feat: llm统计现已记录模型反应时间
This commit is contained in:
@@ -487,7 +487,7 @@ class HeartFChatting:
|
||||
available_actions=available_actions,
|
||||
reply_reason=action_info.get("reasoning", ""),
|
||||
enable_tool=global_config.tool.enable_tool,
|
||||
request_type="chat.replyer",
|
||||
request_type="replyer",
|
||||
from_plugin=False,
|
||||
)
|
||||
|
||||
|
||||
@@ -38,7 +38,7 @@ def init_prompt() -> None:
|
||||
|
||||
请从上面这段群聊中概括除了人名为"SELF"之外的人的语言风格
|
||||
1. 只考虑文字,不要考虑表情包和图片
|
||||
2. 不要涉及具体的人名,只考虑语言风格,特殊的梗,不要总结自己
|
||||
2. 不要涉及具体的人名,但是可以涉及具体名词
|
||||
3. 思考有没有特殊的梗,一并总结成语言风格
|
||||
4. 例子仅供参考,请严格根据群聊内容总结!!!
|
||||
注意:总结成如下格式的规律,总结的内容要详细,但具有概括性:
|
||||
@@ -59,7 +59,7 @@ def init_prompt() -> None:
|
||||
class ExpressionLearner:
|
||||
def __init__(self, chat_id: str) -> None:
|
||||
self.express_learn_model: LLMRequest = LLMRequest(
|
||||
model_set=model_config.model_task_config.replyer, request_type="expressor.learner"
|
||||
model_set=model_config.model_task_config.replyer, request_type="expression.learner"
|
||||
)
|
||||
self.chat_id = chat_id
|
||||
self.chat_name = get_chat_manager().get_stream_name(chat_id) or chat_id
|
||||
|
||||
@@ -25,7 +25,7 @@ def init_prompt():
|
||||
以下是可选的表达情境:
|
||||
{all_situations}
|
||||
|
||||
请你分析聊天内容的语境、情绪、话题类型,从上述情境中选择最适合当前聊天情境的{min_num}-{max_num}个情境。
|
||||
请你分析聊天内容的语境、情绪、话题类型,从上述情境中选择最适合当前聊天情境的,最多{max_num}个情境。
|
||||
考虑因素包括:
|
||||
1. 聊天的情绪氛围(轻松、严肃、幽默等)
|
||||
2. 话题类型(日常、技术、游戏、情感等)
|
||||
@@ -35,7 +35,7 @@ def init_prompt():
|
||||
请以JSON格式输出,只需要输出选中的情境编号:
|
||||
例如:
|
||||
{{
|
||||
"selected_situations": [2, 3, 5, 7, 19, 22, 25, 38, 39, 45, 48, 64]
|
||||
"selected_situations": [2, 3, 5, 7, 19]
|
||||
}}
|
||||
|
||||
请严格按照JSON格式输出,不要包含其他内容:
|
||||
@@ -195,7 +195,6 @@ class ExpressionSelector:
|
||||
chat_id: str,
|
||||
chat_info: str,
|
||||
max_num: int = 10,
|
||||
min_num: int = 5,
|
||||
target_message: Optional[str] = None,
|
||||
) -> List[Dict[str, Any]]:
|
||||
# sourcery skip: inline-variable, list-comprehension
|
||||
@@ -206,8 +205,8 @@ class ExpressionSelector:
|
||||
logger.debug(f"聊天流 {chat_id} 不允许使用表达,返回空列表")
|
||||
return []
|
||||
|
||||
# 1. 获取35个随机表达方式(现在按权重抽取)
|
||||
style_exprs = self.get_random_expressions(chat_id, 30)
|
||||
# 1. 获取20个随机表达方式(现在按权重抽取)
|
||||
style_exprs = self.get_random_expressions(chat_id, 10)
|
||||
|
||||
# 2. 构建所有表达方式的索引和情境列表
|
||||
all_expressions = []
|
||||
@@ -219,7 +218,7 @@ class ExpressionSelector:
|
||||
expr_with_type = expr.copy()
|
||||
expr_with_type["type"] = "style"
|
||||
all_expressions.append(expr_with_type)
|
||||
all_situations.append(f"{len(all_expressions)}.{expr['situation']}")
|
||||
all_situations.append(f"{len(all_expressions)}.当 {expr['situation']} 时,使用 {expr['style']}")
|
||||
|
||||
if not all_expressions:
|
||||
logger.warning("没有找到可用的表达方式")
|
||||
@@ -239,13 +238,12 @@ class ExpressionSelector:
|
||||
bot_name=global_config.bot.nickname,
|
||||
chat_observe_info=chat_info,
|
||||
all_situations=all_situations_str,
|
||||
min_num=min_num,
|
||||
max_num=max_num,
|
||||
target_message=target_message_str,
|
