🤖 自动格式化代码 [skip ci]
This commit is contained in:
@@ -2,7 +2,6 @@ from src.llm_models.utils_model import LLMRequest
|
||||
from src.config.config import global_config
|
||||
import time
|
||||
from src.common.logger import get_logger
|
||||
from src.individuality.individuality import get_individuality
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.tools.tool_use import ToolUser
|
||||
from src.chat.utils.json_utils import process_llm_tool_calls
|
||||
@@ -30,13 +29,13 @@ If you need to use a tool, please directly call the corresponding tool function.
|
||||
|
||||
class ToolExecutor:
|
||||
"""独立的工具执行器组件
|
||||
|
||||
|
||||
可以直接输入聊天消息内容,自动判断并执行相应的工具,返回结构化的工具执行结果。
|
||||
"""
|
||||
|
||||
|
||||
def __init__(self, chat_id: str = None, enable_cache: bool = True, cache_ttl: int = 3):
|
||||
"""初始化工具执行器
|
||||
|
||||
|
||||
Args:
|
||||
executor_id: 执行器标识符,用于日志记录
|
||||
enable_cache: 是否启用缓存机制
|
||||
@@ -48,41 +47,37 @@ class ToolExecutor:
|
||||
model=global_config.model.focus_tool_use,
|
||||
request_type="tool_executor",
|
||||
)
|
||||
|
||||
|
||||
# 初始化工具实例
|
||||
self.tool_instance = ToolUser()
|
||||
|
||||
|
||||
# 缓存配置
|
||||
self.enable_cache = enable_cache
|
||||
self.cache_ttl = cache_ttl
|
||||
self.tool_cache = {} # 格式: {cache_key: {"result": result, "ttl": ttl, "timestamp": timestamp}}
|
||||
|
||||
|
||||
logger.info(f"{self.log_prefix}工具执行器初始化完成,缓存{'启用' if enable_cache else '禁用'},TTL={cache_ttl}")
|
||||
|
||||
async def execute_from_chat_message(
|
||||
self,
|
||||
target_message: str,
|
||||
chat_history: list[str],
|
||||
sender: str,
|
||||
return_details: bool = False
|
||||
self, target_message: str, chat_history: list[str], sender: str, return_details: bool = False
|
||||
) -> List[Dict] | Tuple[List[Dict], List[str], str]:
|
||||
"""从聊天消息执行工具
|
||||
|
||||
|
||||
Args:
|
||||
target_message: 目标消息内容
|
||||
chat_history: 聊天历史
|
||||
sender: 发送者
|
||||
return_details: 是否返回详细信息(使用的工具列表和提示词)
|
||||
|
||||
|
||||
Returns:
|
||||
如果return_details为False: List[Dict] - 工具执行结果列表
|
||||
如果return_details为True: Tuple[List[Dict], List[str], str] - (结果列表, 使用的工具, 提示词)
|
||||
"""
|
||||
|
||||
|
||||
# 首先检查缓存
|
||||
cache_key = self._generate_cache_key(target_message, chat_history, sender)
|
||||
cached_result = self._get_from_cache(cache_key)
|
||||
|
||||
|
||||
if cached_result:
|
||||
logger.info(f"{self.log_prefix}使用缓存结果,跳过工具执行")
|
||||
if return_details:
|
||||
@@ -91,16 +86,16 @@ class ToolExecutor:
|
||||
return cached_result, used_tools, "使用缓存结果"
|
||||
else:
|
||||
return cached_result
|
||||
|
||||
|
||||
# 缓存未命中,执行工具调用
|
||||
# 获取可用工具
|
||||
tools = self.tool_instance._define_tools()
|
||||
|
||||
|
||||
# 获取当前时间
|
||||
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
||||
|
||||
|
||||
bot_name = global_config.bot.nickname
|
||||
|
||||
|
||||
# 构建工具调用提示词
|
||||
prompt = await global_prompt_manager.format_prompt(
