更好的计时器小工具,感谢D指导
This commit is contained in:
@@ -19,6 +19,7 @@ from ...chat.chat_stream import chat_manager
|
||||
from ...person_info.relationship_manager import relationship_manager
|
||||
from ...chat.message_buffer import message_buffer
|
||||
from src.plugins.respon_info_catcher.info_catcher import info_catcher_manager
|
||||
from ...utils.timer_calculater import Timer
|
||||
|
||||
# 定义日志配置
|
||||
chat_config = LogConfig(
|
||||
@@ -173,12 +174,10 @@ class ReasoningChat:
|
||||
await self.storage.store_message(message, chat)
|
||||
|
||||
# 记忆激活
|
||||
timer1 = time.time()
|
||||
interested_rate = await HippocampusManager.get_instance().get_activate_from_text(
|
||||
message.processed_plain_text, fast_retrieval=True
|
||||
)
|
||||
timer2 = time.time()
|
||||
timing_results["记忆激活"] = timer2 - timer1
|
||||
with Timer("记忆激活", timing_results):
|
||||
interested_rate = await HippocampusManager.get_instance().get_activate_from_text(
|
||||
message.processed_plain_text, fast_retrieval=True
|
||||
)
|
||||
|
||||
# 查询缓冲器结果,会整合前面跳过的消息,改变processed_plain_text
|
||||
buffer_result = await message_buffer.query_buffer_result(message)
|
||||
@@ -228,10 +227,8 @@ class ReasoningChat:
|
||||
await willing_manager.before_generate_reply_handle(message.message_info.message_id)
|
||||
|
||||
# 创建思考消息
|
||||
timer1 = time.time()
|
||||
thinking_id = await self._create_thinking_message(message, chat, userinfo, messageinfo)
|
||||
timer2 = time.time()
|
||||
timing_results["创建思考消息"] = timer2 - timer1
|
||||
with Timer("创建思考消息", timing_results):
|
||||
thinking_id = await self._create_thinking_message(message, chat, userinfo, messageinfo)
|
||||
|
||||
logger.debug(f"创建捕捉器,thinking_id:{thinking_id}")
|
||||
|
||||
@@ -239,11 +236,9 @@ class ReasoningChat:
|
||||
info_catcher.catch_decide_to_response(message)
|
||||
|
||||
# 生成回复
|
||||
timer1 = time.time()
|
||||
try:
|
||||
response_set = await self.gpt.generate_response(message, thinking_id)
|
||||
timer2 = time.time()
|
||||
timing_results["生成回复"] = timer2 - timer1
|
||||
with Timer("生成回复", timing_results):
|
||||
response_set = await self.gpt.generate_response(message, thinking_id)
|
||||
|
||||
info_catcher.catch_after_generate_response(timing_results["生成回复"])
|
||||
except Exception as e:
|
||||
@@ -255,26 +250,20 @@ class ReasoningChat:
|
||||
return
|
||||
|
||||
# 发送消息
|
||||
timer1 = time.time()
|
||||
first_bot_msg = await self._send_response_messages(message, chat, response_set, thinking_id)
|
||||
timer2 = time.time()
|
||||
timing_results["发送消息"] = timer2 - timer1
|
||||
with Timer("发送消息", timing_results):
|
||||
first_bot_msg = await self._send_response_messages(message, chat, response_set, thinking_id)
|
||||
|
||||
info_catcher.catch_after_response(timing_results["发送消息"], response_set, first_bot_msg)
|
||||
|
||||
info_catcher.done_catch()
|
||||
|
||||
# 处理表情包
|
||||
timer1 = time.time()
|
||||
await self._handle_emoji(message, chat, response_set)
|
||||
timer2 = time.time()
|
||||
timing_results["处理表情包"] = timer2 - timer1
|
||||
with Timer("处理表情包", timing_results):
|
||||
await self._handle_emoji(message, chat, response_set)
|
||||
|
||||
# 更新关系情绪
|
||||
timer1 = time.time()
|
||||
await self._update_relationship(message, response_set)
|
||||
timer2 = time.time()
|
||||
timing_results["更新关系情绪"] = timer2 - timer1
|
||||
with Timer("更新关系情绪", timing_results):
|
||||
await self._update_relationship(message, response_set)
|
||||
|
||||
# 回复后处理
|
||||
await willing_manager.after_generate_reply_handle(message.message_info.message_id)
|
||||
|
||||