||||
target_message_extra_block=target_message_extra_block,
|
||||
)
|
||||
|
||||
# print(prompt)
|
||||
print(prompt)
|
||||
|
||||
# 4. 调用LLM
|
||||
try:
|
||||
@@ -255,7 +253,7 @@ class ExpressionSelector:
|
||||
# logger.info(f"LLM请求时间: {model_name} {time.time() - start_time} \n{prompt}")
|
||||
|
||||
# logger.info(f"模型名称: {model_name}")
|
||||
# logger.info(f"LLM返回结果: {content}")
|
||||
logger.info(f"LLM返回结果: {content}")
|
||||
# if reasoning_content:
|
||||
# logger.info(f"LLM推理: {reasoning_content}")
|
||||
# else:
|
||||
|
||||
@@ -200,7 +200,7 @@ class Hippocampus:
|
||||
self.parahippocampal_gyrus = ParahippocampalGyrus(self)
|
||||
# 从数据库加载记忆图
|
||||
self.entorhinal_cortex.sync_memory_from_db()
|
||||
self.model_small = LLMRequest(model_set=model_config.model_task_config.utils_small, request_type="memory.small")
|
||||
self.model_small = LLMRequest(model_set=model_config.model_task_config.utils_small, request_type="memory.modify")
|
||||
|
||||
def get_all_node_names(self) -> list:
|
||||
"""获取记忆图中所有节点的名字列表"""
|
||||
|
||||
@@ -117,8 +117,8 @@ def init_prompt():
|
||||
你现在正在一个QQ群里聊天,以下是正在进行的聊天内容:
|
||||
{background_dialogue_prompt}
|
||||
|
||||
你现在想补充说明你刚刚自己的发言内容:{target}
|
||||
请你根据聊天内容,组织一条新回复。
|
||||
你现在想补充说明你刚刚自己的发言内容:{target},原因是{reason}
|
||||
请你根据聊天内容,组织一条新回复。注意,{target} 是刚刚你自己的发言,你要在这基础上进一步发言,请按照你自己的角度来继续进行回复。
|
||||
你现在的心情是:{mood_state}
|
||||
{reply_style}
|
||||
{keywords_reaction_prompt}
|
||||
@@ -331,7 +331,7 @@ class DefaultReplyer:
|
||||
# 使用从处理器传来的选中表达方式
|
||||
# LLM模式:调用LLM选择5-10个,然后随机选5个
|
||||
selected_expressions = await expression_selector.select_suitable_expressions_llm(
|
||||
self.chat_stream.stream_id, chat_history, max_num=8, min_num=2, target_message=target
|
||||
self.chat_stream.stream_id, chat_history, max_num=8, target_message=target
|
||||
)
|
||||
|
||||
if selected_expressions:
|
||||
|
||||
@@ -36,6 +36,18 @@ COST_BY_TYPE = "costs_by_type"
|
||||
COST_BY_USER = "costs_by_user"
|
||||
COST_BY_MODEL = "costs_by_model"
|
||||
COST_BY_MODULE = "costs_by_module"
|
||||
TIME_COST_BY_TYPE = "time_costs_by_type"
|
||||
TIME_COST_BY_USER = "time_costs_by_user"
|
||||
TIME_COST_BY_MODEL = "time_costs_by_model"
|
||||
TIME_COST_BY_MODULE = "time_costs_by_module"
|
||||
AVG_TIME_COST_BY_TYPE = "avg_time_costs_by_type"
|
||||
AVG_TIME_COST_BY_USER = "avg_time_costs_by_user"
|
||||
AVG_TIME_COST_BY_MODEL = "avg_time_costs_by_model"
|
||||
AVG_TIME_COST_BY_MODULE = "avg_time_costs_by_module"
|
||||
STD_TIME_COST_BY_TYPE = "std_time_costs_by_type"
|
||||
STD_TIME_COST_BY_USER = "std_time_costs_by_user"
|
||||
STD_TIME_COST_BY_MODEL = "std_time_costs_by_model"
|
||||
STD_TIME_COST_BY_MODULE = "std_time_costs_by_module"
|
||||
ONLINE_TIME = "online_time"
|
||||
TOTAL_MSG_CNT = "total_messages"
|
||||
MSG_CNT_BY_CHAT = "messages_by_chat"
|
||||
@@ -293,6 +305,18 @@ class StatisticOutputTask(AsyncTask):
|
||||
COST_BY_USER: defaultdict(float),
|
||||
COST_BY_MODEL: defaultdict(float),
|
||||
COST_BY_MODULE: defaultdict(float),
|
||||
TIME_COST_BY_TYPE: defaultdict(list),
|
||||