|
||||
"tool_executor_prompt",
|
||||
@@ -110,31 +105,28 @@ class ToolExecutor:
|
||||
bot_name=bot_name,
|
||||
time_now=time_now,
|
||||
)
|
||||
|
||||
|
||||
logger.debug(f"{self.log_prefix}开始LLM工具调用分析")
|
||||
|
||||
|
||||
# 调用LLM进行工具决策
|
||||
response, other_info = await self.llm_model.generate_response_async(
|
||||
prompt=prompt,
|
||||
tools=tools
|
||||
)
|
||||
|
||||
response, other_info = await self.llm_model.generate_response_async(prompt=prompt, tools=tools)
|
||||
|
||||
# 解析LLM响应
|
||||
if len(other_info) == 3:
|
||||
reasoning_content, model_name, tool_calls = other_info
|
||||
else:
|
||||
reasoning_content, model_name = other_info
|
||||
tool_calls = None
|
||||
|
||||
|
||||
# 执行工具调用
|
||||
tool_results, used_tools = await self._execute_tool_calls(tool_calls)
|
||||
|
||||
|
||||
# 缓存结果
|
||||
if tool_results:
|
||||
self._set_cache(cache_key, tool_results)
|
||||
|
||||
|
||||
logger.info(f"{self.log_prefix}工具执行完成,共执行{len(used_tools)}个工具: {used_tools}")
|
||||
|
||||
|
||||
if return_details:
|
||||
return tool_results, used_tools, prompt
|
||||
else:
|
||||
@@ -142,44 +134,44 @@ class ToolExecutor:
|
||||
|
||||
async def _execute_tool_calls(self, tool_calls) -> Tuple[List[Dict], List[str]]:
|
||||
"""执行工具调用
|
||||
|
||||
|
||||
Args:
|
||||
tool_calls: LLM返回的工具调用列表
|
||||
|
||||
|
||||
Returns:
|
||||
Tuple[List[Dict], List[str]]: (工具执行结果列表, 使用的工具名称列表)
|
||||
"""
|
||||
tool_results = []
|
||||
used_tools = []
|
||||
|
||||
|
||||
if not tool_calls:
|
||||
logger.debug(f"{self.log_prefix}无需执行工具")
|
||||
return tool_results, used_tools
|
||||
|
||||
|
||||
logger.info(f"{self.log_prefix}开始执行工具调用: {tool_calls}")
|
||||
|
||||
|
||||
# 处理工具调用
|
||||
success, valid_tool_calls, error_msg = process_llm_tool_calls(tool_calls)
|
||||
|
||||
|
||||
if not success:
|
||||
logger.error(f"{self.log_prefix}工具调用解析失败: {error_msg}")
|
||||
return tool_results, used_tools
|
||||
|
||||
|
||||
if not valid_tool_calls:
|
||||
logger.debug(f"{self.log_prefix}无有效工具调用")
|
||||
return tool_results, used_tools
|
||||
|
||||
|
||||
# 执行每个工具调用
|
||||
for tool_call in valid_tool_calls:
|
||||
try:
|
||||
tool_name = tool_call.get("name", "unknown_tool")
|
||||
used_tools.append(tool_name)
|
||||
|
||||
|
||||
logger.debug(f"{self.log_prefix}执行工具: {tool_name}")
|
||||
|
||||
|
||||
# 执行工具
|
||||
result = await self.tool_instance._execute_tool_call(tool_call)
|
||||
|
||||
|
||||
if result:
|
||||
tool_info = {
|
||||
"type": result.get("type", "unknown_type"),
|
||||
@@ -189,10 +181,10 @@ class ToolExecutor:
|
||||
"timestamp": time.time(),
|
||||
}
|
||||
tool_results.append(tool_info)
|
||||
|
||||
|
||||
logger.info(f"{self.log_prefix}工具{tool_name}执行成功,类型: {tool_info['type']}")
|
||||
logger.debug(f"{self.log_prefix}工具{tool_name}结果内容: {tool_info['content'][:200]}...")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}工具{tool_name}执行失败: {e}")