@@ -7,6 +7,7 @@ from ...config.config import global_config
|
||||
from ...chat.message import MessageThinking
|
||||
from .reasoning_prompt_builder import prompt_builder
|
||||
from ...chat.utils import process_llm_response
|
||||
from ...utils.timer_calculater import Timer
|
||||
from src.common.logger import get_module_logger, LogConfig, LLM_STYLE_CONFIG
|
||||
from src.plugins.respon_info_catcher.info_catcher import info_catcher_manager
|
||||
|
||||
@@ -38,7 +39,7 @@ class ResponseGenerator:
|
||||
self.current_model_type = "r1" # 默认使用 R1
|
||||
self.current_model_name = "unknown model"
|
||||
|
||||
async def generate_response(self, message: MessageThinking,thinking_id:str) -> Optional[Union[str, List[str]]]:
|
||||
async def generate_response(self, message: MessageThinking, thinking_id: str) -> Optional[Union[str, List[str]]]:
|
||||
"""根据当前模型类型选择对应的生成函数"""
|
||||
# 从global_config中获取模型概率值并选择模型
|
||||
if random.random() < global_config.MODEL_R1_PROBABILITY:
|
||||
@@ -52,7 +53,7 @@ class ResponseGenerator:
|
||||
f"{self.current_model_type}思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}"
|
||||
) # noqa: E501
|
||||
|
||||
model_response = await self._generate_response_with_model(message, current_model,thinking_id)
|
||||
model_response = await self._generate_response_with_model(message, current_model, thinking_id)
|
||||
|
||||
# print(f"raw_content: {model_response}")
|
||||
|
||||
@@ -65,11 +66,11 @@ class ResponseGenerator:
|
||||
logger.info(f"{self.current_model_type}思考,失败")
|
||||
return None
|
||||
|
||||
async def _generate_response_with_model(self, message: MessageThinking, model: LLM_request,thinking_id:str):
|
||||
async def _generate_response_with_model(self, message: MessageThinking, model: LLM_request, thinking_id: str):
|
||||
sender_name = ""
|
||||
|
||||
|
||||
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
|
||||
|
||||
|
||||
if message.chat_stream.user_info.user_cardname and message.chat_stream.user_info.user_nickname:
|
||||
sender_name = (
|
||||
f"[({message.chat_stream.user_info.user_id}){message.chat_stream.user_info.user_nickname}]"
|
||||
@@ -82,26 +83,22 @@ class ResponseGenerator:
|
||||
|
||||
logger.debug("开始使用生成回复-2")
|
||||
# 构建prompt
|
||||
timer1 = time.time()
|
||||
prompt = await prompt_builder._build_prompt(
|
||||
message.chat_stream,
|
||||
message_txt=message.processed_plain_text,
|
||||
sender_name=sender_name,
|
||||
stream_id=message.chat_stream.stream_id,
|
||||
)
|
||||
timer2 = time.time()
|
||||
logger.info(f"构建prompt时间: {timer2 - timer1}秒")
|
||||
with Timer() as t_build_prompt:
|
||||
prompt = await prompt_builder._build_prompt(
|
||||
message.chat_stream,
|
||||
message_txt=message.processed_plain_text,
|
||||
sender_name=sender_name,
|
||||
stream_id=message.chat_stream.stream_id,
|
||||
)
|
||||
logger.info(f"构建prompt时间: {t_build_prompt.human_readable()}")
|
||||
|
||||
try:
|
||||
content, reasoning_content, self.current_model_name = await model.generate_response(prompt)
|
||||
|
||||
|
||||
info_catcher.catch_after_llm_generated(
|
||||
prompt=prompt,
|
||||
response=content,
|
||||
reasoning_content=reasoning_content,
|
||||
model_name=self.current_model_name)
|
||||
|
||||
|
||||
prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=self.current_model_name
|
||||
)
|
||||
|
||||
except Exception:
|
||||
logger.exception("生成回复时出错")
|
||||
return None
|
||||
@@ -118,7 +115,6 @@ class ResponseGenerator:
|
||||
|
||||
return content
|
||||
|
||||
|
||||
# def _save_to_db(
|
||||
# self,
|
||||
# message: MessageRecv,
|
||||
|
||||
Reference in New Issue
Block a user