TIME_COST_BY_USER: defaultdict(list),
|
||||
TIME_COST_BY_MODEL: defaultdict(list),
|
||||
TIME_COST_BY_MODULE: defaultdict(list),
|
||||
AVG_TIME_COST_BY_TYPE: defaultdict(float),
|
||||
AVG_TIME_COST_BY_USER: defaultdict(float),
|
||||
AVG_TIME_COST_BY_MODEL: defaultdict(float),
|
||||
AVG_TIME_COST_BY_MODULE: defaultdict(float),
|
||||
STD_TIME_COST_BY_TYPE: defaultdict(float),
|
||||
STD_TIME_COST_BY_USER: defaultdict(float),
|
||||
STD_TIME_COST_BY_MODEL: defaultdict(float),
|
||||
STD_TIME_COST_BY_MODULE: defaultdict(float),
|
||||
}
|
||||
for period_key, _ in collect_period
|
||||
}
|
||||
@@ -344,7 +368,41 @@ class StatisticOutputTask(AsyncTask):
|
||||
stats[period_key][COST_BY_USER][user_id] += cost
|
||||
stats[period_key][COST_BY_MODEL][model_name] += cost
|
||||
stats[period_key][COST_BY_MODULE][module_name] += cost
|
||||
|
||||
# 收集time_cost数据
|
||||
time_cost = record.time_cost or 0.0
|
||||
if time_cost > 0: # 只记录有效的time_cost
|
||||
stats[period_key][TIME_COST_BY_TYPE][request_type].append(time_cost)
|
||||
stats[period_key][TIME_COST_BY_USER][user_id].append(time_cost)
|
||||
stats[period_key][TIME_COST_BY_MODEL][model_name].append(time_cost)
|
||||
stats[period_key][TIME_COST_BY_MODULE][module_name].append(time_cost)
|
||||
break
|
||||
|
||||
# 计算平均耗时和标准差
|
||||
for period_key in stats:
|
||||
for category in [REQ_CNT_BY_TYPE, REQ_CNT_BY_USER, REQ_CNT_BY_MODEL, REQ_CNT_BY_MODULE]:
|
||||
time_cost_key = f"time_costs_by_{category.split('_')[-1]}"
|
||||
avg_key = f"avg_time_costs_by_{category.split('_')[-1]}"
|
||||
std_key = f"std_time_costs_by_{category.split('_')[-1]}"
|
||||
|
||||
for item_name in stats[period_key][category]:
|
||||
time_costs = stats[period_key][time_cost_key].get(item_name, [])
|
||||
if time_costs:
|
||||
# 计算平均耗时
|
||||
avg_time_cost = sum(time_costs) / len(time_costs)
|
||||
stats[period_key][avg_key][item_name] = round(avg_time_cost, 3)
|
||||
|
||||
# 计算标准差
|
||||
if len(time_costs) > 1:
|
||||
variance = sum((x - avg_time_cost) ** 2 for x in time_costs) / len(time_costs)
|
||||
std_time_cost = variance ** 0.5
|
||||
stats[period_key][std_key][item_name] = round(std_time_cost, 3)
|
||||
else:
|
||||
stats[period_key][std_key][item_name] = 0.0
|
||||
else:
|
||||
stats[period_key][avg_key][item_name] = 0.0
|
||||
stats[period_key][std_key][item_name] = 0.0
|
||||
|
||||
return stats
|
||||
|
||||
@staticmethod
|
||||
@@ -566,11 +624,11 @@ class StatisticOutputTask(AsyncTask):
|
||||
"""
|
||||
if stats[TOTAL_REQ_CNT] <= 0:
|
||||
return ""
|
||||
data_fmt = "{:<32} {:>10} {:>12} {:>12} {:>12} {:>9.4f}¥"
|
||||
data_fmt = "{:<32} {:>10} {:>12} {:>12} {:>12} {:>9.4f}¥ {:>10} {:>10}"
|
||||
|
||||
output = [
|
||||
"按模型分类统计:",
|
||||
" 模型名称 调用次数 输入Token 输出Token Token总量 累计花费",
|
||||
" 模型名称 调用次数 输入Token 输出Token Token总量 累计花费 平均耗时(秒) 标准差(秒)",
|
||||
]
|
||||
for model_name, count in sorted(stats[REQ_CNT_BY_MODEL].items()):
|
||||
name = f"{model_name[:29]}..." if len(model_name) > 32 else model_name
|
||||
@@ -578,7 +636,9 @@ class StatisticOutputTask(AsyncTask):
|
||||
out_tokens = stats[OUT_TOK_BY_MODEL][model_name]