|
||||
# 添加错误信息到结果中
|
||||
@@ -204,85 +196,82 @@ class ToolExecutor:
|
||||
"timestamp": time.time(),
|
||||
}
|
||||
tool_results.append(error_info)
|
||||
|
||||
|
||||
return tool_results, used_tools
|
||||
|
||||
def _generate_cache_key(self, target_message: str, chat_history: list[str], sender: str) -> str:
|
||||
"""生成缓存键
|
||||
|
||||
|
||||
Args:
|
||||
target_message: 目标消息内容
|
||||
chat_history: 聊天历史
|
||||
sender: 发送者
|
||||
|
||||
|
||||
Returns:
|
||||
str: 缓存键
|
||||
"""
|
||||
import hashlib
|
||||
|
||||
# 使用消息内容和群聊状态生成唯一缓存键
|
||||
content = f"{target_message}_{chat_history}_{sender}"
|
||||
return hashlib.md5(content.encode()).hexdigest()
|
||||
|
||||
|
||||
def _get_from_cache(self, cache_key: str) -> Optional[List[Dict]]:
|
||||
"""从缓存获取结果
|
||||
|
||||
|
||||
Args:
|
||||
cache_key: 缓存键
|
||||
|
||||
|
||||
Returns:
|
||||
Optional[List[Dict]]: 缓存的结果,如果不存在或过期则返回None
|
||||
"""
|
||||
if not self.enable_cache or cache_key not in self.tool_cache:
|
||||
return None
|
||||
|
||||
|
||||
cache_item = self.tool_cache[cache_key]
|
||||
if cache_item["ttl"] <= 0:
|
||||
# 缓存过期,删除
|
||||
del self.tool_cache[cache_key]
|
||||
logger.debug(f"{self.log_prefix}缓存过期,删除缓存键: {cache_key}")
|
||||
return None
|
||||
|
||||
|
||||
# 减少TTL
|
||||
cache_item["ttl"] -= 1
|
||||
logger.debug(f"{self.log_prefix}使用缓存结果,剩余TTL: {cache_item['ttl']}")
|
||||
return cache_item["result"]
|
||||
|
||||
|
||||
def _set_cache(self, cache_key: str, result: List[Dict]):
|
||||
"""设置缓存
|
||||
|
||||
|
||||
Args:
|
||||
cache_key: 缓存键
|
||||
result: 要缓存的结果
|
||||
"""
|
||||
if not self.enable_cache:
|
||||
return
|
||||
|
||||
self.tool_cache[cache_key] = {
|
||||
"result": result,
|
||||
"ttl": self.cache_ttl,
|
||||
"timestamp": time.time()
|
||||
}
|
||||
|
||||
self.tool_cache[cache_key] = {"result": result, "ttl": self.cache_ttl, "timestamp": time.time()}
|
||||
logger.debug(f"{self.log_prefix}设置缓存,TTL: {self.cache_ttl}")
|
||||
|
||||
|
||||
def _cleanup_expired_cache(self):
|
||||
"""清理过期的缓存"""
|
||||
if not self.enable_cache:
|
||||
return
|
||||
|
||||
|
||||
expired_keys = []
|
||||
for cache_key, cache_item in self.tool_cache.items():
|
||||
if cache_item["ttl"] <= 0:
|
||||
expired_keys.append(cache_key)
|
||||
|
||||
|
||||
for key in expired_keys:
|
||||
del self.tool_cache[key]
|
||||
|
||||
|
||||
if expired_keys:
|
||||
logger.debug(f"{self.log_prefix}清理了{len(expired_keys)}个过期缓存")
|
||||
|
||||
def get_available_tools(self) -> List[str]:
|
||||
"""获取可用工具列表
|
||||
|
||||
|
||||
Returns:
|
||||
List[str]: 可用工具名称列表
|
||||
"""
|
||||
@@ -290,31 +279,25 @@ class ToolExecutor:
|
||||
return [tool.get("function", {}).get("name", "unknown") for tool in tools]
|
||||
|
||||
async def execute_specific_tool(
|
||||
self,
|
||||
tool_name: str,
|
||||
tool_args: Dict,
|
||||
