feat: llm统计现已记录模型反应时间

This commit is contained in:
SengokuCola
2025-08-11 21:51:59 +08:00
parent 849928a8f3
commit 268b428e8f
13 changed files with 117 additions and 29 deletions

View File

@@ -71,6 +71,7 @@ class LLMRequest:
(Tuple[str, str, str, Optional[List[ToolCall]]]): 响应内容、推理内容、模型名称、工具调用列表
"""
# 模型选择
start_time = time.time()
model_info, api_provider, client = self._select_model()
# 请求体构建
@@ -105,6 +106,7 @@ class LLMRequest:
user_id="system",
request_type=self.request_type,
endpoint="/chat/completions",
time_cost=time.time() - start_time,
)
return content, (reasoning_content, model_info.name, tool_calls)
@@ -149,8 +151,6 @@ class LLMRequest:
# 请求体构建
start_time = time.time()
message_builder = MessageBuilder()
message_builder.add_text_content(prompt)
messages = [message_builder.build()]
@@ -190,6 +190,7 @@ class LLMRequest:
user_id="system",
request_type=self.request_type,
endpoint="/chat/completions",
time_cost=time.time() - start_time,
)
if not content:
@@ -208,6 +209,7 @@ class LLMRequest:
(Tuple[List[float], str]): (嵌入向量,使用的模型名称)
"""
# 无需构建消息体,直接使用输入文本
start_time = time.time()
model_info, api_provider, client = self._select_model()
# 请求并处理返回值
@@ -228,6 +230,7 @@ class LLMRequest:
user_id="system",
request_type=self.request_type,
endpoint="/embeddings",
time_cost=time.time() - start_time,
)
if not embedding: