From 2e0d358d934bee4923b07f8e4372c020c5f08aca Mon Sep 17 00:00:00 2001 From: SengokuCola <1026294844@qq.com> Date: Sat, 29 Mar 2025 19:13:32 +0800 Subject: [PATCH 1/3] =?UTF-8?q?fix=EF=BC=9A=E8=AE=A9=E9=BA=A6=E9=BA=A6?= =?UTF-8?q?=E5=9B=9E=E5=A4=8D=E5=8A=9F=E8=83=BD=E6=AD=A3=E5=B8=B8=E5=B7=A5?= =?UTF-8?q?=E4=BD=9C=EF=BC=8C=E8=BE=93=E5=87=BA=E4=B8=80=E5=A0=86=E8=B0=83?= =?UTF-8?q?=E6=88=8F=E4=BF=A1=E6=81=AF?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- bot.py | 53 +-- src/common/logger.py | 19 ++ src/main.py | 6 +- src/plugins/chat/bot.py | 406 ++++++++++++++--------- src/plugins/chat/llm_generator.py | 76 ++--- src/plugins/chat/message_sender.py | 8 +- src/plugins/chat/prompt_builder.py | 70 ++-- src/plugins/chat/storage.py | 3 +- src/plugins/memory_system/Hippocampus.py | 27 +- src/plugins/willing/willing_manager.py | 11 +- template.env => template/template.env | 0 11 files changed, 360 insertions(+), 319 deletions(-) rename template.env => template/template.env (100%) diff --git a/bot.py b/bot.py index aa2b0038e..bcdd93cca 100644 --- a/bot.py +++ b/bot.py @@ -49,52 +49,21 @@ def init_config(): def init_env(): - # 初始化.env 默认ENVIRONMENT=prod - if not os.path.exists(".env"): - with open(".env", "w") as f: - f.write("ENVIRONMENT=prod") - - # 检测.env.prod文件是否存在 - if not os.path.exists(".env.prod"): - logger.error("检测到.env.prod文件不存在") - shutil.copy("template.env", "./.env.prod") - - # 检测.env.dev文件是否存在,不存在的话直接复制生产环境配置 - if not os.path.exists(".env.dev"): - logger.error("检测到.env.dev文件不存在") - shutil.copy(".env.prod", "./.env.dev") - - # 首先加载基础环境变量.env - if os.path.exists(".env"): - load_dotenv(".env", override=True) - logger.success("成功加载基础环境变量配置") + # 检测.env.prod文件是否存在 + if not os.path.exists(".env.prod"): + logger.error("检测到.env.prod文件不存在") + shutil.copy("template/template.env", "./.env.prod") + logger.info("已从template/template.env复制创建.env.prod,请修改配置后重新启动") def load_env(): - # 使用闭包实现对加载器的横向扩展,避免大量重复判断 - def prod(): - logger.success("成功加载生产环境变量配置") - load_dotenv(".env.prod", override=True) # override=True 允许覆盖已存在的环境变量 - - def dev(): - logger.success("成功加载开发环境变量配置") - load_dotenv(".env.dev", override=True) # override=True 允许覆盖已存在的环境变量 - - fn_map = {"prod": prod, "dev": dev} - - env = os.getenv("ENVIRONMENT") - logger.info(f"[load_env] 当前的 ENVIRONMENT 变量值:{env}") - - if env in fn_map: - fn_map[env]() # 根据映射执行闭包函数 - - elif os.path.exists(f".env.{env}"): - logger.success(f"加载{env}环境变量配置") - load_dotenv(f".env.{env}", override=True) # override=True 允许覆盖已存在的环境变量 - + # 直接加载生产环境变量配置 + if os.path.exists(".env.prod"): + load_dotenv(".env.prod", override=True) + logger.success("成功加载环境变量配置") else: - logger.error(f"ENVIRONMENT 配置错误,请检查 .env 文件中的 ENVIRONMENT 变量及对应 .env.{env} 是否存在") - RuntimeError(f"ENVIRONMENT 配置错误,请检查 .env 文件中的 ENVIRONMENT 变量及对应 .env.{env} 是否存在") + logger.error("未找到.env.prod文件,请确保文件存在") + raise FileNotFoundError("未找到.env.prod文件,请确保文件存在") def scan_provider(env_config: dict): diff --git a/src/common/logger.py b/src/common/logger.py index ef41f87ab..aa7e9ad98 100644 --- a/src/common/logger.py +++ b/src/common/logger.py @@ -245,6 +245,23 @@ SUB_HEARTFLOW_STYLE_CONFIG = { }, } +WILLING_STYLE_CONFIG = { + "advanced": { + "console_format": ( + "{time:YYYY-MM-DD HH:mm:ss} | " + "{level: <8} | " + "{extra[module]: <12} | " + "意愿 | " + "{message}" + ), + "file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 意愿 | {message}"), + }, + "simple": { + "console_format": ("{time:MM-DD HH:mm} | 意愿 | {message}"), # noqa: E501 + "file_format": ("{time:YYYY-MM-DD HH:mm:ss} | {level: <8} | {extra[module]: <15} | 意愿 | {message}"), + }, +} + @@ -259,6 +276,8 @@ RELATION_STYLE_CONFIG = RELATION_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else RE SCHEDULE_STYLE_CONFIG = SCHEDULE_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else SCHEDULE_STYLE_CONFIG["advanced"] HEARTFLOW_STYLE_CONFIG = HEARTFLOW_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else HEARTFLOW_STYLE_CONFIG["advanced"] SUB_HEARTFLOW_STYLE_CONFIG = SUB_HEARTFLOW_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else SUB_HEARTFLOW_STYLE_CONFIG["advanced"] # noqa: E501 +WILLING_STYLE_CONFIG = WILLING_STYLE_CONFIG["simple"] if SIMPLE_OUTPUT else WILLING_STYLE_CONFIG["advanced"] + def is_registered_module(record: dict) -> bool: """检查是否为已注册的模块""" diff --git a/src/main.py b/src/main.py index 22cd22e15..d0f4d6723 100644 --- a/src/main.py +++ b/src/main.py @@ -44,6 +44,7 @@ class MainSystem: async def _init_components(self): """初始化其他组件""" + init_start_time = time.time() # 启动LLM统计 self.llm_stats.start() logger.success("LLM统计功能启动成功") @@ -93,6 +94,9 @@ class MainSystem: # 启动心流系统 asyncio.create_task(subheartflow_manager.heartflow_start_working()) logger.success("心流系统启动成功") + + init_end_time = time.time() + logger.success(f"初始化完成,用时{init_end_time - init_start_time}秒") except Exception as e: logger.error(f"启动大脑和外部世界失败: {e}") raise @@ -166,8 +170,6 @@ async def main(): system.initialize(), system.schedule_tasks(), ) - # await system.initialize() - # await system.schedule_tasks() if __name__ == "__main__": diff --git a/src/plugins/chat/bot.py b/src/plugins/chat/bot.py index 7c5bc9dd1..149de05fc 100644 --- a/src/plugins/chat/bot.py +++ b/src/plugins/chat/bot.py @@ -58,10 +58,7 @@ class ChatBot: 5. 更新关系 6. 更新情绪 """ - # message_json = json.loads(message_data) - # 哦我嘞个json - # 进入maimbot message = MessageRecv(message_data) groupinfo = message.message_info.group_info userinfo = message.message_info.user_info @@ -73,64 +70,62 @@ class ChatBot: chat = await chat_manager.get_or_create_stream( platform=messageinfo.platform, user_info=userinfo, - group_info=groupinfo, # 我嘞个gourp_info + group_info=groupinfo, ) message.update_chat_stream(chat) # 创建 心流 观察 - if global_config.enable_think_flow: - await outer_world.check_and_add_new_observe() - subheartflow_manager.create_subheartflow(chat.stream_id) + + await outer_world.check_and_add_new_observe() + subheartflow_manager.create_subheartflow(chat.stream_id) + timer1 = time.time() await relationship_manager.update_relationship( chat_stream=chat, ) await relationship_manager.update_relationship_value(chat_stream=chat, relationship_value=0) + timer2 = time.time() + logger.info(f"1关系更新时间: {timer2 - timer1}秒") + timer1 = time.time() await message.process() + timer2 = time.time() + logger.info(f"2消息处理时间: {timer2 - timer1}秒") - # 过滤词 - for word in global_config.ban_words: - if word in message.processed_plain_text: - logger.info( - f"[{chat.group_info.group_name if chat.group_info else '私聊'}]" - f"{userinfo.user_nickname}:{message.processed_plain_text}" - ) - logger.info(f"[过滤词识别]消息中含有{word},filtered") - return - - # 正则表达式过滤 - for pattern in global_config.ban_msgs_regex: - if re.search(pattern, message.raw_message): - logger.info( - f"[{chat.group_info.group_name if chat.group_info else '私聊'}]" - f"{userinfo.user_nickname}:{message.raw_message}" - ) - logger.info(f"[正则表达式过滤]消息匹配到{pattern},filtered") - return - + # 过滤词/正则表达式过滤 + if ( + self._check_ban_words(message.processed_plain_text, chat, userinfo) + or self._check_ban_regex(message.raw_message, chat, userinfo) + ): + return + current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(messageinfo.time)) # 根据话题计算激活度 - topic = "" - await self.storage.store_message(message, chat, topic[0] if topic else None) + await self.storage.store_message(message, chat) + timer1 = time.time() interested_rate = 0 interested_rate = await HippocampusManager.get_instance().get_activate_from_text( message.processed_plain_text, fast_retrieval=True ) + timer2 = time.time() + logger.info(f"3记忆激活时间: {timer2 - timer1}秒") + + is_mentioned = is_mentioned_bot_in_message(message) if global_config.enable_think_flow: current_willing_old = willing_manager.get_willing(chat_stream=chat) current_willing_new = (subheartflow_manager.get_subheartflow(chat.stream_id).current_state.willing - 5) / 4 - print(f"旧回复意愿:{current_willing_old},新回复意愿:{current_willing_new}") + print(f"4旧回复意愿:{current_willing_old},新回复意愿:{current_willing_new}") current_willing = (current_willing_old + current_willing_new) / 2 else: current_willing = willing_manager.get_willing(chat_stream=chat) willing_manager.set_willing(chat.stream_id, current_willing) + timer1 = time.time() reply_probability = await willing_manager.change_reply_willing_received( chat_stream=chat, is_mentioned_bot=is_mentioned, @@ -139,161 +134,246 @@ class ChatBot: interested_rate=interested_rate, sender_id=str(message.message_info.user_info.user_id), ) + timer2 = time.time() + logger.info(f"4计算意愿激活时间: {timer2 - timer1}秒") + #神秘的消息流数据结构处理 + if chat.group_info: + if chat.group_info.group_name: + mes_name_dict = chat.group_info.group_name + mes_name = mes_name_dict.get('group_name', '无名群聊') + else: + mes_name = '群聊' + else: + mes_name = '私聊' + + # print(f"mes_name: {mes_name}") logger.info( - f"[{current_time}][{chat.group_info.group_name if chat.group_info else '私聊'}]" + f"[{current_time}][{mes_name}]" f"{chat.user_info.user_nickname}:" f"{message.processed_plain_text}[回复意愿:{current_willing:.2f}][概率:{reply_probability * 100:.1f}%]" ) - response = None - if message.message_info.additional_config: if "maimcore_reply_probability_gain" in message.message_info.additional_config.keys(): reply_probability += message.message_info.additional_config["maimcore_reply_probability_gain"] + + # 开始组织语言 if random() < reply_probability: - bot_user_info = UserInfo( - user_id=global_config.BOT_QQ, - user_nickname=global_config.BOT_NICKNAME, - platform=messageinfo.platform, - ) - # 开始思考的时间点 - thinking_time_point = round(time.time(), 2) - # logger.debug(f"开始思考的时间点: {thinking_time_point}") - think_id = "mt" + str(thinking_time_point) - thinking_message = MessageThinking( - message_id=think_id, - chat_stream=chat, - bot_user_info=bot_user_info, - reply=message, - thinking_start_time=thinking_time_point, - ) - - message_manager.add_message(thinking_message) - - willing_manager.change_reply_willing_sent(chat) - - response, raw_content = await self.gpt.generate_response(message) - else: - # 决定不回复时,也更新回复意愿 - willing_manager.change_reply_willing_not_sent(chat) - - # print(f"response: {response}") - if response: - stream_id = message.chat_stream.stream_id - chat_talking_prompt = "" - if stream_id: - chat_talking_prompt = get_recent_group_detailed_plain_text( - stream_id, limit=global_config.MAX_CONTEXT_SIZE, combine=True - ) - if subheartflow_manager.get_subheartflow(stream_id): - await subheartflow_manager.get_subheartflow(stream_id).do_after_reply(response, chat_talking_prompt) - else: - await subheartflow_manager.create_subheartflow(stream_id).do_after_reply(response, chat_talking_prompt) - # print(f"有response: {response}") - container = message_manager.get_container(chat.stream_id) - thinking_message = None - # 找到message,删除 - # print(f"开始找思考消息") - for msg in container.messages: - if isinstance(msg, MessageThinking) and msg.message_info.message_id == think_id: - # print(f"找到思考消息: {msg}") - thinking_message = msg - container.messages.remove(msg) - break - - # 如果找不到思考消息,直接返回 - if not thinking_message: - logger.warning("未找到对应的思考消息,可能已超时被移除") + timer1 = time.time() + response_set, thinking_id = await self._generate_response_from_message(message, chat, userinfo, messageinfo) + timer2 = time.time() + logger.info(f"5生成回复时间: {timer2 - timer1}秒") + + if not response_set: + logger.info("为什么生成回复失败?") return + + # 发送消息 + timer1 = time.time() + await self._send_response_messages(message, chat, response_set, thinking_id) + timer2 = time.time() + logger.info(f"7发送消息时间: {timer2 - timer1}秒") + + # 处理表情包 + timer1 = time.time() + await self._handle_emoji(message, chat, response_set) + timer2 = time.time() + logger.info(f"8处理表情包时间: {timer2 - timer1}秒") + + timer1 = time.time() + await self._update_using_response(message, chat, response_set) + timer2 = time.time() + logger.info(f"6更新htfl时间: {timer2 - timer1}秒") + + # 更新情绪和关系 + # await self._update_emotion_and_relationship(message, chat, response_set) - # 记录开始思考的时间,避免从思考到回复的时间太久 - thinking_start_time = thinking_message.thinking_start_time - message_set = MessageSet(chat, think_id) - # 计算打字时间,1是为了模拟打字,2是避免多条回复乱序 - # accu_typing_time = 0 + async def _generate_response_from_message(self, message, chat, userinfo, messageinfo): + """生成回复内容 + + Args: + message: 接收到的消息 + chat: 聊天流对象 + userinfo: 用户信息对象 + messageinfo: 消息信息对象 + + Returns: + tuple: (response, raw_content) 回复内容和原始内容 + """ + bot_user_info = UserInfo( + user_id=global_config.BOT_QQ, + user_nickname=global_config.BOT_NICKNAME, + platform=messageinfo.platform, + ) + + thinking_time_point = round(time.time(), 2) + thinking_id = "mt" + str(thinking_time_point) + thinking_message = MessageThinking( + message_id=thinking_id, + chat_stream=chat, + bot_user_info=bot_user_info, + reply=message, + thinking_start_time=thinking_time_point, + ) - mark_head = False - for msg in response: - # print(f"\033[1;32m[回复内容]\033[0m {msg}") - # 通过时间改变时间戳 - # typing_time = calculate_typing_time(msg) - # logger.debug(f"typing_time: {typing_time}") - # accu_typing_time += typing_time - # timepoint = thinking_time_point + accu_typing_time - message_segment = Seg(type="text", data=msg) - # logger.debug(f"message_segment: {message_segment}") + message_manager.add_message(thinking_message) + willing_manager.change_reply_willing_sent(chat) + + response_set = await self.gpt.generate_response(message) + + return response_set, thinking_id + + async def _update_using_response(self, message, chat, response_set): + # 更新心流状态 + stream_id = message.chat_stream.stream_id + chat_talking_prompt = "" + if stream_id: + chat_talking_prompt = get_recent_group_detailed_plain_text( + stream_id, limit=global_config.MAX_CONTEXT_SIZE, combine=True + ) + + if subheartflow_manager.get_subheartflow(stream_id): + await subheartflow_manager.get_subheartflow(stream_id).do_after_reply(response_set, chat_talking_prompt) + else: + await subheartflow_manager.create_subheartflow(stream_id).do_after_reply(response_set, chat_talking_prompt) + + + async def _send_response_messages(self, message, chat, response_set, thinking_id): + container = message_manager.get_container(chat.stream_id) + thinking_message = None + + logger.info(f"开始发送消息准备") + for msg in container.messages: + if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id: + thinking_message = msg + container.messages.remove(msg) + break + + if not thinking_message: + logger.warning("未找到对应的思考消息,可能已超时被移除") + return + + logger.info(f"开始发送消息") + thinking_start_time = thinking_message.thinking_start_time + message_set = MessageSet(chat, thinking_id) + + mark_head = False + for msg in response_set: + message_segment = Seg(type="text", data=msg) + bot_message = MessageSending( + message_id=thinking_id, + chat_stream=chat, + bot_user_info=UserInfo( + user_id=global_config.BOT_QQ, + user_nickname=global_config.BOT_NICKNAME, + platform=message.message_info.platform, + ), + sender_info=message.message_info.user_info, + message_segment=message_segment, + reply=message, + is_head=not mark_head, + is_emoji=False, + thinking_start_time=thinking_start_time, + ) + if not mark_head: + mark_head = True + message_set.add_message(bot_message) + logger.info(f"开始添加发送消息") + message_manager.add_message(message_set) + + async def _handle_emoji(self, message, chat, response): + """处理表情包 + + Args: + message: 接收到的消息 + chat: 聊天流对象 + response: 生成的回复 + """ + if random() < global_config.emoji_chance: + emoji_raw = await emoji_manager.get_emoji_for_text(response) + if emoji_raw: + emoji_path, description = emoji_raw + emoji_cq = image_path_to_base64(emoji_path) + + thinking_time_point = round(message.message_info.time, 2) + bot_response_time = thinking_time_point + (1 if random() < 0.5 else -1) + + message_segment = Seg(type="emoji", data=emoji_cq) bot_message = MessageSending( - message_id=think_id, + message_id="mt" + str(thinking_time_point), chat_stream=chat, - bot_user_info=bot_user_info, - sender_info=userinfo, + bot_user_info=UserInfo( + user_id=global_config.BOT_QQ, + user_nickname=global_config.BOT_NICKNAME, + platform=message.message_info.platform, + ), + sender_info=message.message_info.user_info, message_segment=message_segment, reply=message, - is_head=not mark_head, - is_emoji=False, - thinking_start_time=thinking_start_time, + is_head=False, + is_emoji=True, ) - if not mark_head: - mark_head = True - message_set.add_message(bot_message) - if len(str(bot_message)) < 1000: - logger.debug(f"bot_message: {bot_message}") - logger.debug(f"添加消息到message_set: {bot_message}") - else: - logger.debug(f"bot_message: {str(bot_message)[:1000]}...{str(bot_message)[-10:]}") - logger.debug(f"添加消息到message_set: {str(bot_message)[:1000]}...{str(bot_message)[-10:]}") - # message_set 可以直接加入 message_manager - # print(f"\033[1;32m[回复]\033[0m 将回复载入发送容器") + message_manager.add_message(bot_message) - logger.debug("添加message_set到message_manager") + async def _update_emotion_and_relationship(self, message, chat, response, raw_content): + """更新情绪和关系 + + Args: + message: 接收到的消息 + chat: 聊天流对象 + response: 生成的回复 + raw_content: 原始内容 + """ + stance, emotion = await self.gpt._get_emotion_tags(raw_content, message.processed_plain_text) + logger.debug(f"为 '{response}' 立场为:{stance} 获取到的情感标签为:{emotion}") + await relationship_manager.calculate_update_relationship_value( + chat_stream=chat, label=emotion, stance=stance + ) + self.mood_manager.update_mood_from_emotion(emotion, global_config.mood_intensity_factor) - message_manager.add_message(message_set) - - bot_response_time = thinking_time_point - - if random() < global_config.emoji_chance: - emoji_raw = await emoji_manager.get_emoji_for_text(response) - - # 检查是否 <没有找到> emoji - if emoji_raw != None: - emoji_path, description = emoji_raw - - emoji_cq = image_path_to_base64(emoji_path) - - if random() < 0.5: - bot_response_time = thinking_time_point - 1 - else: - bot_response_time = bot_response_time + 1 - - message_segment = Seg(type="emoji", data=emoji_cq) - bot_message = MessageSending( - message_id=think_id, - chat_stream=chat, - bot_user_info=bot_user_info, - sender_info=userinfo, - message_segment=message_segment, - reply=message, - is_head=False, - is_emoji=True, - ) - message_manager.add_message(bot_message) - - # 获取立场和情感标签,更新关系值 - stance, emotion = await self.gpt._get_emotion_tags(raw_content, message.processed_plain_text) - logger.debug(f"为 '{response}' 立场为:{stance} 获取到的情感标签为:{emotion}") - await relationship_manager.calculate_update_relationship_value( - chat_stream=chat, label=emotion, stance=stance - ) - - # 使用情绪管理器更新情绪 - self.mood_manager.update_mood_from_emotion(emotion, global_config.mood_intensity_factor) - - # willing_manager.change_reply_willing_after_sent( - # chat_stream=chat - # ) + def _check_ban_words(self, text: str, chat, userinfo) -> bool: + """检查消息中是否包含过滤词 + + Args: + text: 要检查的文本 + chat: 聊天流对象 + userinfo: 用户信息对象 + + Returns: + bool: 如果包含过滤词返回True,否则返回False + """ + for word in global_config.ban_words: + if word in text: + logger.info( + f"[{chat.group_info.group_name if chat.group_info else '私聊'}]" + f"{userinfo.user_nickname}:{text}" + ) + logger.info(f"[过滤词识别]消息中含有{word},filtered") + return True + return False + def _check_ban_regex(self, text: str, chat, userinfo) -> bool: + """检查消息是否匹配过滤正则表达式 + + Args: + text: 要检查的文本 + chat: 聊天流对象 + userinfo: 用户信息对象 + + Returns: + bool: 如果匹配过滤正则返回True,否则返回False + """ + for pattern in global_config.ban_msgs_regex: + if re.search(pattern, text): + logger.info( + f"[{chat.group_info.group_name if chat.group_info else '私聊'}]" + f"{userinfo.user_nickname}:{text}" + ) + logger.info(f"[正则表达式过滤]消息匹配到{pattern},filtered") + return True + return False # 创建全局ChatBot实例 chat_bot = ChatBot() diff --git a/src/plugins/chat/llm_generator.py b/src/plugins/chat/llm_generator.py index ec416fd72..ed8b8fdea 100644 --- a/src/plugins/chat/llm_generator.py +++ b/src/plugins/chat/llm_generator.py @@ -23,19 +23,20 @@ logger = get_module_logger("llm_generator", config=llm_config) class ResponseGenerator: def __init__(self): - self.model_r1 = LLM_request( + self.model_reasoning = LLM_request( model=global_config.llm_reasoning, temperature=0.7, max_tokens=1000, stream=True, request_type="response", ) - self.model_v3 = LLM_request( - model=global_config.llm_normal, temperature=0.7, max_tokens=3000, request_type="response" - ) - self.model_r1_distill = LLM_request( - model=global_config.llm_reasoning_minor, temperature=0.7, max_tokens=3000, request_type="response" + self.model_normal = LLM_request( + model=global_config.llm_normal, + temperature=0.7, + max_tokens=3000, + request_type="response" ) + self.model_sum = LLM_request( model=global_config.llm_summary_by_topic, temperature=0.7, max_tokens=3000, request_type="relation" ) @@ -45,34 +46,33 @@ class ResponseGenerator: async def generate_response(self, message: MessageThinking) -> Optional[Union[str, List[str]]]: """根据当前模型类型选择对应的生成函数""" # 从global_config中获取模型概率值并选择模型 - rand = random.random() - if rand < global_config.MODEL_R1_PROBABILITY: + if random.random() < global_config.MODEL_R1_PROBABILITY: self.current_model_type = "深深地" - current_model = self.model_r1 - elif rand < global_config.MODEL_R1_PROBABILITY + global_config.MODEL_V3_PROBABILITY: - self.current_model_type = "浅浅的" - current_model = self.model_v3 + current_model = self.model_reasoning else: - self.current_model_type = "又浅又浅的" - current_model = self.model_r1_distill + self.current_model_type = "浅浅的" + current_model = self.model_normal + + logger.info(f"{self.current_model_type}思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}") # noqa: E501 - logger.info(f"{global_config.BOT_NICKNAME}{self.current_model_type}思考中") model_response = await self._generate_response_with_model(message, current_model) - raw_content = model_response - # print(f"raw_content: {raw_content}") - # print(f"model_response: {model_response}") + print(f"raw_content: {model_response}") if model_response: logger.info(f"{global_config.BOT_NICKNAME}的回复是:{model_response}") model_response = await self._process_response(model_response) - if model_response: - return model_response, raw_content - return None, raw_content - async def _generate_response_with_model(self, message: MessageThinking, model: LLM_request) -> Optional[str]: + + return model_response + else: + logger.info(f"{self.current_model_type}思考,失败") + return None + + async def _generate_response_with_model(self, message: MessageThinking, model: LLM_request): """使用指定的模型生成回复""" + logger.info(f"开始使用生成回复-1") sender_name = "" if message.chat_stream.user_info.user_cardname and message.chat_stream.user_info.user_nickname: sender_name = ( @@ -84,34 +84,22 @@ class ResponseGenerator: else: sender_name = f"用户({message.chat_stream.user_info.user_id})" + logger.info(f"开始使用生成回复-2") # 构建prompt - prompt, prompt_check = await prompt_builder._build_prompt( + timer1 = time.time() + prompt = await prompt_builder._build_prompt( message.chat_stream, message_txt=message.processed_plain_text, sender_name=sender_name, stream_id=message.chat_stream.stream_id, ) - - # 读空气模块 简化逻辑,先停用 - # if global_config.enable_kuuki_read: - # content_check, reasoning_content_check = await self.model_v3.generate_response(prompt_check) - # print(f"\033[1;32m[读空气]\033[0m 读空气结果为{content_check}") - # if 'yes' not in content_check.lower() and random.random() < 0.3: - # self._save_to_db( - # message=message, - # sender_name=sender_name, - # prompt=prompt, - # prompt_check=prompt_check, - # content="", - # content_check=content_check, - # reasoning_content="", - # reasoning_content_check=reasoning_content_check - # ) - # return None - - # 生成回复 + timer2 = time.time() + logger.info(f"构建prompt时间: {timer2 - timer1}秒") + try: + print(111111111111111111111111111111111111111111111111111111111) content, reasoning_content, self.current_model_name = await model.generate_response(prompt) + print(222222222222222222222222222222222222222222222222222222222) except Exception: logger.exception("生成回复时出错") return None @@ -121,9 +109,7 @@ class ResponseGenerator: message=message, sender_name=sender_name, prompt=prompt, - prompt_check=prompt_check, content=content, - # content_check=content_check if global_config.enable_kuuki_read else "", reasoning_content=reasoning_content, # reasoning_content_check=reasoning_content_check if global_config.enable_kuuki_read else "" ) @@ -137,7 +123,6 @@ class ResponseGenerator: message: MessageRecv, sender_name: str, prompt: str, - prompt_check: str, content: str, reasoning_content: str, ): @@ -154,7 +139,6 @@ class ResponseGenerator: "reasoning": reasoning_content, "response": content, "prompt": prompt, - "prompt_check": prompt_check, } ) diff --git a/src/plugins/chat/message_sender.py b/src/plugins/chat/message_sender.py index 4f1c26d50..891cc8522 100644 --- a/src/plugins/chat/message_sender.py +++ b/src/plugins/chat/message_sender.py @@ -83,7 +83,7 @@ class MessageContainer: self.max_size = max_size self.messages = [] self.last_send_time = 0 - self.thinking_timeout = 10 # 思考超时时间(秒) + self.thinking_timeout = 10 # 思考等待超时时间(秒) def get_timeout_messages(self) -> List[MessageSending]: """获取所有超时的Message_Sending对象(思考时间超过30秒),按thinking_start_time排序""" @@ -192,7 +192,7 @@ class MessageManager: # print(thinking_time) if ( message_earliest.is_head - and message_earliest.update_thinking_time() > 20 + and message_earliest.update_thinking_time() > 50 and not message_earliest.is_private_message() # 避免在私聊时插入reply ): logger.debug(f"设置回复消息{message_earliest.processed_plain_text}") @@ -202,7 +202,7 @@ class MessageManager: await message_sender.send_message(message_earliest) - await self.storage.store_message(message_earliest, message_earliest.chat_stream, None) + await self.storage.store_message(message_earliest, message_earliest.chat_stream) container.remove_message(message_earliest) @@ -219,7 +219,7 @@ class MessageManager: # print(msg.is_private_message()) if ( msg.is_head - and msg.update_thinking_time() > 25 + and msg.update_thinking_time() > 50 and not msg.is_private_message() # 避免在私聊时插入reply ): logger.debug(f"设置回复消息{msg.processed_plain_text}") diff --git a/src/plugins/chat/prompt_builder.py b/src/plugins/chat/prompt_builder.py index 39348c395..8aeb4bb39 100644 --- a/src/plugins/chat/prompt_builder.py +++ b/src/plugins/chat/prompt_builder.py @@ -16,8 +16,6 @@ from src.think_flow_demo.heartflow import subheartflow_manager logger = get_module_logger("prompt") -logger.info("初始化Prompt系统") - class PromptBuilder: def __init__(self): @@ -28,12 +26,12 @@ class PromptBuilder: self, chat_stream, message_txt: str, sender_name: str = "某人", stream_id: Optional[int] = None ) -> tuple[str, str]: # 关系(载入当前聊天记录里部分人的关系) - who_chat_in_group = [chat_stream] - who_chat_in_group += get_recent_group_speaker( - stream_id, - (chat_stream.user_info.user_id, chat_stream.user_info.platform), - limit=global_config.MAX_CONTEXT_SIZE, - ) + # who_chat_in_group = [chat_stream] + # who_chat_in_group += get_recent_group_speaker( + # stream_id, + # (chat_stream.user_info.user_id, chat_stream.user_info.platform), + # limit=global_config.MAX_CONTEXT_SIZE, + # ) # outer_world_info = outer_world.outer_world_info if global_config.enable_think_flow: @@ -42,19 +40,21 @@ class PromptBuilder: current_mind_info = "" relation_prompt = "" - for person in who_chat_in_group: - relation_prompt += relationship_manager.build_relationship_info(person) + # for person in who_chat_in_group: + # relation_prompt += relationship_manager.build_relationship_info(person) - relation_prompt_all = ( - f"{relation_prompt}关系等级越大,关系越好,请分析聊天记录," - f"根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。" - ) + # relation_prompt_all = ( + # f"{relation_prompt}关系等级越大,关系越好,请分析聊天记录," + # f"根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。" + # ) # 开始构建prompt # 心情 mood_manager = MoodManager.get_instance() mood_prompt = mood_manager.get_prompt() + + logger.info(f"心情prompt: {mood_prompt}") # 日程构建 # schedule_prompt = f'''你现在正在做的事情是:{bot_schedule.get_current_num_task(num = 1,time_info = False)}''' @@ -73,28 +73,24 @@ class PromptBuilder: chat_in_group = False chat_talking_prompt = chat_talking_prompt # print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}") + + logger.info(f"聊天上下文prompt: {chat_talking_prompt}") # 使用新的记忆获取方法 memory_prompt = "" start_time = time.time() # 调用 hippocampus 的 get_relevant_memories 方法 - relevant_memories = await HippocampusManager.get_instance().get_memory_from_text( - text=message_txt, max_memory_num=3, max_memory_length=2, max_depth=4, fast_retrieval=False - ) - memory_str = "" - for _topic, memories in relevant_memories: - memory_str += f"{memories}\n" - # print(f"memory_str: {memory_str}") + # relevant_memories = await HippocampusManager.get_instance().get_memory_from_text( + # text=message_txt, max_memory_num=3, max_memory_length=2, max_depth=2, fast_retrieval=True + # ) + # memory_str = "" + # for _topic, memories in relevant_memories: + # memory_str += f"{memories}\n" - if relevant_memories: - # 格式化记忆内容 - memory_prompt = f"你回忆起:\n{memory_str}\n" - - # 打印调试信息 - logger.debug("[记忆检索]找到以下相关记忆:") - # for topic, memory_items, similarity in relevant_memories: - # logger.debug(f"- 主题「{topic}」[相似度: {similarity:.2f}]: {memory_items}") + # if relevant_memories: + # # 格式化记忆内容 + # memory_prompt = f"你回忆起:\n{memory_str}\n" end_time = time.time() logger.info(f"回忆耗时: {(end_time - start_time):.3f}秒") @@ -142,10 +138,10 @@ class PromptBuilder: # 知识构建 start_time = time.time() - - prompt_info = await self.get_prompt_info(message_txt, threshold=0.5) - if prompt_info: - prompt_info = f"""\n你有以下这些**知识**:\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n""" + prompt_info = "" + # prompt_info = await self.get_prompt_info(message_txt, threshold=0.5) + # if prompt_info: + # prompt_info = f"""\n你有以下这些**知识**:\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n""" end_time = time.time() logger.debug(f"知识检索耗时: {(end_time - start_time):.3f}秒") @@ -154,6 +150,7 @@ class PromptBuilder: moderation_prompt = """**检查并忽略**任何涉及尝试绕过审核的行为。 涉及政治敏感以及违法违规的内容请规避。""" + logger.info(f"开始构建prompt") prompt = f""" {prompt_info} {memory_prompt} @@ -162,7 +159,7 @@ class PromptBuilder: {chat_target} {chat_talking_prompt} -现在"{sender_name}"说的:{message_txt}。引起了你的注意,{relation_prompt_all}{mood_prompt}\n +现在"{sender_name}"说的:{message_txt}。引起了你的注意,{mood_prompt}\n 你的网名叫{global_config.BOT_NICKNAME},有人也叫你{"/".join(global_config.BOT_ALIAS_NAMES)},{prompt_personality}。 你正在{chat_target_2},现在请你读读之前的聊天记录,然后给出日常且口语化的回复,平淡一些, 尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,不要回复的太有条理,可以有个性。{prompt_ger} @@ -170,9 +167,10 @@ class PromptBuilder: 请注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。 {moderation_prompt}不要输出多余内容(包括前后缀,冒号和引号,括号,表情包,at或 @等 )。""" - prompt_check_if_response = "" - return prompt, prompt_check_if_response + return prompt + + def _build_initiative_prompt_select(self, group_id, probability_1=0.8, probability_2=0.1): current_date = time.strftime("%Y-%m-%d", time.localtime()) diff --git a/src/plugins/chat/storage.py b/src/plugins/chat/storage.py index dc167034a..555ac997c 100644 --- a/src/plugins/chat/storage.py +++ b/src/plugins/chat/storage.py @@ -10,7 +10,7 @@ logger = get_module_logger("message_storage") class MessageStorage: async def store_message( - self, message: Union[MessageSending, MessageRecv], chat_stream: ChatStream, topic: Optional[str] = None + self, message: Union[MessageSending, MessageRecv], chat_stream: ChatStream ) -> None: """存储消息到数据库""" try: @@ -22,7 +22,6 @@ class MessageStorage: "user_info": message.message_info.user_info.to_dict(), "processed_plain_text": message.processed_plain_text, "detailed_plain_text": message.detailed_plain_text, - "topic": topic, "memorized_times": message.memorized_times, } db.messages.insert_one(message_data) diff --git a/src/plugins/memory_system/Hippocampus.py b/src/plugins/memory_system/Hippocampus.py index 6a59db581..532f41546 100644 --- a/src/plugins/memory_system/Hippocampus.py +++ b/src/plugins/memory_system/Hippocampus.py @@ -1203,8 +1203,8 @@ class Hippocampus: activation_values[neighbor] = new_activation visited_nodes.add(neighbor) nodes_to_process.append((neighbor, new_activation, current_depth + 1)) - logger.debug( - f"节点 '{neighbor}' 被激活,激活值: {new_activation:.2f} (通过 '{current_node}' 连接,强度: {strength}, 深度: {current_depth + 1})") # noqa: E501 + # logger.debug( + # f"节点 '{neighbor}' 被激活,激活值: {new_activation:.2f} (通过 '{current_node}' 连接,强度: {strength}, 深度: {current_depth + 1})") # noqa: E501 # 更新激活映射 for node, activation_value in activation_values.items(): @@ -1260,28 +1260,21 @@ class HippocampusManager: # 输出记忆系统参数信息 config = self._hippocampus.config - logger.success("--------------------------------") - logger.success("记忆系统参数配置:") - logger.success(f"记忆构建间隔: {global_config.build_memory_interval}秒") - logger.success(f"记忆遗忘间隔: {global_config.forget_memory_interval}秒") - logger.success(f"记忆遗忘比例: {global_config.memory_forget_percentage}") - logger.success(f"记忆压缩率: {config.memory_compress_rate}") - logger.success(f"记忆构建样本数: {config.build_memory_sample_num}") - logger.success(f"记忆构建样本长度: {config.build_memory_sample_length}") - logger.success(f"记忆遗忘时间: {config.memory_forget_time}小时") - logger.success(f"记忆构建分布: {config.memory_build_distribution}") - logger.success("--------------------------------") - + # 输出记忆图统计信息 memory_graph = self._hippocampus.memory_graph.G node_count = len(memory_graph.nodes()) edge_count = len(memory_graph.edges()) + logger.success("--------------------------------") - logger.success("记忆图统计信息:") - logger.success(f"记忆节点数量: {node_count}") - logger.success(f"记忆连接数量: {edge_count}") + logger.success("记忆系统参数配置:") + logger.success(f"构建间隔: {global_config.build_memory_interval}秒|样本数: {config.build_memory_sample_num},长度: {config.build_memory_sample_length}|压缩率: {config.memory_compress_rate}") # noqa: E501 + logger.success(f"记忆构建分布: {config.memory_build_distribution}") + logger.success(f"遗忘间隔: {global_config.forget_memory_interval}秒|遗忘比例: {global_config.memory_forget_percentage}|遗忘: {config.memory_forget_time}小时之后") # noqa: E501 + logger.success(f"记忆图统计信息: 节点数量: {node_count}, 连接数量: {edge_count}") logger.success("--------------------------------") + return self._hippocampus async def build_memory(self): diff --git a/src/plugins/willing/willing_manager.py b/src/plugins/willing/willing_manager.py index ec717d99b..06aaebc13 100644 --- a/src/plugins/willing/willing_manager.py +++ b/src/plugins/willing/willing_manager.py @@ -5,15 +5,12 @@ from ..config.config import global_config from .mode_classical import WillingManager as ClassicalWillingManager from .mode_dynamic import WillingManager as DynamicWillingManager from .mode_custom import WillingManager as CustomWillingManager -from src.common.logger import LogConfig +from src.common.logger import LogConfig, WILLING_STYLE_CONFIG willing_config = LogConfig( - console_format=( - "{time:YYYY-MM-DD HH:mm:ss} | " - "{level: <8} | " - "{extra[module]: <12} | " - "{message}" - ), + # 使用消息发送专用样式 + console_format=WILLING_STYLE_CONFIG["console_format"], + file_format=WILLING_STYLE_CONFIG["file_format"], ) logger = get_module_logger("willing", config=willing_config) diff --git a/template.env b/template/template.env similarity index 100% rename from template.env rename to template/template.env From 803ae5587649568f22a8e539b1865f1b45901bda Mon Sep 17 00:00:00 2001 From: SengokuCola <1026294844@qq.com> Date: Sat, 29 Mar 2025 19:45:35 +0800 Subject: [PATCH 2/3] Update message_sender.py --- src/plugins/chat/message_sender.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/plugins/chat/message_sender.py b/src/plugins/chat/message_sender.py index 891cc8522..914066083 100644 --- a/src/plugins/chat/message_sender.py +++ b/src/plugins/chat/message_sender.py @@ -229,7 +229,7 @@ class MessageManager: await message_sender.send_message(msg) - await self.storage.store_message(msg, msg.chat_stream, None) + await self.storage.store_message(msg, msg.chat_stream) if not container.remove_message(msg): logger.warning("尝试删除不存在的消息") From b8828e81c6fa13113f67bc3fb835d3add29a0c8e Mon Sep 17 00:00:00 2001 From: SengokuCola <1026294844@qq.com> Date: Sat, 29 Mar 2025 23:30:27 +0800 Subject: [PATCH 3/3] =?UTF-8?q?better=EF=BC=9A=E6=9B=B4=E5=A5=BD=E7=9A=84?= =?UTF-8?q?=E5=BF=83=E6=B5=81=E7=BB=93=E6=9E=84=EF=BC=8C=E4=BD=BF=E7=94=A8?= =?UTF-8?q?=E4=BA=86=E8=A7=82=E5=AF=9F=E5=8F=96=E4=BB=A3=E5=A4=96=E9=83=A8?= =?UTF-8?q?=E4=B8=96=E7=95=8C?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- README.md | 101 +----------- bot.py | 20 +-- changelog.md | 2 +- docker-compose.yml | 2 +- docs/docker_deploy.md | 10 +- docs/fast_q_a.md | 6 +- docs/installation_cute.md | 14 +- docs/installation_standard.md | 10 +- docs/linux_deploy_guide_for_beginners.md | 4 +- docs/manual_deploy_linux.md | 2 +- docs/manual_deploy_macos.md | 2 +- docs/manual_deploy_windows.md | 2 +- docs/synology_deploy.md | 8 +- emoji_reviewer.py | 2 +- src/common/logger.py | 4 +- src/gui/reasoning_gui.py | 4 +- src/main.py | 30 +--- src/plugins/chat/auto_speak.py | 4 +- src/plugins/chat/bot.py | 40 ++--- src/plugins/chat/llm_generator.py | 2 - src/plugins/chat/prompt_builder.py | 32 ++-- src/plugins/config/config_env.py | 2 +- src/plugins/memory_system/Hippocampus.py | 14 +- src/plugins/models/utils_model.py | 2 +- src/plugins/personality/big5_test.py | 2 +- src/plugins/personality/can_i_recog_u.py | 2 +- src/plugins/personality/combined_test.py | 2 +- src/plugins/personality/renqingziji.py | 2 +- .../personality/renqingziji_with_mymy.py | 2 +- src/plugins/personality/who_r_u.py | 2 +- src/plugins/schedule/schedule_generator.py | 2 +- src/plugins/zhishi/knowledge_library.py | 2 +- src/think_flow_demo/heartflow.py | 33 ++-- src/think_flow_demo/observation.py | 120 +++++++++++++++ src/think_flow_demo/outer_world.py | 144 ------------------ src/think_flow_demo/sub_heartflow.py | 74 +++++---- template/bot_config_template.toml | 2 +- webui.py | 14 +- 配置文件错误排查.py | 2 +- 39 files changed, 304 insertions(+), 420 deletions(-) create mode 100644 src/think_flow_demo/observation.py delete mode 100644 src/think_flow_demo/outer_world.py diff --git a/README.md b/README.md index 76c0495ed..01afd55c6 100644 --- a/README.md +++ b/README.md @@ -1,82 +1,4 @@ -# 关于项目分支调整与贡献指南的重要通知 -
- - - 📂 致所有为麦麦提交过贡献,以及想要为麦麦提交贡献的朋友们! - ---- - -**📢 关于项目分支调整与贡献指南的重要通知** -**致所有关注MaiMBot的开发者与贡献者:** - -首先,我们由衷感谢大家近期的热情参与!感谢大家对MaiMBot的喜欢,项目突然受到广泛关注让我们倍感惊喜,也深深感受到开源社区的温暖力量。为了保障项目长期健康发展,我们不得不对开发流程做出重要调整,恳请理解与支持。 - ---- - -### **📌 本次调整的核心原因** - -1. **维护团队精力有限** - 核心成员(包括我本人)均为在校学生/在职开发者,近期涌入的大量PR和意见已远超我们的处理能力。为确保本职工作与项目质量,我们必须优化协作流程。 - -2. **重构核心架构的紧迫性** - 当前我们正与核心团队全力重构项目底层逻辑,这是为未来扩展性、性能提升打下的必要基础,需要高度专注。 - -3. **保障现有用户的稳定性** - 我们深知许多用户已依赖当前版本,因此必须划分清晰的维护边界,确保生产环境可用性。 - ---- - -### **🌿 全新分支策略与贡献指南** - -为平衡上述目标,即日起启用以下分支结构: - -| 分支 | 定位 | 接受PR类型 | 提交对象 | -| ---------- | ---------------------------- | --------------------------------------------- | ---------------- | -| `main` | **稳定版**(供下载使用) | 仅接受来自`main-fix`的合并 | 维护团队直接管理 | -| `main-fix` | 生产环境紧急修复 | 明确的功能缺陷修复(需附带复现步骤/测试用例) | 所有开发者 | -| `refactor` | 重构版(**不兼容当前main**) | 仅重构与相关Bug修复 | 重构小组维护 | - ---- - -### **⚠️ 对现有PR的处理说明** - -由于分支结构调整,**GitHub已自动关闭所有未合并的PR**,这并非否定您的贡献价值!如果您认为自己的PR符合以下条件: - -- 属于`main-fix`明确的**功能性缺陷修复**(非功能增强) ,包括非预期行为和严重报错,需要发布issue讨论确定。 -- 属于`refactor`分支的**重构适配性修复** - -**欢迎您重新提交到对应分支**,并在PR描述中标注`[Re-submit from closed PR]`,我们将优先审查。其他类型PR暂缓受理,但您的创意我们已记录在案,未来重构完成后将重新评估。 - ---- - -### **🙏 致谢与协作倡议** - -- 感谢每一位提交Issue、PR、参与讨论的开发者!您的每一行代码都是maim吃的 -- 特别致敬在交流群中积极答疑的社区成员,你们自发维护的氛围令人感动❤️ ,maim哭了 -- **重构期间的非代码贡献同样珍贵**:文档改进、测试用例补充、用户反馈整理等,欢迎通过Issue认领任务! - ---- - -### **📬 高效协作小贴士** - -1. **提交前请先讨论**:创建Issue描述问题,确认是否符合`main-fix`修复范围 -2. **对重构提出您的想法**:如果您对重构版有自己的想法,欢迎提交讨论issue亟需测试伙伴,欢迎邮件联系`team@xxx.org`报名 -3. **部分main-fix的功能在issue讨论后,经过严格讨论,一致决定可以添加功能改动或修复的,可以提交pr** - ---- - -**谢谢大家谢谢大家谢谢大家谢谢大家谢谢大家谢谢大家!** -虽然此刻不得不放缓脚步,但这一切都是为了跳得更高。期待在重构完成后与各位共建更强大的版本! - -千石可乐 敬上 -2025年3月14日 - -
- - - - - -# 麦麦!MaiMBot (编辑中) +# 麦麦!MaiMBot-MaiCore (编辑中)
@@ -88,14 +10,13 @@ ## 📝 项目简介 -**🍔麦麦是一个基于大语言模型的智能QQ群聊机器人** +**🍔MaiCore是一个基于大语言模型的可交互智能体** -- 基于 nonebot2 框架开发 - LLM 提供对话能力 - MongoDB 提供数据持久化支持 -- NapCat 作为QQ协议端支持 +- 可扩展 -**最新版本: v0.5.15** ([查看更新日志](changelog.md)) +**最新版本: v0.6.0-mmc** ([查看更新日志](changelog.md)) > [!WARNING] > 该版本更新较大,建议单独开文件夹部署,然后转移/data文件,数据库可能需要删除messages下的内容(不需要删除记忆) @@ -115,17 +36,10 @@ > - 由于持续迭代,可能存在一些已知或未知的bug > - 由于开发中,可能消耗较多token -**📚 有热心网友创作的wiki:** https://maimbot.pages.dev/ - -**📚 由SLAPQ制作的B站教程:** https://www.bilibili.com/opus/1041609335464001545 - -**😊 其他平台版本** - -- (由 [CabLate](https://github.com/cablate) 贡献) [Telegram 与其他平台(未来可能会有)的版本](https://github.com/cablate/MaiMBot/tree/telegram) - [集中讨论串](https://github.com/SengokuCola/MaiMBot/discussions/149) ## ✍️如何给本项目报告BUG/提交建议/做贡献 -MaiMBot是一个开源项目,我们非常欢迎你的参与。你的贡献,无论是提交bug报告、功能需求还是代码pr,都对项目非常宝贵。我们非常感谢你的支持!🎉 但无序的讨论会降低沟通效率,进而影响问题的解决速度,因此在提交任何贡献前,请务必先阅读本项目的[贡献指南](CONTRIBUTE.md) +MaiCore是一个开源项目,我们非常欢迎你的参与。你的贡献,无论是提交bug报告、功能需求还是代码pr,都对项目非常宝贵。我们非常感谢你的支持!🎉 但无序的讨论会降低沟通效率,进而影响问题的解决速度,因此在提交任何贡献前,请务必先阅读本项目的[贡献指南](CONTRIBUTE.md) ### 💬交流群 - [五群](https://qm.qq.com/q/JxvHZnxyec) 1022489779(开发和建议相关讨论)不一定有空回复,会优先写文档和代码 @@ -151,10 +65,6 @@ MaiMBot是一个开源项目,我们非常欢迎你的参与。你的贡献, - [📦 macOS 手动部署指南 ](docs/manual_deploy_macos.md) -如果你不知道Docker是什么,建议寻找相关教程或使用手动部署 **(现在不建议使用docker,更新慢,可能不适配)** - -- [🐳 Docker部署指南](docs/docker_deploy.md) - - [🖥️群晖 NAS 部署指南](docs/synology_deploy.md) ### 配置说明 @@ -170,7 +80,6 @@ MaiMBot是一个开源项目,我们非常欢迎你的参与。你的贡献,

了解麦麦

-- [项目架构说明](docs/doc1.md) - 项目结构和核心功能实现细节 ## 🎯 功能介绍 diff --git a/bot.py b/bot.py index bcdd93cca..a0bf3a3cb 100644 --- a/bot.py +++ b/bot.py @@ -45,25 +45,25 @@ def init_config(): logger.info("创建config目录") shutil.copy("template/bot_config_template.toml", "config/bot_config.toml") - logger.info("复制完成,请修改config/bot_config.toml和.env.prod中的配置后重新启动") + logger.info("复制完成,请修改config/bot_config.toml和.env中的配置后重新启动") def init_env(): - # 检测.env.prod文件是否存在 - if not os.path.exists(".env.prod"): - logger.error("检测到.env.prod文件不存在") - shutil.copy("template/template.env", "./.env.prod") - logger.info("已从template/template.env复制创建.env.prod,请修改配置后重新启动") + # 检测.env文件是否存在 + if not os.path.exists(".env"): + logger.error("检测到.env文件不存在") + shutil.copy("template/template.env", "./.env") + logger.info("已从template/template.env复制创建.env,请修改配置后重新启动") def load_env(): # 直接加载生产环境变量配置 - if os.path.exists(".env.prod"): - load_dotenv(".env.prod", override=True) + if os.path.exists(".env"): + load_dotenv(".env", override=True) logger.success("成功加载环境变量配置") else: - logger.error("未找到.env.prod文件,请确保文件存在") - raise FileNotFoundError("未找到.env.prod文件,请确保文件存在") + logger.error("未找到.env文件,请确保文件存在") + raise FileNotFoundError("未找到.env文件,请确保文件存在") def scan_provider(env_config: dict): diff --git a/changelog.md b/changelog.md index 6c6b21280..e7ce879f3 100644 --- a/changelog.md +++ b/changelog.md @@ -114,7 +114,7 @@ AI总结 - 优化脚本逻辑 - 修复虚拟环境选项闪退和conda激活问题 - 修复环境检测菜单闪退问题 -- 修复.env.prod文件复制路径错误 +- 修复.env文件复制路径错误 #### 日志系统改进 - 新增GUI日志查看器 diff --git a/docker-compose.yml b/docker-compose.yml index 227df606b..82ca4e259 100644 --- a/docker-compose.yml +++ b/docker-compose.yml @@ -42,7 +42,7 @@ services: - napcatCONFIG:/MaiMBot/napcat # 自动根据配置中的 QQ 号创建 ws 反向客户端配置 - ./bot_config.toml:/MaiMBot/config/bot_config.toml # Toml 配置文件映射 - maimbotDATA:/MaiMBot/data # NapCat 和 NoneBot 共享此卷,否则发送图片会有问题 - - ./.env.prod:/MaiMBot/.env.prod # Toml 配置文件映射 + - ./.env:/MaiMBot/.env # Toml 配置文件映射 image: sengokucola/maimbot:latest volumes: diff --git a/docs/docker_deploy.md b/docs/docker_deploy.md index d135dd584..67c787b10 100644 --- a/docs/docker_deploy.md +++ b/docs/docker_deploy.md @@ -18,15 +18,15 @@ wget https://raw.githubusercontent.com/SengokuCola/MaiMBot/main/docker-compose.y ``` - 若需要启用MongoDB数据库的用户名和密码,可进入docker-compose.yml,取消MongoDB处的注释并修改变量旁 `=` 后方的值为你的用户名和密码\ -修改后请注意在之后配置 `.env.prod` 文件时指定MongoDB数据库的用户名密码 +修改后请注意在之后配置 `.env` 文件时指定MongoDB数据库的用户名密码 ### 2. 启动服务 -- **!!! 请在第一次启动前确保当前工作目录下 `.env.prod` 与 `bot_config.toml` 文件存在 !!!**\ +- **!!! 请在第一次启动前确保当前工作目录下 `.env` 与 `bot_config.toml` 文件存在 !!!**\ 由于Docker文件映射行为的特殊性,若宿主机的映射路径不存在,可能导致意外的目录创建,而不会创建文件,由于此处需要文件映射到文件,需提前确保文件存在且路径正确,可使用如下命令: ```bash -touch .env.prod +touch .env touch bot_config.toml ``` @@ -41,8 +41,8 @@ NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker-compose up -d ### 3. 修改配置并重启Docker -- 请前往 [🎀 新手配置指南](./installation_cute.md) 或 [⚙️ 标准配置指南](./installation_standard.md) 完成`.env.prod`与`bot_config.toml`配置文件的编写\ -**需要注意`.env.prod`中HOST处IP的填写,Docker中部署和系统中直接安装的配置会有所不同** +- 请前往 [🎀 新手配置指南](./installation_cute.md) 或 [⚙️ 标准配置指南](./installation_standard.md) 完成`.env`与`bot_config.toml`配置文件的编写\ +**需要注意`.env`中HOST处IP的填写,Docker中部署和系统中直接安装的配置会有所不同** - 重启Docker容器: diff --git a/docs/fast_q_a.md b/docs/fast_q_a.md index abec69b40..4d03dff4d 100644 --- a/docs/fast_q_a.md +++ b/docs/fast_q_a.md @@ -16,7 +16,7 @@ > >点击 "新建API密钥" 按钮新建一个给MaiMBot使用的API KEY。不要忘了点击复制。 > ->之后打开MaiMBot在你电脑上的文件根目录,使用记事本或者其他文本编辑器打开 [.env.prod](../.env.prod) +>之后打开MaiMBot在你电脑上的文件根目录,使用记事本或者其他文本编辑器打开 [.env](../.env) >这个文件。把你刚才复制的API KEY填入到 `SILICONFLOW_KEY=` 这个等号的右边。 > >在默认情况下,MaiMBot使用的默认Api都是硅基流动的。 @@ -27,9 +27,9 @@ >你需要使用记事本或者其他文本编辑器打开config目录下的 [bot_config.toml](../config/bot_config.toml) > ->然后修改其中的 `provider = ` 字段。同时不要忘记模仿 [.env.prod](../.env.prod) 文件的写法添加 Api Key 和 Base URL。 +>然后修改其中的 `provider = ` 字段。同时不要忘记模仿 [.env](../.env) 文件的写法添加 Api Key 和 Base URL。 > ->举个例子,如果你写了 `provider = "ABC"`,那你需要相应的在 [.env.prod](../.env.prod) 文件里添加形如 `ABC_BASE_URL = https://api.abc.com/v1` 和 `ABC_KEY = sk-1145141919810` 的字段。 +>举个例子,如果你写了 `provider = "ABC"`,那你需要相应的在 [.env](../.env) 文件里添加形如 `ABC_BASE_URL = https://api.abc.com/v1` 和 `ABC_KEY = sk-1145141919810` 的字段。 > >**如果你对AI模型没有较深的了解,修改识图模型和嵌入模型的provider字段可能会产生bug,因为你从Api网站调用了一个并不存在的模型** > diff --git a/docs/installation_cute.md b/docs/installation_cute.md index 5eb5dfdcd..b20954a7f 100644 --- a/docs/installation_cute.md +++ b/docs/installation_cute.md @@ -12,7 +12,7 @@ 要设置这两个文件才能让机器人跑起来哦: -1. `.env.prod` - 这个文件告诉机器人要用哪些AI服务呢 +1. `.env` - 这个文件告诉机器人要用哪些AI服务呢 2. `bot_config.toml` - 这个文件教机器人怎么和你聊天喵 ## 🔑 密钥和域名的对应关系 @@ -22,7 +22,7 @@ 1. 知道游乐园的地址(这就是域名 base_url) 2. 有入场的门票(这就是密钥 key) -在 `.env.prod` 文件里,我们定义了三个游乐园的地址和门票喵: +在 `.env` 文件里,我们定义了三个游乐园的地址和门票喵: ```ini # 硅基流动游乐园 @@ -66,7 +66,7 @@ provider = "DEEP_SEEK" # 也去DeepSeek游乐园 ### 🎯 简单来说 -- `.env.prod` 文件就像是你的票夹,存放着各个游乐园的门票和地址 +- `.env` 文件就像是你的票夹,存放着各个游乐园的门票和地址 - `bot_config.toml` 就是告诉机器人:用哪张票去哪个游乐园玩 - 所有模型都可以用同一个游乐园的票,也可以去不同的游乐园玩耍 - 如果用硅基流动的服务,就保持默认配置不用改呢~ @@ -75,7 +75,7 @@ provider = "DEEP_SEEK" # 也去DeepSeek游乐园 ## ---让我们开始吧--- -### 第一个文件:环境配置 (.env.prod) +### 第一个文件:环境配置 (.env) 这个文件就像是机器人的"身份证"呢,告诉它要用哪些AI服务喵~ @@ -158,12 +158,12 @@ ban_user_id = [111222] # 比如:不回复QQ号为111222的人的消息 # 模型配置部分的详细说明喵~ -#下面的模型若使用硅基流动则不需要更改,使用ds官方则改成在.env.prod自己指定的密钥和域名,使用自定义模型则选择定位相似的模型自己填写 +#下面的模型若使用硅基流动则不需要更改,使用ds官方则改成在.env自己指定的密钥和域名,使用自定义模型则选择定位相似的模型自己填写 [model.llm_reasoning] #推理模型R1,用来理解和思考的喵 name = "Pro/deepseek-ai/DeepSeek-R1" # 模型名字 # name = "Qwen/QwQ-32B" # 如果想用千问模型,可以把上面那行注释掉,用这个呢 -provider = "SILICONFLOW" # 使用在.env.prod里设置的宏,也就是去掉"_BASE_URL"留下来的字喵 +provider = "SILICONFLOW" # 使用在.env里设置的宏,也就是去掉"_BASE_URL"留下来的字喵 [model.llm_reasoning_minor] #R1蒸馏模型,是个轻量版的推理模型喵 name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B" @@ -195,7 +195,7 @@ provider = "SILICONFLOW" 1. **关于模型服务**: - 如果你用硅基流动的服务,这些配置都不用改呢 - - 如果用DeepSeek官方API,要把provider改成你在.env.prod里设置的宏喵 + - 如果用DeepSeek官方API,要把provider改成你在.env里设置的宏喵 - 如果要用自定义模型,选择一个相似功能的模型配置来改呢 2. **主要模型功能**: diff --git a/docs/installation_standard.md b/docs/installation_standard.md index a2e60f22a..cc3d31667 100644 --- a/docs/installation_standard.md +++ b/docs/installation_standard.md @@ -4,14 +4,14 @@ 本项目需要配置两个主要文件: -1. `.env.prod` - 配置API服务和系统环境 +1. `.env` - 配置API服务和系统环境 2. `bot_config.toml` - 配置机器人行为和模型 ## API配置说明 -`.env.prod` 和 `bot_config.toml` 中的API配置关系如下: +`.env` 和 `bot_config.toml` 中的API配置关系如下: -### 在.env.prod中定义API凭证 +### 在.env中定义API凭证 ```ini # API凭证配置 @@ -30,7 +30,7 @@ CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1 # ChatAnyWhere API地 ```toml [model.llm_reasoning] name = "Pro/deepseek-ai/DeepSeek-R1" -provider = "SILICONFLOW" # 引用.env.prod中定义的宏 +provider = "SILICONFLOW" # 引用.env中定义的宏 ``` 如需切换到其他API服务,只需修改引用: @@ -43,7 +43,7 @@ provider = "DEEP_SEEK" # 使用DeepSeek密钥 ## 配置文件详解 -### 环境配置文件 (.env.prod) +### 环境配置文件 (.env) ```ini # API配置 diff --git a/docs/linux_deploy_guide_for_beginners.md b/docs/linux_deploy_guide_for_beginners.md index f254cf665..4fe09d30f 100644 --- a/docs/linux_deploy_guide_for_beginners.md +++ b/docs/linux_deploy_guide_for_beginners.md @@ -224,7 +224,7 @@ python bot.py ``` bot -├─ .env.prod +├─ .env └─ config └─ bot_config.toml ``` @@ -236,7 +236,7 @@ bot 本项目需要配置两个主要文件: -1. `.env.prod` - 配置API服务和系统环境 +1. `.env` - 配置API服务和系统环境 2. `bot_config.toml` - 配置机器人行为和模型 #### API diff --git a/docs/manual_deploy_linux.md b/docs/manual_deploy_linux.md index 5a8806771..fb6e78725 100644 --- a/docs/manual_deploy_linux.md +++ b/docs/manual_deploy_linux.md @@ -111,7 +111,7 @@ nb run # 或 python3 bot.py ``` -之后你就可以找到`.env.prod`和`bot_config.toml`这两个文件了 +之后你就可以找到`.env`和`bot_config.toml`这两个文件了 关于文件内容的配置请参考: - [🎀 新手配置指南](./installation_cute.md) - 通俗易懂的配置教程,适合初次使用的猫娘 - [⚙️ 标准配置指南](./installation_standard.md) - 简明专业的配置说明,适合有经验的用户 diff --git a/docs/manual_deploy_macos.md b/docs/manual_deploy_macos.md index 00e2686b3..e5178a83b 100644 --- a/docs/manual_deploy_macos.md +++ b/docs/manual_deploy_macos.md @@ -82,7 +82,7 @@ nb run python3 bot.py ``` -之后你就可以找到`.env.prod`和`bot_config.toml`这两个文件了 +之后你就可以找到`.env`和`bot_config.toml`这两个文件了 关于文件内容的配置请参考: - [🎀 新手配置指南](./installation_cute.md) - 通俗易懂的配置教程,适合初次使用的猫娘 diff --git a/docs/manual_deploy_windows.md b/docs/manual_deploy_windows.md index d51151204..b5ed71d86 100644 --- a/docs/manual_deploy_windows.md +++ b/docs/manual_deploy_windows.md @@ -87,7 +87,7 @@ pip install -r requirements.txt ### 5️⃣ **配置文件设置,让麦麦Bot正常工作** -- 修改环境配置文件:`.env.prod` +- 修改环境配置文件:`.env` - 修改机器人配置文件:`bot_config.toml` ### 6️⃣ **启动麦麦机器人** diff --git a/docs/synology_deploy.md b/docs/synology_deploy.md index 1139101ec..307f0bb5f 100644 --- a/docs/synology_deploy.md +++ b/docs/synology_deploy.md @@ -22,13 +22,13 @@ bot_config.toml: https://github.com/SengokuCola/MaiMBot/blob/main/template/bot_c 下载后,重命名为 `bot_config.toml` 打开它,按自己的需求填写配置文件 -.env.prod: https://github.com/SengokuCola/MaiMBot/blob/main/template.env -下载后,重命名为 `.env.prod` +.env: https://github.com/SengokuCola/MaiMBot/blob/main/template.env +下载后,重命名为 `.env` 将 `HOST` 修改为 `0.0.0.0`,确保 maimbot 能被 napcat 访问 按下图修改 mongodb 设置,使用 `MONGODB_URI` -![](./pic/synology_.env.prod.png) +![](./pic/synology_.env.png) -把 `bot_config.toml` 和 `.env.prod` 放入之前创建的 `MaiMBot`文件夹 +把 `bot_config.toml` 和 `.env` 放入之前创建的 `MaiMBot`文件夹 #### 如何下载? diff --git a/emoji_reviewer.py b/emoji_reviewer.py index 796cb8ef2..5e8a0040a 100644 --- a/emoji_reviewer.py +++ b/emoji_reviewer.py @@ -53,7 +53,7 @@ if os.path.exists(bot_config_path): else: logger.critical(f"没有找到配置文件{bot_config_path}") exit(1) -env_path = os.path.join(root_dir, ".env.prod") +env_path = os.path.join(root_dir, ".env") if not os.path.exists(env_path): logger.critical(f"没有找到环境变量文件{env_path}") exit(1) diff --git a/src/common/logger.py b/src/common/logger.py index aa7e9ad98..a8fcd6603 100644 --- a/src/common/logger.py +++ b/src/common/logger.py @@ -7,8 +7,8 @@ from pathlib import Path from dotenv import load_dotenv # from ..plugins.chat.config import global_config -# 加载 .env.prod 文件 -env_path = Path(__file__).resolve().parent.parent.parent / ".env.prod" +# 加载 .env 文件 +env_path = Path(__file__).resolve().parent.parent.parent / ".env" load_dotenv(dotenv_path=env_path) # 保存原生处理器ID diff --git a/src/gui/reasoning_gui.py b/src/gui/reasoning_gui.py index 43f692d58..9a35e8142 100644 --- a/src/gui/reasoning_gui.py +++ b/src/gui/reasoning_gui.py @@ -26,8 +26,8 @@ from src.common.database import db # noqa: E402 if os.path.exists(os.path.join(root_dir, ".env.dev")): load_dotenv(os.path.join(root_dir, ".env.dev")) logger.info("成功加载开发环境配置") -elif os.path.exists(os.path.join(root_dir, ".env.prod")): - load_dotenv(os.path.join(root_dir, ".env.prod")) +elif os.path.exists(os.path.join(root_dir, ".env")): + load_dotenv(os.path.join(root_dir, ".env")) logger.info("成功加载生产环境配置") else: logger.error("未找到环境配置文件") diff --git a/src/main.py b/src/main.py index d0f4d6723..4f0361998 100644 --- a/src/main.py +++ b/src/main.py @@ -8,10 +8,8 @@ from .plugins.chat.emoji_manager import emoji_manager from .plugins.chat.relationship_manager import relationship_manager from .plugins.willing.willing_manager import willing_manager from .plugins.chat.chat_stream import chat_manager +from .think_flow_demo.heartflow import heartflow from .plugins.memory_system.Hippocampus import HippocampusManager -from .plugins.chat import auto_speak_manager -from .think_flow_demo.heartflow import subheartflow_manager -from .think_flow_demo.outer_world import outer_world from .plugins.chat.message_sender import message_manager from .plugins.chat.storage import MessageStorage from .plugins.config.config import global_config @@ -73,8 +71,8 @@ class MainSystem: asyncio.create_task(chat_manager._auto_save_task()) # 使用HippocampusManager初始化海马体 - self.hippocampus_manager.initialize(global_config=global_config) + # await asyncio.sleep(0.5) #防止logger输出飞了 # 初始化日程 bot_schedule.initialize( @@ -89,14 +87,12 @@ class MainSystem: self.app.register_message_handler(chat_bot.message_process) try: - asyncio.create_task(outer_world.open_eyes()) - logger.success("大脑和外部世界启动成功") # 启动心流系统 - asyncio.create_task(subheartflow_manager.heartflow_start_working()) + asyncio.create_task(heartflow.heartflow_start_working()) logger.success("心流系统启动成功") - init_end_time = time.time() - logger.success(f"初始化完成,用时{init_end_time - init_start_time}秒") + init_time = int(1000*(time.time()- init_start_time)) + logger.success(f"初始化完成,神经元放电{init_time}次") except Exception as e: logger.error(f"启动大脑和外部世界失败: {e}") raise @@ -107,9 +103,7 @@ class MainSystem: tasks = [ self.build_memory_task(), self.forget_memory_task(), - # self.merge_memory_task(), self.print_mood_task(), - # self.generate_schedule_task(), self.remove_recalled_message_task(), emoji_manager.start_periodic_check(), self.app.run(), @@ -132,26 +126,12 @@ class MainSystem: print("\033[1;32m[记忆遗忘]\033[0m 记忆遗忘完成") await asyncio.sleep(global_config.forget_memory_interval) - # async def merge_memory_task(self): - # """记忆整合任务""" - # while True: - # logger.info("正在进行记忆整合") - # await asyncio.sleep(global_config.build_memory_interval + 10) - async def print_mood_task(self): """打印情绪状态""" while True: self.mood_manager.print_mood_status() await asyncio.sleep(30) - # async def generate_schedule_task(self): - # """生成日程任务""" - # while True: - # await bot_schedule.initialize() - # if not bot_schedule.enable_output: - # bot_schedule.print_schedule() - # await asyncio.sleep(7200) - async def remove_recalled_message_task(self): """删除撤回消息任务""" while True: diff --git a/src/plugins/chat/auto_speak.py b/src/plugins/chat/auto_speak.py index 25567f503..ef2857adf 100644 --- a/src/plugins/chat/auto_speak.py +++ b/src/plugins/chat/auto_speak.py @@ -10,7 +10,7 @@ from .message_sender import message_manager from ..moods.moods import MoodManager from .llm_generator import ResponseGenerator from src.common.logger import get_module_logger -from src.think_flow_demo.heartflow import subheartflow_manager +from src.think_flow_demo.heartflow import heartflow from ...common.database import db logger = get_module_logger("auto_speak") @@ -42,7 +42,7 @@ class AutoSpeakManager: while True and global_config.enable_think_flow: # 获取所有活跃的子心流 active_subheartflows = [] - for chat_id, subheartflow in subheartflow_manager._subheartflows.items(): + for chat_id, subheartflow in heartflow._subheartflows.items(): if ( subheartflow.is_active and subheartflow.current_state.willing > 0 ): # 只考虑活跃且意愿值大于0.5的子心流 diff --git a/src/plugins/chat/bot.py b/src/plugins/chat/bot.py index 149de05fc..4a5a7140f 100644 --- a/src/plugins/chat/bot.py +++ b/src/plugins/chat/bot.py @@ -1,7 +1,6 @@ import re import time from random import random -import json from ..memory_system.Hippocampus import HippocampusManager from ..moods.moods import MoodManager # 导入情绪管理器 @@ -18,10 +17,9 @@ from .storage import MessageStorage from .utils import is_mentioned_bot_in_message, get_recent_group_detailed_plain_text from .utils_image import image_path_to_base64 from ..willing.willing_manager import willing_manager # 导入意愿管理器 -from ..message import UserInfo, GroupInfo, Seg +from ..message import UserInfo, Seg -from src.think_flow_demo.heartflow import subheartflow_manager -from src.think_flow_demo.outer_world import outer_world +from src.think_flow_demo.heartflow import heartflow from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig # 定义日志配置 @@ -58,7 +56,7 @@ class ChatBot: 5. 更新关系 6. 更新情绪 """ - + message = MessageRecv(message_data) groupinfo = message.message_info.group_info userinfo = message.message_info.user_info @@ -74,18 +72,8 @@ class ChatBot: ) message.update_chat_stream(chat) - # 创建 心流 观察 - - await outer_world.check_and_add_new_observe() - subheartflow_manager.create_subheartflow(chat.stream_id) - - timer1 = time.time() - await relationship_manager.update_relationship( - chat_stream=chat, - ) - await relationship_manager.update_relationship_value(chat_stream=chat, relationship_value=0) - timer2 = time.time() - logger.info(f"1关系更新时间: {timer2 - timer1}秒") + # 创建 心流与chat的观察 + heartflow.create_subheartflow(chat.stream_id) timer1 = time.time() await message.process() @@ -99,10 +87,9 @@ class ChatBot: ): return - current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(messageinfo.time)) - # 根据话题计算激活度 await self.storage.store_message(message, chat) + timer1 = time.time() interested_rate = 0 @@ -117,8 +104,8 @@ class ChatBot: if global_config.enable_think_flow: current_willing_old = willing_manager.get_willing(chat_stream=chat) - current_willing_new = (subheartflow_manager.get_subheartflow(chat.stream_id).current_state.willing - 5) / 4 - print(f"4旧回复意愿:{current_willing_old},新回复意愿:{current_willing_new}") + current_willing_new = (heartflow.get_subheartflow(chat.stream_id).current_state.willing - 5) / 4 + print(f"旧回复意愿:{current_willing_old},新回复意愿:{current_willing_new}") current_willing = (current_willing_old + current_willing_new) / 2 else: current_willing = willing_manager.get_willing(chat_stream=chat) @@ -147,7 +134,8 @@ class ChatBot: else: mes_name = '私聊' - # print(f"mes_name: {mes_name}") + #打印收到的信息的信息 + current_time = time.strftime("%H:%M:%S", time.localtime(messageinfo.time)) logger.info( f"[{current_time}][{mes_name}]" f"{chat.user_info.user_nickname}:" @@ -225,7 +213,7 @@ class ChatBot: return response_set, thinking_id - async def _update_using_response(self, message, chat, response_set): + async def _update_using_response(self, message, response_set): # 更新心流状态 stream_id = message.chat_stream.stream_id chat_talking_prompt = "" @@ -234,10 +222,10 @@ class ChatBot: stream_id, limit=global_config.MAX_CONTEXT_SIZE, combine=True ) - if subheartflow_manager.get_subheartflow(stream_id): - await subheartflow_manager.get_subheartflow(stream_id).do_after_reply(response_set, chat_talking_prompt) + if heartflow.get_subheartflow(stream_id): + await heartflow.get_subheartflow(stream_id).do_after_reply(response_set, chat_talking_prompt) else: - await subheartflow_manager.create_subheartflow(stream_id).do_after_reply(response_set, chat_talking_prompt) + await heartflow.create_subheartflow(stream_id).do_after_reply(response_set, chat_talking_prompt) async def _send_response_messages(self, message, chat, response_set, thinking_id): diff --git a/src/plugins/chat/llm_generator.py b/src/plugins/chat/llm_generator.py index ed8b8fdea..64bb8e915 100644 --- a/src/plugins/chat/llm_generator.py +++ b/src/plugins/chat/llm_generator.py @@ -97,9 +97,7 @@ class ResponseGenerator: logger.info(f"构建prompt时间: {timer2 - timer1}秒") try: - print(111111111111111111111111111111111111111111111111111111111) content, reasoning_content, self.current_model_name = await model.generate_response(prompt) - print(222222222222222222222222222222222222222222222222222222222) except Exception: logger.exception("生成回复时出错") return None diff --git a/src/plugins/chat/prompt_builder.py b/src/plugins/chat/prompt_builder.py index 8aeb4bb39..bad09d87d 100644 --- a/src/plugins/chat/prompt_builder.py +++ b/src/plugins/chat/prompt_builder.py @@ -12,7 +12,7 @@ from .chat_stream import chat_manager from .relationship_manager import relationship_manager from src.common.logger import get_module_logger -from src.think_flow_demo.heartflow import subheartflow_manager +from src.think_flow_demo.heartflow import heartflow logger = get_module_logger("prompt") @@ -34,12 +34,11 @@ class PromptBuilder: # ) # outer_world_info = outer_world.outer_world_info - if global_config.enable_think_flow: - current_mind_info = subheartflow_manager.get_subheartflow(stream_id).current_mind - else: - current_mind_info = "" - relation_prompt = "" + current_mind_info = heartflow.get_subheartflow(stream_id).current_mind + + + # relation_prompt = "" # for person in who_chat_in_group: # relation_prompt += relationship_manager.build_relationship_info(person) @@ -74,23 +73,22 @@ class PromptBuilder: chat_talking_prompt = chat_talking_prompt # print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}") - logger.info(f"聊天上下文prompt: {chat_talking_prompt}") # 使用新的记忆获取方法 memory_prompt = "" start_time = time.time() - # 调用 hippocampus 的 get_relevant_memories 方法 - # relevant_memories = await HippocampusManager.get_instance().get_memory_from_text( - # text=message_txt, max_memory_num=3, max_memory_length=2, max_depth=2, fast_retrieval=True - # ) - # memory_str = "" - # for _topic, memories in relevant_memories: - # memory_str += f"{memories}\n" + #调用 hippocampus 的 get_relevant_memories 方法 + relevant_memories = await HippocampusManager.get_instance().get_memory_from_text( + text=message_txt, max_memory_num=3, max_memory_length=2, max_depth=2, fast_retrieval=False + ) + memory_str = "" + for _topic, memories in relevant_memories: + memory_str += f"{memories}\n" - # if relevant_memories: - # # 格式化记忆内容 - # memory_prompt = f"你回忆起:\n{memory_str}\n" + if relevant_memories: + # 格式化记忆内容 + memory_prompt = f"你回忆起:\n{memory_str}\n" end_time = time.time() logger.info(f"回忆耗时: {(end_time - start_time):.3f}秒") diff --git a/src/plugins/config/config_env.py b/src/plugins/config/config_env.py index 930e2c01c..e19f0c316 100644 --- a/src/plugins/config/config_env.py +++ b/src/plugins/config/config_env.py @@ -29,7 +29,7 @@ class EnvConfig: if env_type == 'dev': env_file = self.ROOT_DIR / '.env.dev' elif env_type == 'prod': - env_file = self.ROOT_DIR / '.env.prod' + env_file = self.ROOT_DIR / '.env' if env_file.exists(): load_dotenv(env_file, override=True) diff --git a/src/plugins/memory_system/Hippocampus.py b/src/plugins/memory_system/Hippocampus.py index 532f41546..0032fe886 100644 --- a/src/plugins/memory_system/Hippocampus.py +++ b/src/plugins/memory_system/Hippocampus.py @@ -1266,13 +1266,13 @@ class HippocampusManager: node_count = len(memory_graph.nodes()) edge_count = len(memory_graph.edges()) - logger.success("--------------------------------") - logger.success("记忆系统参数配置:") - logger.success(f"构建间隔: {global_config.build_memory_interval}秒|样本数: {config.build_memory_sample_num},长度: {config.build_memory_sample_length}|压缩率: {config.memory_compress_rate}") # noqa: E501 - logger.success(f"记忆构建分布: {config.memory_build_distribution}") - logger.success(f"遗忘间隔: {global_config.forget_memory_interval}秒|遗忘比例: {global_config.memory_forget_percentage}|遗忘: {config.memory_forget_time}小时之后") # noqa: E501 - logger.success(f"记忆图统计信息: 节点数量: {node_count}, 连接数量: {edge_count}") - logger.success("--------------------------------") + logger.success(f'''-------------------------------- + 记忆系统参数配置: + 构建间隔: {global_config.build_memory_interval}秒|样本数: {config.build_memory_sample_num},长度: {config.build_memory_sample_length}|压缩率: {config.memory_compress_rate} + 记忆构建分布: {config.memory_build_distribution} + 遗忘间隔: {global_config.forget_memory_interval}秒|遗忘比例: {global_config.memory_forget_percentage}|遗忘: {config.memory_forget_time}小时之后 + 记忆图统计信息: 节点数量: {node_count}, 连接数量: {edge_count} + --------------------------------''') #noqa: E501 return self._hippocampus diff --git a/src/plugins/models/utils_model.py b/src/plugins/models/utils_model.py index 082b0b3c0..40809d59c 100644 --- a/src/plugins/models/utils_model.py +++ b/src/plugins/models/utils_model.py @@ -164,7 +164,7 @@ class LLM_request: # 常见Error Code Mapping error_code_mapping = { 400: "参数不正确", - 401: "API key 错误,认证失败,请检查/config/bot_config.toml和.env.prod中的配置是否正确哦~", + 401: "API key 错误,认证失败,请检查/config/bot_config.toml和.env中的配置是否正确哦~", 402: "账号余额不足", 403: "需要实名,或余额不足", 404: "Not Found", diff --git a/src/plugins/personality/big5_test.py b/src/plugins/personality/big5_test.py index c66e6ec4e..a680bce94 100644 --- a/src/plugins/personality/big5_test.py +++ b/src/plugins/personality/big5_test.py @@ -10,7 +10,7 @@ import random current_dir = Path(__file__).resolve().parent project_root = current_dir.parent.parent.parent -env_path = project_root / ".env.prod" +env_path = project_root / ".env" root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../..")) sys.path.append(root_path) diff --git a/src/plugins/personality/can_i_recog_u.py