|
||||
tokens = stats[TOTAL_TOK_BY_MODEL][model_name]
|
||||
cost = stats[COST_BY_MODEL][model_name]
|
||||
output.append(data_fmt.format(name, count, in_tokens, out_tokens, tokens, cost))
|
||||
avg_time_cost = stats[AVG_TIME_COST_BY_MODEL][model_name]
|
||||
std_time_cost = stats[STD_TIME_COST_BY_MODEL][model_name]
|
||||
output.append(data_fmt.format(name, count, in_tokens, out_tokens, tokens, cost, avg_time_cost, std_time_cost))
|
||||
|
||||
output.append("")
|
||||
return "\n".join(output)
|
||||
@@ -663,6 +723,8 @@ class StatisticOutputTask(AsyncTask):
|
||||
f"<td>{stat_data[OUT_TOK_BY_MODEL][model_name]}</td>"
|
||||
f"<td>{stat_data[TOTAL_TOK_BY_MODEL][model_name]}</td>"
|
||||
f"<td>{stat_data[COST_BY_MODEL][model_name]:.4f} ¥</td>"
|
||||
f"<td>{stat_data[AVG_TIME_COST_BY_MODEL][model_name]:.3f} 秒</td>"
|
||||
f"<td>{stat_data[STD_TIME_COST_BY_MODEL][model_name]:.3f} 秒</td>"
|
||||
f"</tr>"
|
||||
for model_name, count in sorted(stat_data[REQ_CNT_BY_MODEL].items())
|
||||
]
|
||||
@@ -677,6 +739,8 @@ class StatisticOutputTask(AsyncTask):
|
||||
f"<td>{stat_data[OUT_TOK_BY_TYPE][req_type]}</td>"
|
||||
f"<td>{stat_data[TOTAL_TOK_BY_TYPE][req_type]}</td>"
|
||||
f"<td>{stat_data[COST_BY_TYPE][req_type]:.4f} ¥</td>"
|
||||
f"<td>{stat_data[AVG_TIME_COST_BY_TYPE][req_type]:.3f} 秒</td>"
|
||||
f"<td>{stat_data[STD_TIME_COST_BY_TYPE][req_type]:.3f} 秒</td>"
|
||||
f"</tr>"
|
||||
for req_type, count in sorted(stat_data[REQ_CNT_BY_TYPE].items())
|
||||
]
|
||||
@@ -691,6 +755,8 @@ class StatisticOutputTask(AsyncTask):
|
||||
f"<td>{stat_data[OUT_TOK_BY_MODULE][module_name]}</td>"
|
||||
f"<td>{stat_data[TOTAL_TOK_BY_MODULE][module_name]}</td>"
|
||||
f"<td>{stat_data[COST_BY_MODULE][module_name]:.4f} ¥</td>"
|
||||
f"<td>{stat_data[AVG_TIME_COST_BY_MODULE][module_name]:.3f} 秒</td>"
|
||||
f"<td>{stat_data[STD_TIME_COST_BY_MODULE][module_name]:.3f} 秒</td>"
|
||||
f"</tr>"
|
||||
for module_name, count in sorted(stat_data[REQ_CNT_BY_MODULE].items())
|
||||
]
|
||||
@@ -717,7 +783,7 @@ class StatisticOutputTask(AsyncTask):
|
||||
|
||||
<h2>按模型分类统计</h2>
|
||||
<table>
|
||||
<thead><tr><th>模型名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th></tr></thead>
|
||||
<thead><tr><th>模型名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th><th>平均耗时(秒)</th><th>标准差(秒)</th></tr></thead>
|
||||
<tbody>
|
||||
{model_rows}
|
||||
</tbody>
|
||||
@@ -726,7 +792,7 @@ class StatisticOutputTask(AsyncTask):
|
||||
<h2>按模块分类统计</h2>
|
||||
<table>
|
||||
<thead>
|
||||
<tr><th>模块名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th></tr>
|
||||
<tr><th>模块名称</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th><th>平均耗时(秒)</th><th>标准差(秒)</th></tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
{module_rows}
|
||||
@@ -736,7 +802,7 @@ class StatisticOutputTask(AsyncTask):
|
||||
<h2>按请求类型分类统计</h2>
|
||||
<table>
|
||||
<thead>
|
||||
<tr><th>请求类型</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th></tr>
|
||||
<tr><th>请求类型</th><th>调用次数</th><th>输入Token</th><th>输出Token</th><th>Token总量</th><th>累计花费</th><th>平均耗时(秒)</th><th>标准差(秒)</th></tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