validate_args: bool = True
|
||||
self, tool_name: str, tool_args: Dict, validate_args: bool = True
|
||||
) -> Optional[Dict]:
|
||||
"""直接执行指定工具
|
||||
|
||||
|
||||
Args:
|
||||
tool_name: 工具名称
|
||||
tool_args: 工具参数
|
||||
validate_args: 是否验证参数
|
||||
|
||||
|
||||
Returns:
|
||||
Optional[Dict]: 工具执行结果,失败时返回None
|
||||
"""
|
||||
try:
|
||||
tool_call = {
|
||||
"name": tool_name,
|
||||
"arguments": tool_args
|
||||
}
|
||||
|
||||
tool_call = {"name": tool_name, "arguments": tool_args}
|
||||
|
||||
logger.info(f"{self.log_prefix}直接执行工具: {tool_name}")
|
||||
|
||||
|
||||
result = await self.tool_instance._execute_tool_call(tool_call)
|
||||
|
||||
|
||||
if result:
|
||||
tool_info = {
|
||||
"type": result.get("type", "unknown_type"),
|
||||
@@ -325,10 +308,10 @@ class ToolExecutor:
|
||||
}
|
||||
logger.info(f"{self.log_prefix}直接工具执行成功: {tool_name}")
|
||||
return tool_info
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"{self.log_prefix}直接工具执行失败 {tool_name}: {e}")
|
||||
|
||||
|
||||
return None
|
||||
|
||||
def clear_cache(self):
|
||||
@@ -337,36 +320,36 @@ class ToolExecutor:
|
||||
cache_count = len(self.tool_cache)
|
||||
self.tool_cache.clear()
|
||||
logger.info(f"{self.log_prefix}清空了{cache_count}个缓存项")
|
||||
|
||||
|
||||
def get_cache_status(self) -> Dict:
|
||||
"""获取缓存状态信息
|
||||
|
||||
|
||||
Returns:
|
||||
Dict: 包含缓存统计信息的字典
|
||||
"""
|
||||
if not self.enable_cache:
|
||||
return {"enabled": False, "cache_count": 0}
|
||||
|
||||
|
||||
# 清理过期缓存
|
||||
self._cleanup_expired_cache()
|
||||
|
||||
|
||||
total_count = len(self.tool_cache)
|
||||
ttl_distribution = {}
|
||||
|
||||
|
||||
for cache_item in self.tool_cache.values():
|
||||
ttl = cache_item["ttl"]
|
||||
ttl_distribution[ttl] = ttl_distribution.get(ttl, 0) + 1
|
||||
|
||||
|
||||
return {
|
||||
"enabled": True,
|
||||
"cache_count": total_count,
|
||||
"cache_ttl": self.cache_ttl,
|
||||
"ttl_distribution": ttl_distribution
|
||||
"ttl_distribution": ttl_distribution,
|
||||
}
|
||||
|
||||
|
||||
def set_cache_config(self, enable_cache: bool = None, cache_ttl: int = None):
|
||||
"""动态修改缓存配置
|
||||
|
||||
|
||||
Args:
|
||||
enable_cache: 是否启用缓存
|
||||
cache_ttl: 缓存TTL
|
||||
@@ -374,7 +357,7 @@ class ToolExecutor:
|
||||
if enable_cache is not None:
|
||||
self.enable_cache = enable_cache
|
||||
logger.info(f"{self.log_prefix}缓存状态修改为: {'启用' if enable_cache else '禁用'}")
|
||||
|
||||
|
||||
if cache_ttl is not None and cache_ttl > 0:
|
||||
self.cache_ttl = cache_ttl
|
||||
logger.info(f"{self.log_prefix}缓存TTL修改为: {cache_ttl}")
|
||||
@@ -418,4 +401,4 @@ available_tools = executor.get_available_tools()
|
||||
cache_status = executor.get_cache_status() # 查看缓存状态
|
||||
executor.clear_cache() # 清空缓存
|
||||
executor.set_cache_config(cache_ttl=5) # 动态修改缓存配置
|
||||
"""
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user