This commit is contained in:
SengokuCola
2025-05-05 11:32:21 +08:00
17 changed files with 363 additions and 139 deletions

View File

@@ -1 +0,0 @@

View File

@@ -1,19 +0,0 @@
from fastapi import APIRouter, HTTPException
from rich.traceback import install
install(extra_lines=3)
# 创建APIRouter而不是FastAPI实例
router = APIRouter()
@router.post("/reload-config")
async def reload_config():
try: # TODO: 实现配置重载
# bot_config_path = os.path.join(BotConfig.get_config_dir(), "bot_config.toml")
# BotConfig.reload_config(config_path=bot_config_path)
return {"message": "TODO: 实现配置重载", "status": "unimplemented"}
except FileNotFoundError as e:
raise HTTPException(status_code=404, detail=str(e)) from e
except Exception as e:
raise HTTPException(status_code=500, detail=f"重载配置时发生错误: {str(e)}") from e

View File

@@ -1,4 +0,0 @@
import requests
response = requests.post("http://localhost:8080/api/reload-config")
print(response.json())

View File

@@ -1,6 +1,7 @@
from dataclasses import dataclass
import json
import os
import math
from typing import Dict, List, Tuple
import numpy as np
@@ -25,9 +26,39 @@ from rich.progress import (
)
install(extra_lines=3)
ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "..", ".."))
TOTAL_EMBEDDING_TIMES = 3 # 统计嵌入次数
# 嵌入模型测试字符串,测试模型一致性,来自开发群的聊天记录
# 这些字符串的嵌入结果应该是固定的,不能随时间变化
EMBEDDING_TEST_STRINGS = [
"阿卡伊真的太好玩了,神秘性感大女同等着你",
"你怎么知道我arc12.64了",
"我是蕾缪乐小姐的狗",
"关注Oct谢谢喵",
"不是w6我不草",
"关注千石可乐谢谢喵",
"来玩CLANNADAIR樱之诗樱之刻谢谢喵",
"关注墨梓柒谢谢喵",
"Ciallo~",
"来玩巧克甜恋谢谢喵",
"水印",
"我也在纠结晚饭,铁锅炒鸡听着就香!",
"test你妈喵",
]
EMBEDDING_TEST_FILE = os.path.join(ROOT_PATH, "data", "embedding_model_test.json")
EMBEDDING_SIM_THRESHOLD = 0.99
def cosine_similarity(a, b):
# 计算余弦相似度
dot = sum(x * y for x, y in zip(a, b))
norm_a = math.sqrt(sum(x * x for x in a))
norm_b = math.sqrt(sum(x * x for x in b))
if norm_a == 0 or norm_b == 0:
return 0.0
return dot / (norm_a * norm_b)
@dataclass
class EmbeddingStoreItem:
@@ -64,6 +95,46 @@ class EmbeddingStore:
def _get_embedding(self, s: str) -> List[float]:
return self.llm_client.send_embedding_request(global_config["embedding"]["model"], s)
def get_test_file_path(self):
return EMBEDDING_TEST_FILE
def save_embedding_test_vectors(self):
"""保存测试字符串的嵌入到本地"""
test_vectors = {}
for idx, s in enumerate(EMBEDDING_TEST_STRINGS):
test_vectors[str(idx)] = self._get_embedding(s)
with open(self.get_test_file_path(), "w", encoding="utf-8") as f:
json.dump(test_vectors, f, ensure_ascii=False, indent=2)
def load_embedding_test_vectors(self):
"""加载本地保存的测试字符串嵌入"""
path = self.get_test_file_path()
if not os.path.exists(path):
return None
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
def check_embedding_model_consistency(self):
"""校验当前模型与本地嵌入模型是否一致"""
local_vectors = self.load_embedding_test_vectors()
if local_vectors is None:
logger.warning("未检测到本地嵌入模型测试文件,将保存当前模型的测试嵌入。")
self.save_embedding_test_vectors()
return True
for idx, s in enumerate(EMBEDDING_TEST_STRINGS):
local_emb = local_vectors.get(str(idx))
if local_emb is None:
logger.warning("本地嵌入模型测试文件缺失部分测试字符串,将重新保存。")
self.save_embedding_test_vectors()
return True
new_emb = self._get_embedding(s)
sim = cosine_similarity(local_emb, new_emb)
if sim < EMBEDDING_SIM_THRESHOLD:
logger.error("嵌入模型一致性校验失败")
return False
logger.info("嵌入模型一致性校验通过。")
return True
def batch_insert_strs(self, strs: List[str], times: int) -> None:
"""向库中存入字符串"""
total = len(strs)
@@ -216,6 +287,17 @@ class EmbeddingManager:
)
self.stored_pg_hashes = set()
def check_all_embedding_model_consistency(self):
"""对所有嵌入库做模型一致性校验"""
for store in [
self.paragraphs_embedding_store,
self.entities_embedding_store,
self.relation_embedding_store,
]:
if not store.check_embedding_model_consistency():
return False
return True
def _store_pg_into_embedding(self, raw_paragraphs: Dict[str, str]):
"""将段落编码存入Embedding库"""
self.paragraphs_embedding_store.batch_insert_strs(list(raw_paragraphs.values()), times=1)
@@ -239,6 +321,8 @@ class EmbeddingManager:
def load_from_file(self):
"""从文件加载"""
if not self.check_all_embedding_model_consistency():
raise Exception("嵌入模型与本地存储不一致,请检查模型设置或清空嵌入库后重试。")
self.paragraphs_embedding_store.load_from_file()
self.entities_embedding_store.load_from_file()
self.relation_embedding_store.load_from_file()
@@ -250,6 +334,8 @@ class EmbeddingManager:
raw_paragraphs: Dict[str, str],
triple_list_data: Dict[str, List[List[str]]],
):
if not self.check_all_embedding_model_consistency():
raise Exception("嵌入模型与本地存储不一致,请检查模型设置或清空嵌入库后重试。")
"""存储新的数据集"""
self._store_pg_into_embedding(raw_paragraphs)
self._store_ent_into_embedding(triple_list_data)