{type_rows}
|
||||
|
||||
@@ -79,6 +79,8 @@ class LLMUsage(BaseModel):
|
||||
"""
|
||||
|
||||
model_name = TextField(index=True) # 添加索引
|
||||
model_assign_name = TextField(null=True) # 添加索引
|
||||
model_api_provider = TextField(null=True) # 添加索引
|
||||
user_id = TextField(index=True) # 添加索引
|
||||
request_type = TextField(index=True) # 添加索引
|
||||
endpoint = TextField()
|
||||
@@ -86,6 +88,7 @@ class LLMUsage(BaseModel):
|
||||
completion_tokens = IntegerField()
|
||||
total_tokens = IntegerField()
|
||||
cost = DoubleField()
|
||||
time_cost = DoubleField(null=True)
|
||||
status = TextField()
|
||||
timestamp = DateTimeField(index=True) # 更改为 DateTimeField 并添加索引
|
||||
|
||||
|
||||
@@ -109,10 +109,17 @@ def get_value_by_path(d, path):
|
||||
|
||||
|
||||
def set_value_by_path(d, path, value):
|
||||
"""设置嵌套字典中指定路径的值"""
|
||||
for k in path[:-1]:
|
||||
if k not in d or not isinstance(d[k], dict):
|
||||
d[k] = {}
|
||||
d = d[k]
|
||||
|
||||
# 使用 tomlkit.item 来保持 TOML 格式
|
||||
try:
|
||||
d[path[-1]] = tomlkit.item(value)
|
||||
except (TypeError, ValueError):
|
||||
# 如果转换失败,直接赋值
|
||||
d[path[-1]] = value
|
||||
|
||||
|
||||
@@ -237,6 +244,7 @@ def _update_config_generic(config_name: str, template_name: str):
|
||||
for log in logs:
|
||||
logger.info(log)
|
||||
# 检查旧配置是否等于旧默认值,如果是则更新为新默认值
|
||||
config_updated = False
|
||||
for path, old_default, new_default in changes:
|
||||
old_value = get_value_by_path(old_config, path)
|
||||
if old_value == old_default:
|
||||
@@ -244,6 +252,13 @@ def _update_config_generic(config_name: str, template_name: str):
|
||||
logger.info(
|
||||
f"已自动将{config_name}配置 {'.'.join(path)} 的值从旧默认值 {old_default} 更新为新默认值 {new_default}"
|
||||
)
|
||||
config_updated = True
|
||||
|
||||
# 如果配置有更新,立即保存到文件
|
||||
if config_updated:
|
||||
with open(old_config_path, "w", encoding="utf-8") as f:
|
||||
f.write(tomlkit.dumps(old_config))
|
||||
logger.info(f"已保存更新后的{config_name}配置文件")
|
||||
else:
|
||||
logger.info(f"未检测到{config_name}模板默认值变动")
|
||||
|
||||
|
||||
@@ -155,7 +155,7 @@ class LLMUsageRecorder:
|
||||
logger.error(f"创建 LLMUsage 表失败: {str(e)}")
|
||||
|
||||
def record_usage_to_database(
|
||||
self, model_info: ModelInfo, model_usage: UsageRecord, user_id: str, request_type: str, endpoint: str
|
||||
self, model_info: ModelInfo, model_usage: UsageRecord, user_id: str, request_type: str, endpoint: str, time_cost: float = 0.0
|
||||
):
|
||||
input_cost = (model_usage.prompt_tokens / 1000000) * model_info.price_in
|
||||
output_cost = (model_usage.completion_tokens / 1000000) * model_info.price_out
|
||||
@@ -164,6 +164,8 @@ class LLMUsageRecorder:
|
||||
# 使用 Peewee 模型创建记录
|
||||
LLMUsage.create(
|
||||
model_name=model_info.model_identifier,
|
||||
model_assign_name=model_info.name,
|
||||
model_api_provider=model_info.api_provider,
|
||||
user_id=user_id,
|
||||
request_type=request_type,
|
||||
endpoint=endpoint,
|
||||
@@ -171,6 +173,7 @@ class LLMUsageRecorder:
|
||||