b/src/plugins/personality/can_i_recog_u.py index 715c9ffa0..d340f8a1b 100644 --- a/src/plugins/personality/can_i_recog_u.py +++ b/src/plugins/personality/can_i_recog_u.py @@ -17,7 +17,7 @@ import matplotlib.font_manager as fm current_dir = Path(__file__).resolve().parent project_root = current_dir.parent.parent.parent -env_path = project_root / ".env.prod" +env_path = project_root / ".env" root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../..")) sys.path.append(root_path) diff --git a/src/plugins/personality/combined_test.py b/src/plugins/personality/combined_test.py index b08fb458a..1a1e9060e 100644 --- a/src/plugins/personality/combined_test.py +++ b/src/plugins/personality/combined_test.py @@ -9,7 +9,7 @@ from scipy import stats # 添加scipy导入用于t检验 current_dir = Path(__file__).resolve().parent project_root = current_dir.parent.parent.parent -env_path = project_root / ".env.prod" +env_path = project_root / ".env" root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../..")) sys.path.append(root_path) diff --git a/src/plugins/personality/renqingziji.py b/src/plugins/personality/renqingziji.py index 4b1fb3b69..04cbec099 100644 --- a/src/plugins/personality/renqingziji.py +++ b/src/plugins/personality/renqingziji.py @@ -20,7 +20,7 @@ import sys """ current_dir = Path(__file__).resolve().parent project_root = current_dir.parent.parent.parent -env_path = project_root / ".env.prod" +env_path = project_root / ".env" root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../..")) sys.path.append(root_path) diff --git a/src/plugins/personality/renqingziji_with_mymy.py b/src/plugins/personality/renqingziji_with_mymy.py index 511395e51..92c1341a8 100644 --- a/src/plugins/personality/renqingziji_with_mymy.py +++ b/src/plugins/personality/renqingziji_with_mymy.py @@ -20,7 +20,7 @@ import sys """ current_dir = Path(__file__).resolve().parent project_root = current_dir.parent.parent.parent -env_path = project_root / ".env.prod" +env_path = project_root / ".env" root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../..")) sys.path.append(root_path) diff --git a/src/plugins/personality/who_r_u.py b/src/plugins/personality/who_r_u.py index 5ea502b82..34c134472 100644 --- a/src/plugins/personality/who_r_u.py +++ b/src/plugins/personality/who_r_u.py @@ -7,7 +7,7 @@ from typing import List, Dict, Optional current_dir = Path(__file__).resolve().parent project_root = current_dir.parent.parent.parent -env_path = project_root / ".env.prod" +env_path = project_root / ".env" root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../..")) sys.path.append(root_path) diff --git a/src/plugins/schedule/schedule_generator.py b/src/plugins/schedule/schedule_generator.py index 54b470d8c..7841469c3 100644 --- a/src/plugins/schedule/schedule_generator.py +++ b/src/plugins/schedule/schedule_generator.py @@ -84,7 +84,7 @@ class ScheduleGenerator: self.print_schedule() # 执行当前活动 - # mind_thinking = subheartflow_manager.current_state.current_mind + # mind_thinking = heartflow.current_state.current_mind await self.move_doing() diff --git a/src/plugins/zhishi/knowledge_library.py b/src/plugins/zhishi/knowledge_library.py index da5a317b3..a95a096e6 100644 --- a/src/plugins/zhishi/knowledge_library.py +++ b/src/plugins/zhishi/knowledge_library.py @@ -16,7 +16,7 @@ sys.path.append(root_path) from src.common.database import db # noqa E402 # 加载根目录下的env.edv文件 -env_path = os.path.join(root_path, ".env.prod") +env_path = os.path.join(root_path, ".env") if not os.path.exists(env_path): raise FileNotFoundError(f"配置文件不存在: {env_path}") load_dotenv(env_path) diff --git a/src/think_flow_demo/heartflow.py b/src/think_flow_demo/heartflow.py index 45bf3a852..d63fdb250 100644 --- a/src/think_flow_demo/heartflow.py +++ b/src/think_flow_demo/heartflow.py @@ -1,7 +1,8 @@ from .sub_heartflow import SubHeartflow +from .observation import ChattingObservation from src.plugins.moods.moods import MoodManager from src.plugins.models.utils_model import LLM_request -from src.plugins.config.config import global_config, BotConfig +from src.plugins.config.config import global_config from src.plugins.schedule.schedule_generator import bot_schedule import asyncio from src.common.logger import get_module_logger, LogConfig, HEARTFLOW_STYLE_CONFIG # noqa: E402 @@ -107,15 +108,29 @@ class Heartflow: return reponse - def create_subheartflow(self, observe_chat_id): - """创建一个新的SubHeartflow实例""" - if observe_chat_id not in self._subheartflows: - subheartflow = SubHeartflow() - subheartflow.assign_observe(observe_chat_id) + def create_subheartflow(self, subheartflow_id): + """ + 创建一个新的SubHeartflow实例 + 添加一个SubHeartflow实例到self._subheartflows字典中 + 并根据subheartflow_id为子心流创建一个观察对象 + """ + if subheartflow_id not in self._subheartflows: + logger.debug(f"创建 subheartflow: {subheartflow_id}") + subheartflow = SubHeartflow(subheartflow_id) + #创建一个观察对象,目前只可以用chat_id创建观察对象 + logger.debug(f"创建 observation: {subheartflow_id}") + observation = ChattingObservation(subheartflow_id) + + logger.debug(f"添加 observation ") + subheartflow.add_observation(observation) + logger.debug(f"添加 observation 成功") # 创建异步任务 + logger.debug(f"创建异步任务") asyncio.create_task(subheartflow.subheartflow_start_working()) - self._subheartflows[observe_chat_id] = subheartflow - return self._subheartflows[observe_chat_id] + logger.debug(f"创建异步任务 成功") + self._subheartflows[subheartflow_id] = subheartflow + logger.debug(f"添加 subheartflow 成功") + return self._subheartflows[subheartflow_id] def get_subheartflow(self, observe_chat_id): """获取指定ID的SubHeartflow实例""" @@ -123,4 +138,4 @@ class Heartflow: # 创建一个全局的管理器实例 -subheartflow_manager = Heartflow() +heartflow = Heartflow() diff --git a/src/think_flow_demo/observation.py b/src/think_flow_demo/observation.py new file mode 100644 index 000000000..2dc31c694 --- /dev/null +++ b/src/think_flow_demo/observation.py @@ -0,0 +1,120 @@ +#定义了来自外部世界的信息 +#外部世界可以是某个聊天 不同平台的聊天 也可以是任意媒体 +import asyncio +from datetime import datetime +from src.plugins.models.utils_model import LLM_request +from src.plugins.config.config import global_config +from src.common.database import db + +# 所有观察的基类 +class Observation: + def __init__(self,observe_type,observe_id): + self.observe_info = "" + self.observe_type = observe_type + self.observe_id = observe_id + self.last_observe_time = datetime.now().timestamp() # 初始化为当前时间 + +# 聊天观察 +class ChattingObservation(Observation): + def __init__(self,chat_id): + super().__init__("chat",chat_id) + self.chat_id = chat_id + + self.talking_message = [] + self.talking_message_str = "" + + self.observe_times = 0 + + self.summary_count = 0 # 30秒内的更新次数 + self.max_update_in_30s = 2 #30秒内最多更新2次 + self.last_summary_time = 0 #上次更新summary的时间 + + self.sub_observe = None + + self.llm_summary = LLM_request( + model=global_config.llm_outer_world, temperature=0.7, max_tokens=300, request_type="outer_world") + + # 进行一次观察 返回观察结果observe_info + async def observe(self): + # 查找新消息,限制最多30条 + new_messages = list(db.messages.find({ + "chat_id": self.chat_id, + "time": {"$gt": self.last_observe_time} + }).sort("time", 1).limit(20)) # 按时间正序排列,最多20条 + + if not new_messages: + return self.observe_info #没有新消息,返回上次观察结果 + + # 将新消息转换为字符串格式 + new_messages_str = "" + for msg in new_messages: + if "sender_name" in msg and "content" in msg: + new_messages_str += f"{msg['sender_name']}: {msg['content']}\n" + + # 将新消息添加到talking_message,同时保持列表长度不超过20条 + self.talking_message.extend(new_messages) + if len(self.talking_message) > 20: + self.talking_message = self.talking_message[-20:] # 只保留最新的20条 + self.translate_message_list_to_str() + + # 更新观察次数 + self.observe_times += 1 + self.last_observe_time = new_messages[-1]["time"] + + # 检查是否需要更新summary + current_time = int(datetime.now().timestamp()) + if current_time - self.last_summary_time >= 30: # 如果超过30秒,重置计数 + self.summary_count = 0 + self.last_summary_time = current_time + + if self.summary_count < self.max_update_in_30s: # 如果30秒内更新次数小于2次 + await self.update_talking_summary(new_messages_str) + self.summary_count += 1 + + return self.observe_info + + async def carefully_observe(self): + # 查找新消息,限制最多40条 + new_messages = list(db.messages.find({ + "chat_id": self.chat_id, + "time": {"$gt": self.last_observe_time} + }).sort("time", 1).limit(30)) # 按时间正序排列,最多30条 + + if not new_messages: + return self.observe_info #没有新消息,返回上次观察结果 + + # 将新消息转换为字符串格式 + new_messages_str = "" + for msg in new_messages: + if "sender_name" in msg and "content" in msg: + new_messages_str += f"{msg['sender_name']}: {msg['content']}\n" + + # 将新消息添加到talking_message,同时保持列表长度不超过30条 + self.talking_message.extend(new_messages) + if len(self.talking_message) > 30: + self.talking_message = self.talking_message[-30:] # 只保留最新的30条 + self.translate_message_list_to_str() + + # 更新观察次数 + self.observe_times += 1 + self.last_observe_time = new_messages[-1]["time"] + + await self.update_talking_summary(new_messages_str) + return self.observe_info + + + async def update_talking_summary(self,new_messages_str): + #基于已经有的talking_summary,和新的talking_message,生成一个summary + # print(f"更新聊天总结:{self.talking_summary}") + prompt = "" + prompt = f"你正在参与一个qq群聊的讨论,这个群之前在聊的内容是:{self.observe_info}\n" + prompt += f"现在群里的群友们产生了新的讨论,有了新的发言,具体内容如下:{new_messages_str}\n" + prompt += '''以上是群里在进行的聊天,请你对这个聊天内容进行总结,总结内容要包含聊天的大致内容, + 以及聊天中的一些重要信息,记得不要分点,不要太长,精简的概括成一段文本\n''' + prompt += "总结概括:" + self.observe_info, reasoning_content = await self.llm_summary.generate_response_async(prompt) + + def translate_message_list_to_str(self): + self.talking_message_str = "" + for message in self.talking_message: + self.talking_message_str += message["detailed_plain_text"] diff --git a/src/think_flow_demo/outer_world.py b/src/think_flow_demo/outer_world.py deleted file mode 100644 index fb44241dc..000000000 --- a/src/think_flow_demo/outer_world.py +++ /dev/null @@ -1,144 +0,0 @@ -#定义了来自外部世界的信息 -import asyncio -from datetime import datetime -from src.plugins.models.utils_model import LLM_request -from src.plugins.config.config import global_config -from src.common.database import db - -#存储一段聊天的大致内容 -class Talking_info: - def __init__(self,chat_id): - self.chat_id = chat_id - self.talking_message = [] - self.talking_message_str = "" - self.talking_summary = "" - self.last_observe_time = int(datetime.now().timestamp()) #初始化为当前时间 - self.observe_times = 0 - self.activate = 360 - - self.last_summary_time = int(datetime.now().timestamp()) # 上次更新summary的时间 - self.summary_count = 0 # 30秒内的更新次数 - self.max_update_in_30s = 2 - - self.oberve_interval = 3 - - self.llm_summary = LLM_request( - model=global_config.llm_outer_world, temperature=0.7, max_tokens=300, request_type="outer_world") - - async def start_observe(self): - while True: - if self.activate <= 0: - print(f"聊天 {self.chat_id} 活跃度不足,进入休眠状态") - await self.waiting_for_activate() - print(f"聊天 {self.chat_id} 被重新激活") - await