决策,不再处理动作筛选
### 关注点分离
- **动作管理** → 主循环处理
- **决策制定** → 规划器处理
- **配置解析** → ActionManager处理
## 修正后的调用流程
### 1. 主循环阶段 (heartFC_chat.py)
```python
# 在主循环中调用完整的动作管理流程
async def modify_actions_task():
# 提取聊天上下文信息
observed_messages_str = ""
chat_context = ""
for obs in self.observations:
if hasattr(obs, 'get_talking_message_str_truncate'):
observed_messages_str = obs.get_talking_message_str_truncate()
elif hasattr(obs, 'get_chat_type'):
chat_context = f"聊天类型: {obs.get_chat_type()}"
# 调用完整的动作修改流程
await self.action_modifier.modify_actions(
observations=self.observations,
observed_messages_str=observed_messages_str,
chat_context=chat_context,
extra_context=extra_context
)
```
**处理内容:**
- 传统观察处理(循环历史分析、类型匹配等)
- 激活类型判定ALWAYS, RANDOM, LLM_JUDGE, KEYWORD
- 并行LLM判定
- 智能缓存
- 动态关键词收集
### 2. 规划器阶段 (planner_simple.py)
```python
# 规划器直接获取最终的动作集
current_available_actions_dict = self.action_manager.get_using_actions()
# 获取完整的动作信息
all_registered_actions = self.action_manager.get_registered_actions()
current_available_actions = {}
for action_name in current_available_actions_dict.keys():
if action_name in all_registered_actions:
current_available_actions[action_name] = all_registered_actions[action_name]
```
**处理内容:**
- 仅获取经过完整处理的最终动作集
- 专注于从可用动作中进行决策
- 不再处理动作筛选逻辑
## 核心优化功能
### 1. 并行LLM判定
```python
# 同时判定多个LLM_JUDGE类型的动作
task_results = await asyncio.gather(*tasks, return_exceptions=True)
```
### 2. 智能缓存系统
```python
# 基于上下文哈希的缓存机制
cache_key = f"{action_name}_{context_hash}"
if cache_key in self._llm_judge_cache:
return cached_result
```
### 3. 直接LLM判定
```python
# 直接对所有LLM_JUDGE类型的动作进行并行判定
llm_results = await self._process_llm_judge_actions_parallel(llm_judge_actions, ...)
```
### 4. 动态关键词收集
```python
# 从动作配置中动态收集关键词,避免硬编码
for action_name, action_info in llm_judge_actions.items():
keywords = action_info.get("activation_keywords", [])
if keywords:
# 检查消息中的关键词匹配
```
## 四种激活类型
### 1. ALWAYS - 始终激活
```python
activation_type = ActionActivationType.ALWAYS
# 基础动作,如 reply, no_reply
```
### 2. RANDOM - 随机激活
```python
activation_type = ActionActivationType.RANDOM
random_probability = 0.3 # 激活概率
# 用于增加惊喜元素,如随机表情
```
### 3. LLM_JUDGE - 智能判定
```python
activation_type = ActionActivationType.LLM_JUDGE
llm_judge_prompt = "自定义判定提示词"
# 需要理解上下文的复杂动作,如情感表达
```
### 4. KEYWORD - 关键词触发
```python
activation_type = ActionActivationType.KEYWORD
activation_keywords = ["画", "图片", "生成"]
# 明确指令触发的动作,如图片生成
```
## 性能提升
### 理论性能改进
- **并行LLM判定**: 1.5-2x 提升
- **智能缓存**: 20-30% 额外提升
- **整体预期**: 2-3x 性能提升
### 缓存策略
- **缓存键**: `{action_name}_{context_hash}`
- **过期时间**: 30秒
- **哈希算法**: MD5 (消息内容+上下文)
## 向后兼容性
### 废弃方法处理
```python
async def process_actions_for_planner(...):
"""[已废弃] 此方法现在已被整合到 modify_actions() 中"""
logger.warning("process_actions_for_planner() 已废弃")
# 仍然返回结果以保持兼容性
return current_using_actions
```
### 迁移指南
1. **主循环**: 使用 `modify_actions(observations, messages, context, extra)`
2. **规划器**: 直接使用 `ActionManager.get_using_actions()`
3. **移除**: 规划器中对 `process_actions_for_planner()` 的调用
## 测试验证
### 运行测试
```bash
python test_corrected_architecture.py
```
### 测试内容
- 架构正确性验证
- 数据一致性检查
- 职责分离确认
- 性能测试
- 向后兼容性验证
## 优势总结
### 1. 清晰的架构
- **单一职责**: 每个组件专注于自己的核心功能
- **关注点分离**: 动作管理与决策制定分离
- **可维护性**: 逻辑清晰,易于理解和修改
### 2. 高性能
- **并行处理**: 多个LLM判定同时进行
- **智能缓存**: 避免重复计算
### 3. 智能化
- **动态配置**: 从动作配置中收集关键词
- **上下文感知**: 基于聊天内容智能激活
- **冲突避免**: 防止重复激活
### 4. 可扩展性
- **插件式**: 新的激活类型易于添加
- **配置驱动**: 通过配置控制行为
- **模块化**: 各组件独立可测试
这个修正后的架构实现了正确的职责分工,确保了主循环负责动作管理,规划器专注于决策,同时集成了并行判定和智能缓存等优化功能。