completion_tokens=model_usage.completion_tokens or 0,
|
||||
total_tokens=model_usage.total_tokens or 0,
|
||||
cost=total_cost or 0.0,
|
||||
time_cost = round(time_cost or 0.0, 3),
|
||||
status="success",
|
||||
timestamp=datetime.now(), # Peewee 会处理 DateTimeField
|
||||
)
|
||||
|
||||
@@ -71,6 +71,7 @@ class LLMRequest:
|
||||
(Tuple[str, str, str, Optional[List[ToolCall]]]): 响应内容、推理内容、模型名称、工具调用列表
|
||||
"""
|
||||
# 模型选择
|
||||
start_time = time.time()
|
||||
model_info, api_provider, client = self._select_model()
|
||||
|
||||
# 请求体构建
|
||||
@@ -105,6 +106,7 @@ class LLMRequest:
|
||||
user_id="system",
|
||||
request_type=self.request_type,
|
||||
endpoint="/chat/completions",
|
||||
time_cost=time.time() - start_time,
|
||||
)
|
||||
return content, (reasoning_content, model_info.name, tool_calls)
|
||||
|
||||
@@ -149,8 +151,6 @@ class LLMRequest:
|
||||
# 请求体构建
|
||||
start_time = time.time()
|
||||
|
||||
|
||||
|
||||
message_builder = MessageBuilder()
|
||||
message_builder.add_text_content(prompt)
|
||||
messages = [message_builder.build()]
|
||||
@@ -190,6 +190,7 @@ class LLMRequest:
|
||||
user_id="system",
|
||||
request_type=self.request_type,
|
||||
endpoint="/chat/completions",
|
||||
time_cost=time.time() - start_time,
|
||||
)
|
||||
|
||||
if not content:
|
||||
@@ -208,6 +209,7 @@ class LLMRequest:
|
||||
(Tuple[List[float], str]): (嵌入向量,使用的模型名称)
|
||||
"""
|
||||
# 无需构建消息体,直接使用输入文本
|
||||
start_time = time.time()
|
||||
model_info, api_provider, client = self._select_model()
|
||||
|
||||
# 请求并处理返回值
|
||||
@@ -228,6 +230,7 @@ class LLMRequest:
|
||||
user_id="system",
|
||||
request_type=self.request_type,
|
||||
endpoint="/embeddings",
|
||||
time_cost=time.time() - start_time,
|
||||
)
|
||||
|
||||
if not embedding:
|
||||
|
||||
@@ -104,7 +104,7 @@ class PromptBuilder:
|
||||
# 使用从处理器传来的选中表达方式
|
||||
# LLM模式:调用LLM选择5-10个,然后随机选5个
|
||||
selected_expressions = await expression_selector.select_suitable_expressions_llm(
|
||||
chat_stream.stream_id, chat_history, max_num=12, min_num=5, target_message=target
|
||||
chat_stream.stream_id, chat_history, max_num=12, target_message=target
|
||||
)
|
||||
|
||||
if selected_expressions:
|
||||
|
||||
@@ -22,7 +22,7 @@ logger = get_logger("group_relationship_manager")
|
||||
class GroupRelationshipManager:
|
||||
def __init__(self):
|
||||
self.group_llm = LLMRequest(
|
||||
model_set=model_config.model_task_config.utils, request_type="group.relationship"
|
||||
model_set=model_config.model_task_config.utils, request_type="relationship.group"
|
||||
)
|
||||
self.last_group_impression_time = 0.0
|
||||
self.last_group_impression_message_count = 0
|
||||
|
||||
@@ -20,7 +20,7 @@ logger = get_logger("relation")
|
||||
class RelationshipManager:
|
||||
def __init__(self):
|
||||
self.relationship_llm = LLMRequest(
|
||||
model_set=model_config.model_task_config.utils, request_type="relationship"
|
||||
model_set=model_config.model_task_config.utils, request_type="relationship.person"
|
||||
) # 用于动作规划
|
||||
|
||||
@staticmethod
|
||||
|
||||
Reference in New Issue
Block a user