self.observe_world() - await asyncio.sleep(self.oberve_interval) - - async def waiting_for_activate(self): - while True: - # 检查从上次观察时间之后的新消息数量 - new_messages_count = db.messages.count_documents({ - "chat_id": self.chat_id, - "time": {"$gt": self.last_observe_time} - }) - - if new_messages_count > 15: - self.activate = 360*(self.observe_times+1) - return - - await asyncio.sleep(8) # 每10秒检查一次 - - async def observe_world(self): - # 查找新消息,限制最多20条 - new_messages = list(db.messages.find({ - "chat_id": self.chat_id, - "time": {"$gt": self.last_observe_time} - }).sort("time", 1).limit(20)) # 按时间正序排列,最多20条 - - if not new_messages: - self.activate += -1 - return - - # 将新消息添加到talking_message,同时保持列表长度不超过20条 - self.talking_message.extend(new_messages) - if len(self.talking_message) > 20: - self.talking_message = self.talking_message[-20:] # 只保留最新的20条 - self.translate_message_list_to_str() - self.observe_times += 1 - self.last_observe_time = new_messages[-1]["time"] - - # 检查是否需要更新summary - current_time = int(datetime.now().timestamp()) - if current_time - self.last_summary_time >= 30: # 如果超过30秒,重置计数 - self.summary_count = 0 - self.last_summary_time = current_time - - if self.summary_count < self.max_update_in_30s: # 如果30秒内更新次数小于2次 - await self.update_talking_summary() - self.summary_count += 1 - - async def update_talking_summary(self): - #基于已经有的talking_summary,和新的talking_message,生成一个summary - # print(f"更新聊天总结:{self.talking_summary}") - prompt = "" - prompt = f"你正在参与一个qq群聊的讨论,这个群之前在聊的内容是:{self.talking_summary}\n" - prompt += f"现在群里的群友们产生了新的讨论,有了新的发言,具体内容如下:{self.talking_message_str}\n" - prompt += '''以上是群里在进行的聊天,请你对这个聊天内容进行总结,总结内容要包含聊天的大致内容, - 以及聊天中的一些重要信息,记得不要分点,不要太长,精简的概括成一段文本\n''' - prompt += "总结概括:" - self.talking_summary, reasoning_content = await self.llm_summary.generate_response_async(prompt) - - def translate_message_list_to_str(self): - self.talking_message_str = "" - for message in self.talking_message: - self.talking_message_str += message["detailed_plain_text"] - -class SheduleInfo: - def __init__(self): - self.shedule_info = "" - -class OuterWorld: - def __init__(self): - self.talking_info_list = [] #装的一堆talking_info - self.shedule_info = "无日程" - # self.interest_info = "麦麦你好" - self.outer_world_info = "" - self.start_time = int(datetime.now().timestamp()) - - self.llm_summary = LLM_request( - model=global_config.llm_outer_world, temperature=0.7, max_tokens=600, request_type="outer_world_info") - - async def check_and_add_new_observe(self): - # 获取所有聊天流 - all_streams = db.chat_streams.find({}) - # 遍历所有聊天流 - for data in all_streams: - stream_id = data.get("stream_id") - # 检查是否已存在该聊天流的观察对象 - existing_info = next((info for info in self.talking_info_list if info.chat_id == stream_id), None) - - # 如果不存在,创建新的Talking_info对象并添加到列表中 - if existing_info is None: - print(f"发现新的聊天流: {stream_id}") - new_talking_info = Talking_info(stream_id) - self.talking_info_list.append(new_talking_info) - # 启动新对象的观察任务 - asyncio.create_task(new_talking_info.start_observe()) - - async def open_eyes(self): - while True: - print("检查新的聊天流") - await self.check_and_add_new_observe() - await asyncio.sleep(60) - - def get_world_by_stream_id(self,stream_id): - for talking_info in self.talking_info_list: - if talking_info.chat_id == stream_id: - return talking_info - return None - - -outer_world = OuterWorld() - -if __name__ == "__main__": - asyncio.run(outer_world.open_eyes()) diff --git a/src/think_flow_demo/sub_heartflow.py b/src/think_flow_demo/sub_heartflow.py index d394a0205..1db43955c 100644 --- a/src/think_flow_demo/sub_heartflow.py +++ b/src/think_flow_demo/sub_heartflow.py @@ -1,8 +1,8 @@ -from .outer_world import outer_world +from .observation import Observation import asyncio from src.plugins.moods.moods import MoodManager from src.plugins.models.utils_model import LLM_request -from src.plugins.config.config import global_config, BotConfig +from src.plugins.config.config import global_config import re import time from src.plugins.schedule.schedule_generator import bot_schedule @@ -30,18 +30,17 @@ class CuttentState: class SubHeartflow: - def __init__(self): + def __init__(self,subheartflow_id): + self.subheartflow_id = subheartflow_id + self.current_mind = "" self.past_mind = [] self.current_state : CuttentState = CuttentState() self.llm_model = LLM_request( model=global_config.llm_sub_heartflow, temperature=0.7, max_tokens=600, request_type="sub_heart_flow") - self.outer_world = None self.main_heartflow_info = "" - self.observe_chat_id = None - self.last_reply_time = time.time() if not self.current_mind: @@ -50,10 +49,31 @@ class SubHeartflow: self.personality_info = " ".join(global_config.PROMPT_PERSONALITY) self.is_active = False + + self.observations : list[Observation] = [] - def assign_observe(self,stream_id): - self.outer_world = outer_world.get_world_by_stream_id(stream_id) - self.observe_chat_id = stream_id + def add_observation(self, observation: Observation): + """添加一个新的observation对象到列表中,如果已存在相同id的observation则不添加""" + # 查找是否存在相同id的observation + for existing_obs in self.observations: + if existing_obs.observe_id == observation.observe_id: + # 如果找到相同id的observation,直接返回 + return + # 如果没有找到相同id的observation,则添加新的 + self.observations.append(observation) + + def remove_observation(self, observation: Observation): + """从列表中移除一个observation对象""" + if observation in self.observations: + self.observations.remove(observation) + + def get_all_observations(self) -> list[Observation]: + """获取所有observation对象""" + return self.observations + + def clear_observations(self): + """清空所有observation对象""" + self.observations.clear() async def subheartflow_start_working(self): while True: @@ -64,27 +84,34 @@ class SubHeartflow: await asyncio.sleep(60) # 每30秒检查一次 else: self.is_active = True + + observation = self.observations[0] + observation.observe() + + self.current_state.update_current_state_info() + await self.do_a_thinking() await self.judge_willing() await asyncio.sleep(60) async def do_a_thinking(self): - self.current_state.update_current_state_info() current_thinking_info = self.current_mind mood_info = self.current_state.mood - message_stream_info = self.outer_world.talking_summary - print(f"message_stream_info:{message_stream_info}") + observation = self.observations[0] + chat_observe_info = observation.observe_info + print(f"chat_observe_info:{chat_observe_info}") + # 调取记忆 related_memory = await HippocampusManager.get_instance().get_memory_from_text( - text=message_stream_info, + text=chat_observe_info, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False ) - # print(f"相关记忆:{related_memory}") + if related_memory: related_memory_info = "" for memory in related_memory: @@ -104,8 +131,7 @@ class SubHeartflow: prompt += f"你想起来你之前见过的回忆:{related_memory_info}。\n以上是你的回忆,不一定是目前聊天里的人说的,也不一定是现在发生的事情,请记住。\n" prompt += f"刚刚你的想法是{current_thinking_info}。\n" prompt += "-----------------------------------\n" - if message_stream_info: - prompt += f"现在你正在上网,和qq群里的网友们聊天,群里正在聊的话题是:{message_stream_info}\n" + prompt += f"现在你正在上网,和qq群里的网友们聊天,群里正在聊的话题是:{chat_observe_info}\n" prompt += f"你现在{mood_info}。\n" prompt += "现在你接下去继续思考,产生新的想法,不要分点输出,输出连贯的内心独白,不要太长," prompt += "但是记得结合上述的消息,要记得维持住你的人设,关注聊天和新内容,不要思考太多:" @@ -119,12 +145,13 @@ class SubHeartflow: async def do_after_reply(self,reply_content,chat_talking_prompt): # print("麦麦脑袋转起来了") - self.current_state.update_current_state_info() current_thinking_info = self.current_mind mood_info = self.current_state.mood - # related_memory_info = 'memory' - message_stream_info = self.outer_world.talking_summary + + observation = self.observations[0] + chat_observe_info = observation.observe_info + message_new_info = chat_talking_prompt reply_info = reply_content schedule_info = bot_schedule.get_current_num_task(num = 1,time_info = False) @@ -133,8 +160,7 @@ class SubHeartflow: prompt = "" prompt += f"你刚刚在做的事情是:{schedule_info}\n" prompt += f"你{self.personality_info}\n" - - prompt += f"现在你正在上网,和qq群里的网友们聊天,群里正在聊的话题是:{message_stream_info}\n" + prompt += f"现在你正在上网,和qq群里的网友们聊天,群里正在聊的话题是:{chat_observe_info}\n" # if related_memory_info: # prompt += f"你想起来{related_memory_info}。" prompt += f"刚刚你的想法是{current_thinking_info}。" @@ -174,14 +200,8 @@ class SubHeartflow: else: self.current_state.willing = 0 - logger.info(f"{self.observe_chat_id}麦麦的回复意愿:{self.current_state.willing}") - return self.current_state.willing - def build_outer_world_info(self): - outer_world_info = outer_world.outer_world_info - return outer_world_info - def update_current_mind(self,reponse): self.past_mind.append(self.current_mind) self.current_mind = reponse diff --git a/template/bot_config_template.toml b/template/bot_config_template.toml index ee90535b9..48e3b3ff3 100644 --- a/template/bot_config_template.toml +++ b/template/bot_config_template.toml @@ -140,7 +140,7 @@ enable_friend_chat = false # 是否启用好友聊天 enable_think_flow = false # 是否启用思维流 注意:可能会消耗大量token,请谨慎开启 #思维流适合搭配低能耗普通模型使用,例如qwen2.5 32b -#下面的模型若使用硅基流动则不需要更改,使用ds官方则改成.env.prod自定义的宏,使用自定义模型则选择定位相似的模型自己填写 +#下面的模型若使用硅基流动则不需要更改,使用ds官方则改成.env自定义的宏,使用自定义模型则选择定位相似的模型自己填写 #推理模型 [model.llm_reasoning] #回复模型1 主要回复模型 diff --git a/webui.py b/webui.py index 9c1a0ad6d..cffd99042 100644 --- a/webui.py +++ b/webui.py @@ -118,12 +118,12 @@ else: config_data = toml.load("config/bot_config.toml") init_model_pricing() -if not os.path.exists(".env.prod"): - logger.error("环境配置文件 .env.prod 不存在,请检查配置文件路径") - raise FileNotFoundError("环境配置文件 .env.prod 不存在,请检查配置文件路径") +if not os.path.exists(".env"): + logger.error("环境配置文件 .env 不存在,请检查配置文件路径") + raise FileNotFoundError("环境配置文件 .env 不存在,请检查配置文件路径") else: # 载入env文件并解析 - env_config_file = ".env.prod" # 配置文件路径 + env_config_file = ".env" # 配置文件路径 env_config_data = parse_env_config(env_config_file) # 增加最低支持版本 @@ -173,7 +173,7 @@ WEBUI_VERSION = version.parse("0.0.11") # env环境配置文件保存函数 -def save_to_env_file(env_variables, filename=".env.prod"): +def save_to_env_file(env_variables, filename=".env"): """ 将修改后的变量保存到指定的.env文件中,并在第一次保存前备份文件(如果备份文件不存在)。 """ @@ -196,7 +196,7 @@ def save_to_env_file(env_variables, filename=".env.prod"): # 载入env文件并解析 -env_config_file = ".env.prod" # 配置文件路径 +env_config_file = ".env" # 配置文件路径 env_config_data = parse_env_config(env_config_file) if "env_VOLCENGINE_BASE_URL" in env_config_data: logger.info("VOLCENGINE_BASE_URL 已存在,使用默认值") @@ -421,7 +421,7 @@ def save_trigger( env_config_data[f"env_{t_api_provider}_KEY"] = t_api_key save_to_env_file(env_config_data) - logger.success("配置已保存到 .env.prod 文件中") + logger.success("配置已保存到 .env 文件中") return "配置已保存" diff --git a/配置文件错误排查.py b/配置文件错误排查.py index d277ceb4a..50f5af1af 100644 --- a/配置文件错误排查.py +++ b/配置文件错误排查.py @@ -556,7 +556,7 @@ def format_results(all_errors): def main(): # 获取配置文件路径 config_path = Path("config/bot_config.toml") - env_path = Path(".env.prod") + env_path = Path(".env") if not config_path.exists(): print(f"错误: 找不到配置文件 {config_path}")